光纤中超连续谱产生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,相干超连续(Supercontinuum,简称SC)谱光源在DWDM和OTDM高速光通信系统中的广泛应用已经使之成为人们研究的热点,利用脉冲在光纤中的高阶和基态孤子压缩效应及自相位调制效应产生SC谱正是获得这种光源的有效途径。本文围绕这三种方法产生SC谱的机理和特性开展了深入的理论和实验研究,具体内容如下:
     (1)研究了基于高阶孤子脉冲压缩效应的SC谱产生。详细分析了光纤色散效率对产生宽带、平坦的SC谱的决定性的影响以及各种高阶非线性效应可能具有的影响及其抑制。
     (2)研究了基于绝热孤子脉冲压缩效应的SC谱产生。在分析了绝热孤子脉冲压缩展谱的基本原理的基础上,讨论了在有无高阶效应作用的条件下,色散渐减光纤的各种具体色散分布对于脉冲最终压缩因子的影响。
     (3)进一步完善了正常色散平坦光纤(NDFF)中SC谱形成的理论。发现抽运脉冲在NDFF中的演化必然会经历光波分裂,其发生点在Lw b ? 1.06 LD LNL,可采用啁啾判断法加以验证。NDFF中脉冲光谱展宽的非线性作用机制是以光波分裂的产生作为分界,之前是自相位调制效应的单独作用,之后则是自相位调制效应和四波混频的共同作用。脉冲初期光谱展宽由自相位调制效应主导,此后自相位调制效应逐渐减弱而四波混频作用增强,光谱会再度显著展宽,相应的阶跃点在Lm ax 2 ? 5.6 LD LNL。SC谱噪声特性与光谱演化状态密切相关,是光谱特征结构对抽运脉冲强度噪声响应的动态表征,具有最佳噪声性能的脉冲传输距离应出现在两种作用主导地位更替的区域内。
     (4)对在40GHz高脉冲重复频率条件下,具有较大正常色散值的高非线性光纤中脉冲SC谱产生的问题进行了探讨性研究。发现脉冲SC谱的有效产生不能单纯依赖于光功率放大器的输出功率的提高和光纤长度的增长来实现。采用脉冲啁啾补偿压缩技术的新型方案可以有效提高SC谱的产生效果。新型方案的改进型,即采用两级脉冲压缩器的方案可以明显获得最宽的SC谱,但SC谱包络的起伏波动也最大,原因在于SMF和HNLF中的三阶色散严重劣化了最终进入HNLF产生SC谱的压缩脉冲的质量。采用改进方案,最后实验得到了C波段10dB带宽为23.3nm的40GHz的宽带相干光源。
Recently, due to the extensive applications in the high-speed optical communication systems (DWDM and OTDM), the coherent SC laser source has drawn intensive attentions. This source can be obtained by the SC generation in certain optical fibers effectively based on the effect of high-order soliton compression (SEC), adiabatic soliton compression (ASC) and self-phase modulation (SPM) of seed pulses in the fibers. In this dissertation, we focus on the mechanism and characteristics of the SC generation by these three methods, and several theoretical and experimental studies have been carried out as follows:
     (1) The SC spectrum generation based on SEC is investigated. The determinant effect of dispersion slope of the fibers on the wide and flat SC spectra generated has been analyzed in details. The negative effect of high-order nonlinearities and its corresponding suppression have also been discussed.
     (2) The SC spectrum generation based on ASC is investigated. With and without high-order nonlinearities, the effect of the particular dispersion profile of dispersion- decreasing fiber (DDF) on the final compression factor has been studied based on the analysis of the basic pulse compression principles.
     (3) The theory of SC generation in a normal dispersion-flattened fiber (NDFF) is further modified. We find that wave breaking does occur during the seed pulse evolution in NDFF, which takes place at the propagating distance point Lw b ? 1.06 LD LNL and can be confirmed by the pulse chirp evolution. This point is also the critical point of spectral broadening nonlinear effect, before which the nonlinear effect is SPM and after which are SPM and FWM. The pulse spectral broadening in the initial stages is dominated by the SPM. Thereafter, SPM is impaired while FWM enhanced, and the spectrum will further broaden remarkably, the bounding threshold of which is Lm ax2 ? 5.6 LD LNL. The characteristic of SC noise manifests the dynamic responses of typical SC spectral structures to the seed pulse amplitude noise that are close related to the evolution. The propagation distance of the best noise performance of SC spectrum consists in the region where the dominant role is exchanged between the two nonlinerities.
