高功率全固态绿光激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固态激光器(半导体泵浦的固体激光器)具有体积小、重量轻、效率高、光束质量好、稳定性好,维护费用低等优点,随着激光技术的发展,其在工业、军事、医疗和科研等领域中发挥着越来越重要的作用,已成为应用激光器中的主流。高功率全固态绿光激光器因其在激光材料加工、激光彩色显示、激光医疗以及激光同位素分离等领域的重要应用而成为研究的热点。本文的研究工作主要集中在高功率全固态1342nm激光器、1064nm激光器、准连续和连续全固态绿光激光器的理论和实验研究等方面。
     本文的主要创新点可以归纳如下:
     1.研究了1342nm二极管激光器单端泵浦Nd:YVO4激光器,在实验中采用弱聚焦耦合系统、使用低掺杂浓度晶体以及合理的腔型设计获得了7.36W稳定的TEM00模1342nm激光输出,光-光转换效率32.8%,功率不稳定度0.3%。此结果在1342nm激光器的功率稳定性方面处于国际领先水平,在端面泵浦1342 nm Nd:YVO4激光器功率水平方面为国内最高。
     2.从理论上研究了双棒之间距离对稳定性和光束质量的影响,结果显示,在热致双折射补偿腔中,当双棒分别靠近激光器腔镜时可以得到更低的M2值,同时发现,双棒内主平面之间距离应接近热焦距长度之和,这样在补偿热致双折射的同时可以实现高功率无损伤运转。然而,在含90°旋光片的对称平行平面双棒谐振腔中,热致双折射补偿造成法向(fr)和切向(fφ)热焦距长度的轻微不对称,打破了谐振腔的对称性,在稳区中产生一个窄的非稳区。由于这个窄非稳区的存在,当泵浦激光功率上升到此处时激光输出功率会出现波动或下降。因此,有必要消除这个窄的非稳区以得到激光功率随泵浦电功率的稳定线性增长。通过g参数分析,我们发现对称共焦腔结构方法,可以消除稳区中存在的非稳区,我们也研究了该腔结构下双棒之间距离对稳定性和光束质量的影响。
     3.用传输矩阵法,通过稳区图分析了单棒对称和非对称平行平面腔结构。在分析稳定条件、r偏振和φ偏振模式尺寸的基础上,阐明了不同谐振腔内实现激光稳定运转的条件。又从理论上分析了有热致双折射补偿和无热致双折射补偿双棒串接腔中,r偏振和φ偏振对谐振腔稳定条件的影响,得到了短腔和长腔情况下的稳区最大范围。并从实验上进行了验证,理论与实验相一致。在双棒短腔情况下,获得了482.3W的1064nm激光输出功率,光-光转换效率40.2%。
     4.通过对介质中耦合波方程的求解,对不同情况下Q开关的衍射效率进行分析,并介绍了几种新型声光Q开关的工作原理。用龙格-库塔法数值求解内腔倍频激光器的声光调Q速率方程,得到内腔倍频激光器中倍频晶体的最佳长度以及倍频晶体最佳长度与泵浦水平和腔内损耗的关系。为声光调Q绿光激光器的研究奠定了基础。
     5.分别采用50W和150W半导体侧泵模块、进行了单棒和双棒串接声光调Q内腔倍频绿光激光器的研究。用一个50W模块得到31.2W 532nm绿光输出,重复频率7kHz,光-光转换效率17.3%,功率不稳定度小于1%。用两个50W模块双棒串接,得到56W 532nm准连续绿光输出,重复频率9kHz光-光转换效率15.6%,功率不稳定度小于1%。采用单个150W模块进行绿光实验,用KTP内腔倍频得到68.3W的绿光输出;用LBO内腔倍频得到66.6W的绿光输出,后者光-光转换效率18.2%。已经开发出20W和40W绿光激光器产品,整体性能处于国内领先水平。
     6.进行了高功率连续绿光激光器的实验研究。采用侧面泵浦方式和三镜折叠谐振腔设计,高效KTP晶体作为腔内倍频晶体,用北京国科和武汉三浦的泵浦组件,分别得到20.7和22.7W的连续波绿光激光输出,功率不稳定度在1%左右,能够很好的满足激光彩色显示等领域对高功率连续绿光的要求。据我们所知,此结果在532nm连续绿光输出功率水平方面为国内最高,在采用棒状工作物质的全固态连续绿光激光器中,其输出功率达到国际先进水平。
All-solid-state lasers (Laser diode-pumped solid-state lasers) have many advantages, such as compact, efficient, good beam quality, stable and long lifetime et al. With the development of laser technology, they have been widely used in the fields of industry, military, medical treatment and research, and have become the mainstream of lasers in application. High-power LD pumped green laser has become the research focus because its important application in material processing, medical application and laser isolation of uranium isotopes, etc. This doctoral dissertation focuses on theoretical and experimental research of high-power all-solid-state 1342nm, 1064nm, quasi-continuum and continuum 532nm lasers.
     The main contents and key creation points of this dissertation are as follows:
     (1) A compact, efficient and high-power diode-laser single-end-pumped Nd:YVO4 laser with continuous-wave emission at 1342nm is investigated. A coupling system with a large working spot size of 800μm, a low-doping Nd:YVO4 crystal and reasonable designed resonator are used in the experiments. And we obtained an output power of 7.36W, corresponding to an optical-to-optical efficiency of 32.8%. The laser operates in a nearly TEM00 mode with small amplitude noise of 0.3%(rms). This represents, to the best of our knowledge, the highest power obtained from a diode-laser single-end-pumped Nd:YVO4 continuous wave laser at 1342nm so far and the power stability keep ahead in the world.
     (2) We investigate the effect of distance between two rods of a double laser-head plane-parallel resonator on stability and beam quality. The results show that, in a thermal-birefringence compensation scheme, low M2 value can be achieved when each rod is, respectively, placed near each laser mirror. And we find that the distance between two inner principal planes of two rods should be near the sum of the thermal focal lengths to compensate a thermal birefringence as well as to get high power without optical damage. In symmetrical plane-parallel two-rod resonator with 90°optical rotator, the thermal birefringence compensation breaks the symmetry of the resonator configuration, which is due to the slight difference between the thermal focal lengths of the radial (fr) and the tangential (fφ) directions of a laser rod. This generates a narrow unstable region inside a stable region, which means a laser power drop in the unstable region as increasing the electric pump power. We propose a method to eliminate the narrow unstable region of a symmetric two-rod resonator with a 90°optical rotator which is used to compensate for thermal birefringence of the laser rod. Using the g-diagram analysis, we find that the narrow unstable region can be removed in the resonator configuration of a symmetric confocal type. We investigate the effect of the distance between two rods of the proposed resonator on the stability and the beam quality.
     (3) Using a ray matrix method, the resonator stability conditions are analyzed graphically in the symmetric and asymmetric configuration for a plane-parallel resonator. On the basis of an analysis of the stability condition and mode size for the r andφpolarization, we clarify how the stable laser operation is possible for various resonator configurations. Experimentally, the output power characteristics are confirmed in association with the resonator stability. We also analyze theoretically how the r andφpolarization affect the resonator stability condition of two laser heads with or without thermal birefringence compensation. The resonator stability condition is analyzed graphically for a plane-parallel resonator. The maximum range of stable region is found for both the short and the long cavity. The characteristics of the laser output power are confirmed experimentally in association with the resonator stability condition. The laser output power of 482.3W is obtained with the optical-to-optical efficiency of 40.2% for a plane-parallel resonator with a short crystal separation.
     (4) We analyzed the diffraction efficiency of Acousto-Optic Q-switch (A-O Q-switch) in different cases by solving the coupled wave equation in the medium. And we introduced working principles of several new types of A-O Q-switches. We solved the A-O Q-switched laser rate equations of intracavity frequency-doubled lasers with Runge-Kutta method, obtained optimum length of frequency-doubled crystal, the relation between the optimum length of frequency-doubled crystal and the pump level, the cavity loss. This is the basic of the high power A-O Q-switched green laser.
     (5) Use 50W, 150W side-pumped laser modules, we investigated single-rod and double-rod A-O Q-switched intracavity-doubled lasers. Using a 50W module, we obtained a green average power of 31.2W with 7 kHz repetition, with optical-to-optical conversion efficiency of 17.3% and power instability of less than 1%. With two 50W modules in tandem with each other, we obtained an average power of 56W at 532nm with 9 kHz repetition, of which the optical-to-optical conversion efficiency is 15.6%, and the power instability is less than 1%. Using the 150W pump module with KTP crystal, we obtained 68.3W green output power. Using the same module with LBO crystal, we obtained 66.6W green output power with optical-optical conversion efficiency of 18.2%. The experiments have been developed into products of 20W and 40W green lasers, the whole performance keep ahead in our country.
     (6) Research on high power continuum wave (CW) green laser. With an LD side-pumped configuration and three mirror folded cavity design, we obtained 20.7W and 22.7W CW 532nm output power with the pump modules from Beijing GK Laser Technology Co. Ltd. and Wuhan Sapo Laser Industry LTD., respectively. The power instability is about 1%. This can satisfy the demand of CW green laser in laser color display field. This represents, as far as we know, the highest power of CW 532nm output power in our country. And in traditional laser with rod material, this output power is advanced in the world.
引文
[1] A. Einstein, On the Quantum theory of Radiation, Phys. Zeitschrift, 1917, 18: 121. First printed in Mitteilungender Physikalischen Gesellschaft Zurich. No 18, 1916. Translated into English in Van der Waerden Sources of Quantum Mechanics (North Holland 1967) pp. 63~77
    [2] http://focus.aps.org/story/v15/st4
    [3] N. G. Basov and A. M. Prokhorov, Sov. Phys. -JETP 27, 431(1954)
    [4] N. Bloembergen, Proposal for a New Type Solid State Maser, Phys. Rev. 1956, 104: 324~327
    [5] A. L. Schawlow, C.H. Townes, Infrared and optical masers, Phys. Rev., 1958, 112(6): 1940~1949
    [6] http://nobelprize.org/nobel_prizes/physics/laureates/1964/prokhorov-bio.html
    [7] T. H. Maiman, Stimulated optical radiation in ruby, Nature, 1960, 187(4736): 493~494
    [8] R. Newman, Excitation of Nd fluorescence in CaWO4 by recombination radiation in GaAs, J. Appl. Phys., 1963, 34: 437
    [9] R. J. Keyes, T. M. Quist, Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers, Appl. Phys. Lett., 1964, 1(4): 50~52
    [10] M. Ross, YAG laser operation by semiconductor laser pumping, Proc. IEEE, 1968, 56: 196~197
    [11] F. W. Ostermeyer, Appl. Phys. Lett., 1971, 19: 286
    [12] H. G. Dnielmeyer, H. P. Weber, Fluorescence in Ndedymium ultraphosphate, IEEE J. Quantum Electron., 1972, 8(10): 805~808
    [13] L. J. Rosenkrantz, GaAs diode-pumped Nd:YAG laser, J. Appl. Phys., 1972, 43: 4603~4605
    [14] R. R. Rice, J. R. Teaque, J. E. Jackson, Dynamic coupling charaerrization of TEM00 Nd:YAG lasers, J. Appl. Phys., 1975, 46(6): 2716~2720
    [15] J. Stone, C. A. Burrus, Nd:Y2O3 single-crystal fiber laser: room-temperature CW operation at 1.07- and 1.35-μm wavelength, J. Appl. Phys., 1978, 49(4): 2281~2287
    [16] T. H. Alikm, W. W. Hovis, D. P. Caffey, et al., Efficient diode-array-pumpedNd:YAG and Nd:Lu:YAG lasers, Opt. Lett., 1989, 14(2): 116~118
    [17] L. R. Marshall, A. Kaz, R. L. Burnharm, Highly efficient TEM00 operation of transversely diode pumped Nd:YAG lasers, Opt. Lett., 1992, 17(3): 186~188
    [18] S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, Scaling CW diode- end-pumped Nd:YAG lasers to high average powers, IEEE J. Quantum Electron., 1992, 28(4): 997~1009
    [19] S. C. Tidwell, J. F. Seamans, M. S. Bowers, Highly efficieny, 60-W TEM00 CW diode-end-pumped Nd:YAG laser, Opt. Lett., 1993, 18(2): 116~118
    [20] D. Golla, S. Knoke, W. schone, et al., 300W cw diode laser side pumped Nd:YAG rod laser, Opt. Lett., 1995, 20(10): 1148~1150
    [21] R. J. Koshel, I. A. Walmsley, Modeling of the gain distribution for diode pumping of a solid state laser rod with nonimaging optics, Appl. Opt., 1995, 32(9): 1517~1527
    [22] D. Golla, S. Knoke, A. Tunnermann, H. Welling, Design and laser performance of diode laser side pumped Nd:YAG lasers operating at high output powers, In Conference on Laser and Electro-Optics, 1995, Vol. 15 OSA Technical Digest Series (Optical Society of America, Washington, D. C. 1995), p.62, Paper CTuC3
    [23] N. Uehara, K. Nakahara, K. Ueda, Continuous-wave TEM00 mode 26.5 W output virtual point source diode array pumped Nd:YAG laser, Opt. Lett., 1995, 20(16): 1707~1709
    [24] T. Brand, Compact 170-W cw diode pumped Nd:YAG rod laser with a cusp-shaped reflector, Opt. Lett., 1995, 20(17): 1776~1778
    [25] K. Yasui, Efficient and stable operation of a high-brightness CW 500-W Nd:YAG laser, Appl. Opt., 1996, 35(15): 2566~2569
    [26] T. Kojima, K. Yasui, Efficient diode side-pumping configuration of a Nd:YAG rod laser with a diffusive cavity, Appl. Opt., 1997, 26(21): 4981~4984
    [27] S. Fujikawa, T. Kojima, K. Yasui, High-power and high-efficiency operation of a CW diode-side-pumped Nd:YAG rod laser, IEEE J. Selected Top. in Quantum Electron., 1997, 3(1): 40~44
    [28] Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, T. Tajime, 208-W TEM00 operation of a diode-pumped Nd:YAG rod lasers, Opt. Lett., 1999, 24(10): 679~681
    [29] S. Lee, M. J. Yun, B. H. Cha, et al., Stability analysis of a diode-pumped, thermalbirefringence-compensated two-rod Nd:YAG laser with 770-W output power, Appl. Opt., 2002, 41(27): 5625~5631
    [30] Project yields a pair of 3.3-kW solid-state lasers, Laser Focus World, 1999, 35(7): 38~40
    [31] E. C. Honea, R. J. Beach, S. G. Mitchell, et al., High-power dual-rod Yb:YAG laser, Opt. Lett., 2000, 25(11): 805~807
    [32] Y. Akiyama, M .Sasaki, H. Yuasa, N. Nishida, Efficient high-power diode-pumped Nd:YAG rod laser, in Conference on Laser and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 2001), pp. 558~559
    [33] J. R. Lu, J. Lua, T. Muraia, et al., Development of Nd:YAG ceramic lasers, SPIE 2002 in USA
    [34] Http://210.162.201.243/photon2/eng/ripe_new_t/randd_e.htm
    [35] C Bibeau, R J Beach, S C Mitchell,et al.High-average-power l-μm porformance and frequency conversion of a diode end pumped Yb:YAG laser[J].IEEE J. Quantum Electron.1998,34(10): 2010~2019
    [36] D. Kracht, R. Wilhelm, M. Frede, 407 W end-pumped multi-segmented Nd:YAG laser, Opt. Express., 2005, 13(25): 10140~10144
    [37] 吕百达,固体激光器件,北京邮电大学出版社,2002,p1
    [38] C. Orth, R. Beach et.al. Engineering and modeling progress in building Mercury, a diode-pumped solid-state laser (DPSSL) for ICF applications. Monterey:第三届ICF固体激光驱动器国际会议报告,1998
    [39] 吕百达,马虹, 二极管泵浦固体激光器研究的一些新进展,激光与红外,2000,30(2):67~70
    [40] 丁磊,贾伟,李明中,美国mercury系统的最新进展,激光与光电子学进展,2004,41(8):16~19
    [41]http://168.160.194.4/htmledit/1A1D1A42-27CB-2D3D-1532-5860A636C1FA.html
    [42] http://www.most.gov.cn/ztzl/863cj/863cjxcl/1.pdf
    [43] J. E. Geusic, H. J. Levinstein, S. Singh, et al., Continuous 0.532-micron solid state source using Ba2NaNb5O15, Appl. Phys. Lett. 1968, 12: 306-308
    [44] Yung S. Liu, L. Drafall, D. Dentz, et al. Nonlinear optical properties of KTP, CLEO’81. Conference on Lasers and Electro-Optics, June 10~12,1981 Washington Hlton Hotel Washington, D. C.
    [45] Y. S. Liu, D. Dentz, and R. Belt, High-average-power intracavity second-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz, in Postdeadline Papers, Conference on lasers and Electro-Optics( Optical Society of America, Washington, D.C., 1982 ; Also Y. S. Liu, D. Dentz, and R. Belt, High-average-power intracavity second-harmonic generation using KTiOPO4 in an acousto-optically Q-switched Nd:YAG laser oscillator at 5 kHz, Opt. Lett., 1984, 9(3): 76
    [46] J. Q. Yao, Y. Li, B. Xue and T. S. Fahlen, high power intracacity frequency doubled YAG lasr using KTP, ICL’83. ThF1, Beijing, China, Sept, 1983.
    [47] T. S. Fahlen, and P. Perkins, Material and Medical Application using a 20W frequency doubled Nd:YAG laser, Technical Digest, Conference on Lasers and Electro-Optics(CLEO’84), (OSA) ThG, Anaheim, CA., U.S.A., June 1984. Also P. E. Perkins, and T. S. Fahlen, A 20 Watt average power KTP intracavity-doubled Nd:YAG Laser, J. Opt. Soc. Amer. B 1987, 4:1066-1071
    [48] The green Nd:YAG laser, Laser & Application, October,1985, P57
    [49] K. C. Liu, M. G. Cohen, High power Nd:YAG laser at 532nm using intracavity type II KTP, CLEO’86 San Franxisco CA, 9-13 June, 1986
    [50] T. Baer, Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers. J Opt Soc Am B, 1986, 3(9): 1175~1180
    [51] D. Z. Shen and C. E. Huang, A new nonlinear optical crystal KTP, Prog. Crystal Growth Characterization, 1985, 11: 269
    [52] 天津市科委鉴定报告,(天津大学、山东大学联合),1985
    [53] 刘跃岗,徐斌,韩建儒等,高效激光倍晶体KTP的生长及主要性能, 中国激光,1986,13(7):438-441
    [54] J. Q. Yao, Y. Li, B. Xue and D. P. Zhang, A 30 watts frequency doubled YAG laser, ILS’87, New Jersey, U. S. A., Nov. 1987.
    [55] 黄朝恩等,KTP腔内倍频已实现33W绿光的稳定高平均功率输出,中国激光,1988,15(10):586-589
    [56] 白晋涛,全固态多波长飞秒激光产生的理论和实验研究,博士学位论文,中国科学院西安光学精密机械研究所,2001年12月
    [57] B. J. Le Garrec, G. J. Raze, P. Y. Thro et al., High-average-power diode-array-pumped frequency-doubled YAG laser, Opt. Lett., 1996, 21(24): 1990~1992
    [58] S. Konno, S. Fujikawa, K. Yasui, Highly efficient 68-W green beam generation by use of an intracavity frequency-doubled diode side-pumped Q-switched Nd:YAG rod laser, Appl. Opt., 1998, 37(27): 6401~6404
    [59] Eric C. Honea, Christopher A, Raymond J. Beach, Joel A. Speth, Jay A. Skidmore, Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm, Opt. Lett. 1998, 23(15): 1203~1205
    [60] Chang J J Ebbers, 315 W pulsed-green generation with a diode-pumped Nd:YAG laser, 《Washington DC》, C A Ebbers C A, 1998 / / P CD-2
    [61] S. Konno, T. Kojima, S.i Fujikawa et al., Highly-brightness 138-W green laser based on an intracavity frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt. Lett., 2000, 25(2): 105~107
    [62] Jonghoon Yi, Hee- Jong Moon, and Jongmin Lee, Diode pumped 100W green Nd:YAG rod laser, Appl. Opt. 2004, 43(18): 3732-3737
    [63] 姜东升,赵鸿,王建军,苑利刚,杨涛,周寿桓,120 W 的二极管泵浦 Nd :YAG绿光激光器,强激光与粒子束 17(S0),2005 年 4 月
    [64] Geng Ai-Cong, Bo Yong, Bi Yong et al. High beam quality green generation with output 140W based on thermally near unstable flat-flat resonator, Chin. Phys. Lett., 2005, 22(1):125-127
    [65] 姚震宇, 蒋建锋, 涂波, 周唐建, 崔玲玲,162 W激光二极管抽运Nd∶YAG腔内倍频激光器,中国激光,32(11),2005
    [66] 中国光学年会,广州,2006
    [67] De-Gang Xu, Jian-Quan Yao, Bai-Gang Zhang et al., 110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control, Opt. Commun., 2005, 245: 341~347
    [68] Y. Kitaoka, S. Ohmori, K. Yamamoto et al., Stable and efficient green light generation by intracavity frequency doubling of Nd:YVO4 lasers, Appl. Phys. Lett., 1993, 63 (3): 299~301
    [69] L. Y. Liu, M. Oka, W. Wiechmann et al., Longitudinally diode-pumped continuous-wave 3.5-W green laser, Opt. Lett., 1994, 19(3): 189~191
    [70] J. -P. Meyn, G. Huber, Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser, Opt. Lett., 1994, 19(18): 1436~1437
    [71] G. Feugnet, C. Busac, C. Larat et al., High efficiency intracavity doubleddiode-end-pumped Nd:YVO4 laser, in Solid State Lasers V, R. Scheps, ed., Proc. SPIE, 1996, 2698: 105~114
    [72] W. L. Nighan, Jr., J. Cole, >6W of stable, 532 nm, TEM00 output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode Nd:YVO4 laser, in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), paper PD4.
    [73] V. G. Ostroumov, F. Heine, S. Kuck et al., Shcherbakov, Intracavity frequency-doubled diode-pumped Nd: LaSc3(BO3)4 lasers, Appl. Phys. B, 1997, 64(3): 301~305
    [74] Yung-Fu Chen, Ting-Ming Huang, Chi-Luen Wang, Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser, Appl. Opt., 1998, 37(24): 5727~5730
    [75] Deyuan Shen, Anping Liu, Jie Song et al., Efficient operation of an intracavity-doubled Nd:YVO4/KTP laser end pumped by a high-brightness laser diode, Appl. Opt., 1998, 37(33): 7785~7788
    [76] T. Kojima, S. Fujikawa, K. Yasui, Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP crystal and Nd:YAG rods, IEEE J. Quantum Electron., 1999, 35(3): 377~380
    [77] D. Y. Shen, H. R. Yang, J. G. Liu et al., Efficient and compact intracavity-frequency-doubled Nd:GdVO4/KTP laser end-pumped by a fiber-coupled laser diode, Appl. Phys. B, 2001, 72(3): 263~266
    [78] P. Dekker, J. M. Dawes, J. A. Piper et al., 1.1W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser, Opt. Commun., 2001, 195: 431~436
    [79] Xiaoyuan Peng, Lei Xu, Anand Asundi, High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser, Appl. Opt., 2005, 44(5): 803~807
    [80] 何京良,侯玮,张恒利等,LD抽运Nd:YVO4腔内倍频连续波8.8W绿光激光器,中国激光,2000,27(6):481~484
    [81] Junhai Liu, Zongshu Shao, Huaijin Zhang et al., Diode-laser-array end-pumped intracavity frequency-doubled 3.6 W CW Nd:GdVO4/KTP green laser, Opt. Commun., 2000, 173(1-6): 311~314
    [82] Jintao Bai, Guofu Chen, Continuous-wave diode-laser end-pumpedNd:YVO4/KTP high-power solid-state green laser, Optics and Laser Technology, 2002, 34(4): 333~336
    [83] Bai Yang, Li Long, Chen Hao-Wei et al., Continuous-wave green laser of 9.9W by intracavity frequency doubling in laser-diode single-end-pumped Nd:YVO4/LBO, Chin. Phys. Lett., 2004, 21(8): 1532~1534
    [84] 吕百达,固体激光器件,北京邮电大学出版社,2002,p84~90
    [85] Zhang H, Meng X, Wang P, Zhu L, Liu X, Cheng R, Dawes J, Dekker P, Zhang S, Sun L, Slope efficiency of up to 73% for Yb:Ca4YO(BO3)(3) crystal laser pumped by a laser diode, Applied Physics B-Lasers And Optics, 1999, 68(6): 1147~1149
    [86] H. R. Verdun and T. Chuang, Efficient TEM00-mode operation of a Nd:YAG laser end pumped by a three-bar high-power diode-laser array, Opt. Lett. 1992, 17(14), 1000~
    [87] W. L. Nighan: Laser focus world, 1995, 31(5): 97
    [88] E. C. Holnea, C. A. Ebbers, R. J. Beach, J. A. Speth, J. A. Skidmore, M. A. Emanuel, S. A. Payne: Opt. Lett., 1998, 23(15): 1203~1205
    [89] 吕百达,固体激光器件,北京邮电大学出版社,2002,p88~90
    [90] D. Kracht, R. Wilhelm, M. Frede, 407W end-pumped multi-segmented Nd:YAG laser, Opt. Express, 2005, 13(25): 10140-10144
    [91] Susumu Konno, Shuichi Fujikawa, Koji Yasui, 80 W cw TEM00 1064 nm beam generation by use of a laser-side-pumped Nd:YAG rod laser, Appl. Phys. Lett. 1997, 70(20): 2650~2651
    [92] Robert S. Afzal, Anthony W. Yu, John J. Zayhowski et al., Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser, Opt. Lett., 1997, 22(17): 1314~1316
    [93] Errico Armandillo, Callum Norrie, Alberto Cosentino et al., Diode-pumped high-efficiency high-brightness Q-switched Nd:YAG slab laser, Opt. Lett., 1997, 22(15): 1168~1170
    [94] 周复正,陈有明,胡文涛等,大功率半导体激光侧面泵浦 Nd:YAG 板条激光器,中国激光,1994,A21(11):865~868
    [95] Atsushi Takada, Yasuiro Akiyama, Tomohiro Takase, Shiro Yoshida, Hiroshi Yuasa and Akira Ono, Highly Efficient operation of diode laser transversely pumped high power Nd:YAG rod laser, In Advanced High-power Laser, Proc. SPIE, 3889(2000), 216~223
    [96] F. Brioschi, E. Nava and G. C. Reali, Gain Shaping and Beam Quality in diode-Laser Multiarray Side-pumped Solid-State Lasers, IEEE, J. Quantum, Electron., 1992, 28(4), 1070~1074
    [97] Charlie H. Cooke, James McKenna and John. G. Skinner, Distribution of Absorbed Power in a Side-pumped Ruby Rod, Appl. Opt., 1964, 3(8), 957~961
    [98] Yasuharu Koyata, Syuhei Yamamoto and Yoshihito Hirano, Burst-mode Q-switching operation of a Nd:YAG rod laser, In Advanced High-power Lasers, Proc. SPIE, 3889(2000), 224~230
    [99] O. L. Antipov, A. S. Kuzhelev, D. V. Chausov, A. P. Zinovev, A. V. Fedin, A. V. Gavrilov, AS. N. Smetainin, 100W-average-power Nd:YAG laser with adaptive cavity formed by self-induced population gratings, In Advanced High-power Laser, Proc. SPIE, 3889(2000), 651~660
    [100] O. L. Antipov, A. S. Kuzhelev, D. V. Chausov, A. P. Zinovev, O. N. Eremeykin, A. V. Fedin, A. V. Gavrilov, S. N. Smetanin, Self-starting 100W-average-power laser with a self-adaptive cavity, In Laser Resonators Ⅲ , Proc. SPIE, 3930(2000),104~114
    [101] O. L. Antipov, A. S. Kuzhelev, V. A. Vorobyov, A. P. Zinovev, Pulse repetitive Nd:YAG with distribution feedback by self-induced population grating, Opt. Commun, 1998, 152(4-6), 313~318
    [102] Pierre Sillard and Arnaud Brignon, Self-pumped phase-conjugate resonator with two pass four-wave mixing in a diode-pumped Nd:YAG amplifier, J. Opt. Soc. Am. B, 1998, 15(12): 2917~2928
    [103] Olaf Wittler, Darren Udaiyan, Craham J. Crofts, Khalid S. Syed and Michael J. Damzen, Characterization of a Distortion-Corrected Nd:YAG Laser with a self-Conjugation Loop Geometry, IEEE J. of Quantum. Electron., 1999, 35(4), 656~664
    [104] S. Malis, J. Hendricks, D. P. Shepherd, A. C. Tropper, N. Moore and R. W. Eason, High-phase-conjugate reflectivity (>800%) obtained by degenernate four-wave mixing in a continuous-wave diode-side-pumped Nd:YVO4 amplifier, Opt. Lett., 1999, 24(14): 972~974
    [105] Pierre Sillard, Arnaud Brignon, and Jean-Pierre Huiguard, gain-grating analysis of a self-starting self-pumped phase-conjugate Nd:YAG loop resonator, IEEE J. Quantum. Electron., 1998, 34(3): 465~472
    [106] Laura.D, Deloach, et al., Laser demonstration of Neodymium-doped strontiumchloro-vanadate. App1. Phys. Lett., 1994, 65(10): 1208~1213
    [107] D.S.Sumida, T.Y.Fan., A 50 mJ per transversely diode pumped Yb:YAG laser at room temperature[ A] CLEO. 1994: 419~420
    [108] C. Bibeau, R. Beach, High-Average-Power 1-μm Performance and Frequency Conversion of a Diode-End-Pumped Yb:YAG Laser, IEEE J. Quantum Electron., 1998, 34(10): 2010~2019
    [109] D. S. Sumida, A. A. Betin, et al. Diode-pumped Yb:YAG catches up with Yb:YAG., Laser Focus World, 1999, 35(6): 63~70
    [110] http://www.els.de/PDF/MonoDisk_MP.pdf
    [111] 张国威,可调谐激光技术,国防工业出版社,2002 年 1 月,67~103
    [1] G. C. Bowkett, G. W. Baxter, D. J. Booth, T. Taira, H. Teranishi, T. Kobayashi, Single-mode 1.34μm Nd:YVO4 microchip laser with cw Ti:sapphire and diade-laser pumping. Opt. Lett., 1994, 19(13): 957~959
    [2] R. S. Conroy, A. J. Kemp, G. L. Friel, Microchip Nd:vanadate lasers at 1342 and 671 nm, Opt. Lett., 1997, 22(23): 1781~1783
    [3] A. Agenesi, G. C. Reali, P. G. Gobbi, 430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm, IEEE J. Quantum Electron., 1998, 34(7): 1297~1300
    [4] 张恒利,何京良,侯伟等,LD泵浦的 1.34μm Nd:YVO4高效率激光器,中国激光,1999,A26(6):481~484
    [5] 郑义,宋连科,徐德刚等. 激光二极管端面抽运的 1342nm Nd:YVO4激光器. 光学学报,2000,20(8):1141~1143
    [6] 张恒利,杨亁锁,竺乃宜等,LD泵浦Nd:YVO4晶体 1342nm激光实验研究. 量子电子学报,2000,17(5): 400~404
    [7] 尚连聚,郑义. 激光二极管端面抽运的 1342nm Nd:YVO4激光器. 物理学报,2002,51(9): 2015~2017
    [8] 何京良,大功率全固态Nd:YVO4激光器: [博士学位论文],北京:中科院物理所,1998
    [9] A. Di Lieto, P. Minguzzi, A. Pirastu, S. Sanguinetti, V. Magni, A 7-W diode-pumped Nd:YVO4 cw laser at 1.34um, Appl. Phys. B, 2002, 75: 463~466
    [10] H. Ogilvy, M. J. Withford, P. Dekker, J. A. Piper, Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm, Opt. Express, 2003,11(19): 2411~2415
    [11] A. Y. Yao, W. Hou, Y. P. Kong, L. Guo, L. A. Wu, R. N. Li, D. F. Cui, Z. Y. Xu, Double-end-pumped 11-W Nd:YVO4 cw laser at 1342nm, J. Opt. Soc. Am. B, 2005, 22(10): 2129~2133
    [12] A. Dilieto, P. Minguzzi, A. Pirastu, V. Magni, High-power diffraction-limited Nd:YVO4 continuous-wave lasers at 1.34μm, IEEE J. Quantum Electron., 2003, 39(7): 903~909
    [13] A. Minassian, M. J. Damzen. 13.7 W output at 1342 nm from a diode side- pumped Nd:YVO4 bounce laser, at Europe Conference on Lasers and Electro-Optics ECLEO 2003. Munich, Germany.
    [14] 周睿,高功率连续运转全固态蓝光、红光激光器研究,博士学位论文,天津大学,2006
    [15] Y. P. Zhang, Y. Zheng. H. Y. Zhang, J. Q. Yao, A laser-diode-pumped 7.36 W continuous-wave Nd:YVO4 laser at 1342 nm, Chin. Phys. Lett., 2006, 23(2): 363~365
    [16] Y. P. Zhang, Y. Zheng, H. Y. Zhang, P. Wang, J. Q. Yao, Efficient and high-power laser-diode single-end-pumped Nd:YVO4 continuous wave laser at 1342nm, Chinese Physics, 2006, 15(9): 2018~2021
    [17] 阮双琛,光子晶体光纤超连续谱与激光器和Nd:GdVO4激光器的研究,博士学位论文,天津大学,2004
    [18] Y. Kaneda, M. Oka, H. Masuda, and S. Kubota, 7.6 W of cw radiation in a TEM00 mode from a laser-diode-end-pumped Nd:YAG lasers, Opt. Lett., 1992, 17(14): 1003~1005
    [19] M. E. Innoceni, H.T.Yura, C.L.Fincher et al. Thermal modeling of continuous -waves end-pumped solid-state laser, Appl. Phys. Lett. 1990, 56(19): 1831~1833
    [20] 郑朝思等,半导体激光泵浦各向异性介质的热效应,中国激光,1997,24(8):679~684
    [21] 郑义,高明义,姚建铨,LD 端面泵浦各向异性激光介质的热效应研究,光电子·激光,2003,14(10):1094~1098
    [22] A. Di Lieto, P. Minguzzi, A. Pirastu, S. Sanguinetti, and V. Magni, A 7-W diode-pumped Nd:YVO4 cw laser at 1.34um, Appl. Phys. B., 2002, 75: 463~466
    [23] Hamish Ogilvy, Michael J. Withford, Peter Dekker and James A. Piper, Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm, Optics Express,2003, 19(11): 2411~2415
    [24] Alberto Di Lieto, Paolo Minguzzi, Alessio Pirastu, and Vittorio Magni, High-Power Diffraction-Limited Nd:YVO4 Continuous-Wave Lasers at 1.34 μm, IEEE J. Quantum. Electron., 2003, 7 (39): 903~909
    [25] Y. F. Chen, T. M. Huang, C. C. Liao, Y. P. Lan, and S. C. Wang, Efficient high-power diode-end-pumped TEM00 Nd:YVO4 laser, IEEE Phot. Tech. Lett., 1999, 11: 1241~1243
    [26] Y.F. Chen, Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: Influence of thermal fracture, IEEE J. Quantum. Electron., 1999, 35(2): 234~239
    [27] X. Peng, L. Xu, and A. Asundi, Power scaling of diode-pumped Nd:YVO4 lasers, IEEE J. Quantum Electron., 2002, 38(9): 1291~1299
    [28] X. Peng, A. Asundi, Y. Chen, and Z. Xiong, Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis, Appl. Opt., 2001, 40(9): 1396~1403
    [29] A. I. Zagumennyi, V. A. Mikhailov, and I. A. Shcherbakov, Crystals for end-diode-pumped lasers, Laser Phys., 1996, 6: 582~588
    [30] P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, Energy-transfer upconversion and thermal lensing in high-power end pumped Nd:YLF laser crystals, IEEE J. Quantum Electron., 1999, 35(4): 647~655
    [31] J. L. Blows, T. Omatsu, J. Dawes et al., Heat generation in Nd:YVO4 with and without laser action, IEEE Photon. Technol. Lett., 1998, 10(12):1727~1729
    [32] 郑义等, 激光二极管端面泵浦的高效高功率固体激光器,中国实用新型专利,申请(专利)号:02278626.0, 2002
    [33] V. Magni, Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability, Appl. Opt., 1986, 25(1), 107~117
    [34] W.克希耐尔,固体激光工程,孙文,江泽文,程国祥,译,北京:科学出版社,2002:199~202
    [35] 周睿,大功率、高亮度全固态绿光激光器、紫外激光器研究,[硕士毕业论文],天津大学,2004
    [36] W. 克希耐尔,固体激光工程[M],孙文,江泽文,程国祥,译,北京:科学出版社,2002:171~207
    [37] R. B. Chesler and D. Maydan, Convex-Concave Resonators for TEM00 Operation of Solid-state lon Lasers, J. Appl. Phys., 1972, 43(5): 1420~1423.
    [38] H. Kogelnik. Imaging of Optical Modes-Resonators with Internal lenses, Bell Syst. Tech. J., 1965, 44(3): 445~494
    [1] V. R. Kushnir, A. N. Nemkov, and N. V. Shkunov, Influence of the resonator geometry on the output power of a laser with several active elements, Sov. J. Quantum Electron, 1975, 5(99): 713~715
    [2] K. P. Driedger, R. M. Ifflander, and H. Weber, "Multirod resonators for high-power solid state lasers with improved beam quality." IEEE J. Quantum Electron. 1988, 24(4): 665~675
    [3] M. Kumkar, B. Wedel, K. Richter, Beam quality and efficiency of high-average-power multirod lasers, Optics and laser technology, 1992, 24(22): 67~72
    [4] Y. Akiyama, M. Sasaki, H. Yuasa, and N. Nishida, “Efficient High-Power diode-pumped Nd:YAG rod laser,” in Conference on Lasers and Electro-Optics/Pacific Rim, Vol.1 of 2001 OSA Technical Digest Series (Optical, Society of Americal, Washington, D. C., 2001: 558~559
    [5] H. S. Kim, S. Lee, D.-K. Ko, and B. H. Cha, Dependence of the stability and the beam quality on the distance between two rods in a double laser-head resonator, Opt. Commun., 2002, 201: 381~389
    [6] Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, and T. Tajime, 208-W TEM00 operation of a diode-pumped Nd:YAG rod laser, Opt. Lett., 1999, 24(10): 679~681
    [7] S. Konno, T. Kjima, S. Fujikawa, and K. Yasui, High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt. Lett., 2000, 25(2): 105~107
    [8] K. P. driedger, R. M. Inffl?nder, and H. Weber, Multirod resonator for high-power solid-state lasers with improved beam quality, IEEE J. Quantum Electron, 1988, 24(4): 665~674
    [9] S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, Proc. SPIE 3267 (1998) 214
    [10] Hyun Su Kim, Jin-Tae Kim, and Jong Rak Park, Stable Range Enhancement in a Symmetric Confocal Two-rod Resonator With 900 Optical Rotator, IEEE J. Quantum Electron, 2003, 39(12): 1594~1599
    [11] W. Koechner, Solid-State Laser Engineering, 4th ed. Berlin, Germany: Springer-Verlag, 1996, pp. 400~404.
    [12] Sungman Lee, Mijeong Yun, Byung Heon Cha, and Sungsoo Suk and Hyun Su Kim, Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770 W output power, Appl. Opt., 2002, 41(27): 5625~5631
    [13] J. R. Park, J. Y. Lee, H. S. Kim, K. Y. Um, and H. J. Kong, Characteristics of a birefringence compensation scheme in Nd:YAG rods using a polarization rotator and an imaging optics, Opt. Rev., 1997, 4(1B): 170~175
    [14] R. Ifflander, H. P. Kortz, H. Weber, Opt. Commun. Beam divergence and refractive power of directly coated solid state lasers, 1979, 29(2): 223~226
    [15] H. Kogelnik and T. Li, Laser beam and resonator, Proc. IEEE, Oct. 1966, vol. 54, pp. 1312~1329
    [16] G. Cerullo, S. De Silvestri, V. Magni, and O. Svelto, Output power limitations in CW single transverse mode Nd:YAG lasers with a rod of large cross-section, Opt. Quantum Electron. 1993, 25: 489~500
    [17] M. P. Murdough and C. A. Denman, Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers, Appl. Opt. 1996, 35(30): 5925~5936
    [1] http://www.ceolaser.com/benefits-of-DPSS.html
    [2] W. Koechner, Solid-State Laser Engineering, 4th ed.(Springer, Berlin, 1996), Chap.7, 398~402.
    [3] J. R. Park, J.Y.Lee, H. S. Kim, K. Y. Um, and H. J. Kong, Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics. Opt. Rev., 1997, 4, 170~175
    [4] Sungman Lee, Mijeong Yun, Byung Heon Cha, and Sungsoo Suk and Hyun Su Kim, Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770 W output power, Appl. Opt., 2002, 41(27): 5625~5631
    [5] R. F. Teehan, J. C. Bienfang, and C. A. Denman, Power scaling and frequency stabilization of an injection-locked Nd:YAG rod laser. Appl. Opt., 1981, 20(23): 4124~4134
    [6] L. N. Somes, A. A. Tarasov, and V. V. Shashkin, On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence, Sov. J. Quantum Electron., 1980, 10: 350~351
    [7] K. Yasui, Efficient and stable operation of a high-brightness cw 500 W Nd:YAG rod laser, Appl. Opt., 1996, 35(15): 2566~2569
    [8] Sungman Lee, Mijeong Yun, Hyun Su Kim, Byung Heon Cha, and Sungsoo Suk, Output power and polarization characteristics for a diode-side-pumped Nd:YAG rod laser with a diffusive optical pump cavity, Appl. Opt., 2002, 41(6): 1082~1088
    [1] R. W. Hellwarth, Advances in Quantum Electronics, Columbia University Press, New York, 1961, p334
    [2] J. McClung and R. W. Hellwarth, Giant. optical pulsation from ruby, J. Appl. Phys., 1962, 33: 828~829
    [3] J. R. Oconnor. Unusual crystal-field energy levels and efficient laser properties of Nd:YVO4. Appl. Phys. Lett., 1966, 9(11): 407~409
    [4] 白晋涛,博士学位论文,中科院西安光机所,西安,2001
    [5] Chen Changtian, Wu Yicheng, Jiang Aidong et al., New nonlinear optical crystal: LiB3O5, J. Opt. Soc. Am. (B), 1989, 6(4): 616~621.
    [6] Kato K, Temperature-tuned 90° phase-matching properties of LiB3O5, IEEE Quantum Electron.,1994, 30(12): 2950~2952
    [7] 姚建铨著,非线性光学频率变化及其激光调谐技术,科学出版社,北京,1995年3月第一版:11~19
    [8] 吕百达,固体激光器件,北京邮电大学出版社,北京,2002:113
    [9] J. Ateffen, J. P. Lortscher, G. Herziger, Fundamental mode radiation with solid-state lasers, IEEE J. Quantum Electron, 1972, QE-8:239.
    [10] 刘均海,卢建仁,吕军华,高功率半导体激光器端面抽运连续固体激光器谐振腔地设计,中国激光,2000,A27(1):7~10.
    [11] 蓝信钜,激光技术,北京,科学出版社,2000
    [12] C.V. Raman and N.S.N. Nath, “The diffraction of light by high frequency sound waves: Part 1,” Proc. Indian Acad. Sci., vol.2, pp. 406-412, 1935; “Part 2” vol.2, pp. 413-420, 1935; “Part 3,” vol.3, pp. 75-84,1936; “Part 4,” vol.3, pp. 119-125; 1936; “Part 5,”vol.3, pp. 459-465, 1936; “Generalized theory,” vol.4, pp. 222-242, 1936.
    [13] W. R. Klein & B.D. Cook, IEEE Trans. Sonics and Ultrasonics, SU-14(1967), 123
    [14] W. R. Klein, “Light diffraction by ultrasonic beams of high frequency near Bragg incidence,” presented at the 5th Internat’l Cong. On Acoustics, Liege, Belgium, September 1965
    [15] P. Phariseau, On the diffraction of light by progressive supersonic waves, Proc. Indian Acad. Sci., 1956, vol. 44, pp. 165~170
    [16] A. B. Bhatia and W. S. Noble, Diffraction of light by ultrasonic waves, Proc. Roy. Soc. (London), May 1953, vol. 220, ser. A , pp. 356~385
    [17] 徐介平,声光器件原理、设计和应用,北京:科学出版社,1982,63-67。
    [18] 张泽红,陈文友,柏富芬等,二维声光 Q 开关,压电与声光,1998,20(1):7~13
    [19] 宗德蓉,罗斌,姜军等,新型多功能声光器,光电工程,1999,26(6):37~40
    [20] 李强,郑义军,王智勇等,双声光二维 Q 开关提高 Nd:YAG 激光器关断损耗,中国激光,2003,30(9):785~788
    [21] 姚建铨著,非线性光学频率变化及其激光调谐技术,科学出版社,北京,1995 年 3 月第一版:110-115
    [22] 钱士雄,王恭明编著,非线性光学(-原理与进展),上海:复旦大学出版社,2001 年 10 月:58~59
    [1] S. Konno, T. Kojima, S.i Fujikawa, and K. Yasui, High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt. Let. 2000, 25(2): 105~107
    [2] E. C. Honea, C. A. Ebbers, R. J. Beach, Joel A. Speth, J. A. Skidmore, Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm, Opt. Let., 1998, 23(15): 1203~1205
    [3] S. Konno, S.; Fujikawa, S.; Kojima, T.; Yasui, K., High brightness 127 W green beam generation by intracavity-frequency-doubling of diode-pumped Nd:YAG laser, Lasers and Electro-Optics, 1999. CLEO '99. Summaries of Papers Presented at the Conference on , 23-28 May 301~301(1999)
    [4] B. J. Le Garrec, G. J. Raze, P. Y. Thro et al., High-average-power diode-array-pumped frequency-doubled YAG laser, Opt. Lett., 1996,21(24):1990~1992
    [5] E. C. Honea, C. A. Ebbers, J. Beach, J. A. Speth, J. A. Skidmore., Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm, Opt. Lett., 1998, 23(15): 1203~1205
    [6] Chang J J Ebbers, 315 W pulsed-green generation with a diode-pumped Nd:YAG laser, 《Washington DC》, C A Ebbers C A, 1998 / / P CD-2
    [7] S. Konno, T. Kojima, S.i Fujikawa et al., Highly-brightness 138-W green laser based on an intracavity frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt. Lett., 2000, 25(2):105~107
    [8] Jonghoon Yi, Hee- Jong Moon, and Jongmin Lee, “Diode pumped 100W green Nd:YAG rod laser.” Appl. Opt., 2004, 43(18):3732~3737
    [9] 姜东升,赵鸿,王建军,苑利刚,杨涛,周寿桓,120 W 的二极管泵浦 Nd :YAG绿光激光器,强激光与粒子束,2005, 17(z1):7~10
    [10] Geng Ai-Cong, Bo Yong, Bi Yong et al. “High beam quality green generation with output 140W based on thermally near unstable flat-flat resonator.” Chin. Phys. Lett. 2005, 22(1):125~127
    [11] 姚震宇, 蒋建锋, 涂波, 周唐建, 崔玲玲,162W激光二极管抽运Nd∶YAG腔内倍频激光器,中国激光,2005,32(11):1459~1462
    [12] De-Gang Xu, Jian-Quan Yao, Bai-Gang Zhang et al., 110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control, Opt. Commun., 2005, 245: 341~347
    [13] Sungman Lee, Mijeong Yun, Hyun Su Kim et al., Output power and polarization characteristics for a diode-side-pumped Nd:YAG rod laser with a diffusive optical pump cavity, Appl. Opt., 2002, 41(6): 1082~1088
    [14] 徐德刚,百瓦级全固态绿光激光器及瓦级红绿蓝激光器的研究,天津大学博士论文,2005 年 4 月:101~103
    [15] W. 克希耐尔,固体激光工程[M],孙文,江泽文,程国祥,译,北京:科学出版社,372~373。W. KOECHNER. Solid-state Laser Engineering [M]. Wen SUN, Zewen JIANG, Guoxiang CHENG. Beijing: Science Press. 372-373
    [16] 吕百达,固体激光器件[M],北京:北京邮电大学出版社,2002:127~132
    [17] Susumu Konno, Tetsuo Kojima, Shuichi Fujikawa, and Yasui, High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt. Lett. 2000, 25(2): 105~107
    [18] Geng Ai-Cong, Bo Yong, Bi Yong, Sunzhi-Pei, Yang Xiao-Dong, Peng Qin-Jun,Li Hui-Qing, Zhou Yi, Li Rui-Ning, Cui Da-Fu, Xu Zu-Yan, High Beam Quality Green Greneration With Output 140 W Based on Thermally-near-Unstable Flat-Flat Resonator, Chin. Phys. Lett., 2005, 22(1): 125~127
    [19] Yong Bo, Aicong Geng, Yong Bi, Zhipei Sun, Xiaodong Yang, Qinjun Peng, Huiqing Li, Ruining Li, Dafu Cui, and Zuyan Xu, High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design, Applied Optics, 2006, 45(11): 2499~2503
    [20] Tetsuo kojima, Shuichi Fuijikawa, and Koji Yasui, IEEE J. Quantum Electron., 1999, 35(3): 377~380
    [21] Yoko Inoue and Shuichi Fujikawa, Diode-pumped Nd:YAG laser producing 122-W CW power at 1.319 μm, IEEE J. Quantum Electron., 2000, 36(6): 751~756
    [22] K. P. Driedger, R. M. Ifflander, and H. Weber, multirod resonators for High-Power Solid-State Lasers with Improved Quality, IEEE J. Quantum Electronics, 1998, 24(4): 665~674
    [23] 姚建铨,徐德刚,高功率激光倍频过程的热效应分析,量子电子学报,2005,22(4):482~487
    [24] K. Kato, Parametric oscillation at 3.2 μm in KTP pumped at 1.064 μm, IEEE J. Quantum Electron., 1991, 27(5):1137~1140
    [25] K. Kato, Temperature Insensitive SHG at 0.5321 μm in KTP, IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28(10):1974~1976
    [26] W. Wiechmann, S. Kubota, T. Fukui et al., Refractive-index temperature derivatives of potassium titanyl phosphate, Opt. Lett., 1993, 18(15):1208~1210
    [27] 姚建铨著,非线性光学频率变化及其激光调谐技术,科学出版社,北京,1995 年 3 月第一版
    [28] 徐德刚,百瓦级全固态绿光激光器及瓦级红绿蓝激光器的研究,天津大学博士论文,p50,2005 年 4 月
    [29] 蓝信锯等,激光技术(第二版),科学出版社,2005 年 1 月,p64
    [1] T. Kojima, S. Fujikawa, K. Yasui, Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP crystal and Nd:YAG rods, IEEE J.Quantum Electron., 1999, 35(3): 377~380
    [2] Xiaoyuan Peng, Lei Xu, Anand Asundi, High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser, Appl. Opt., 2005, 44(5): 803~807
    [3] 何京良,侯玮,张恒利等,LD抽运Nd:YVO4腔内倍频连续波8.8W绿光激光器,中国激光,2000,27(6): 481~484
    [4] Junhai Liu, Zongshu Shao, Huaijin Zhang et al., Diode-laser-array end-pumped intracavity frequency-doubled 3.6 W CW Nd:GdVO4/KTP green laser, Opt. Commun., 2000, 173: 311~314
    [5] Jintao Bai, Guofu Chen, Continuous-wave diode-laser end-pumped Nd:YVO4/KTP high-power solid-state green laser, Optics and Laser Technology, 2002, 34: 333~336
    [6] Bai Yang, Li Long, Chen Hao-Wei et al., Continuous-wave green laser of 9.9W by intracavity frequency doubling in laser-diode single-end-pumped Nd:YVO4/LBO, Chin. Phys. Lett., 2004, 21(8):1532~1534
    [7] http://www2.zzu.edu.cn/jiguang/new11.htm
    [8] CHEN Jin, YAO Jian-quan, YU Yi-zhong et al., LD Pumped High Efficient Intracavity Frequency-Doubled Green Laser, Transactions of Tianjin University, 2003, 9(1): 1~6
    [9] 王杰,姚建铨,王鹏等,LD 抽运 Nd:YAG 激光器声光调 Q 高效内腔谐波转换,中国激光,2001,A28(1):4~6
    [10] R. G. Smith, Theory of Intracavity Optical Second-Harmonic Generation, IEEE J. Quantum Electron., 1970, QE-6(4): 215~223
    [11] E. C. Honea, C. A. Ebbers, R. J. Beach et al., Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532 μm, Opt. Lett., 1998, 23(15): 1203~1205
    [12] David Eimerl, High Average Power Harmonic Generation, IEEE J. Quantum Electron., 1987, QE-23(5): 575~592
    [13] 姚建铨,非线性光学频率变换及激光调谐技术,北京:科学出版社,1995,109~140
    [14] J. D. Barry, C. J. Kennedy, Thermooptical Effects of Intracavity Ba2Na(NbO3)5 on a Frequency-doubled Nd:YAG Laser, IEEE J. Quantum Electron., 1975, QE-11(8): 575~579
    [15] J. D. Barry, Optical Design of a Frequency-Doubled Nd:YAG Laser, IEEE J.Quantum Electron., 1976, Correspondence: 254~256
    [16] A. 雅里夫,光电子学导论(李宗琦译),北京:科学出版社,1983:220~232
    [17] 郑权,薛庆华,王军营,LD 泵浦 1. 2W 连续 Nd:YAG/ LBO 红光激光器, 激光与红外,2004,34(1):24~26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700