     (4) We probe into the SC generation in a highly nonlinear fiber (HNLF) with large normal dispersion of 40GHz pulse trains. We find that it is inefficient to generate SC spectrum just by increasing the fiber length or the amplifier output power. To enhance the SC generation in the fiber, it is availed to implement the new scheme that applies the chirp-pulse compensation technique: The widest SC spectrum can be obtained in the improved new scheme that utilizes a two-stage all-fiber pulse compressor remarkably, but also with the largest ripples. The reason is that the quality of the compressed pulse entering the last section HNLF is negatively affected greatly by the fiber 3rd dispersion of SMF and HNLF. In this scheme, we experimentally obtained broadband 40GHz coherent source with 23.3nm (10dB bandwidth) in the C-band finally.
引文
[1] R.R.Alfano, S.L.Shapiro. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett., 1970, 24: 592–594
    [2] N.Bloembergen. The influence of electron plasma formation on superbroadening in light fila- ments. Opt.Commun., 1973, 8: 285–288
    [3] W.L.Smith, P.Liu, N.Bloembergen. Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG: Nd laser. Phys. Rev. A, 1977, 15: 2396–2403
    [4] A.Penzkofer, W.Falkenstein. Theoretical investigation of amplified spontaneous emission with picosecond light pulses in dye solutions. Optical and Quantum Electronics, 1978, 10: 399–423
    [5] R.R.Alfano. The Supercontinuum Laser Source. 1st Ed. New York: Springer-Verlag, 1989. 76
    [6] L.Wang, P.P.Ho, R.R.Alfano. Time-resolved Fourier spectrum and imaging in highly scattering media. Appl. Opt., 1993, 32: 5043–5048
    [7] J.T.Manassah, M.Mustafa, R.R.Alfano et al. Induced supercontinuum and steepening of an ultrafast laser pulse. Phys. Lett. A, 1985, 113: 242–247
    [8] J.T.Manassah, M.Mustafa. Spectral extent and pulse shape of the supercontinuum for ultra-short laser pulse, IEEE J. Quantum Electron., 1986, 22: 197–204
    [9] W.Werncke, A.Lau, M.Pfeiffer et al. An anomalous frequency broadening in water. Opt. Commun., 1972, 4: 413–415
    [10] P.B.Corkum, C.Rolland, T.Srinivasan-Rao. Supercontinuum generation in gases. Phys. Rev. Lett., 1986, 57: 2268–2271
    [11] P.B.Corkum, C.Rolland. Femtosecond continua produced in gases. IEEE J. Quantum Electron., 1989, 25: 2634–2639
    [12] V.Francois, F.A.Ilkov, S.L.Chin. Experimental study of the supercontinuum spectral width evolution in CO2 gas. Opt. Commun., 1993, 99: 241–246
    [13] G.P. Agrawal著.非线性光纤光学原理及应用.贾东方,余震虹等译.北京:电子工业出版社,2002. 266
    [14] M.N.Islam, G.Sucha, I.Bar-Joseph. Broad bandwidths from frequency-shifting solitons in fibers. Opt. Lett., 1989, 14: 370–372
    [15] B.P.Nelson, D.Cotter, K.J.Blow, N.J. Doran. Large non-linear pulse broadening in long leng- ths of monomode fibre. Opt. Commun., 1983, 48:292–294
    [16] P.L.Baldeck, R.R.Alfano. Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers. J. Lightwave Technol., 1987, 5: 1712–1715
    [17] B.Gross, J.T.Manassah. Supercontinuum in the anomalous group-velocity dispersion region. J. Opt. Soc. Amer. B, 1992, 9: 1813–1818
    [18] T.Morioka, K.Mori, M.Saruwatari. More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres. Electron. Lett., 1993, 29: 862–864
    [19] J.U.Kang, R.Posey. Demonstration of supercontinuum generation in a long-cavity fiber ring laser. Opt. Lett., 1998, 23:1375–1377
    [20] A.V.Husakou, J.Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett., 2001, 87: 901–904
    [21] T.Hori, N.Nishizawa, T.Goto. Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse. J. Opt. Soc. Amer. B, 2004, 21:1969–1980
    [22] F.Biancalana, D.V.Skryabin, P.S.Russel. Four wave mixing instabilities in photonic-crystal and tapered fibers. Phys. Rev. E, 2003, 68: 046631–046638
    [23] T.Morioka, S.Kawanishi, K Mori et al. Nearly penalty-free < 4 ps supercontinuum Gbit/s pulse generation over 1535–1560 nm. Electron. Lett., 1994, 30: 790–791
    [24] O. Boyraz, J.Kim, M.N.Islam et al. 10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers. J. Lightwave Technol, 2000, 18: 2167–2175
    [25] O.Boyraz, M.N.Islam. A multiwavelength CW source based on longitudinal mode-carving of supercontinuum generated in fibers and noise performance. J Lightwave Technol, 2002, 20: 1493-1499
    [26] K. Mori, K.Takara, S.Kawanishi. The effect of pump fluctuation in supercontinuum pulse generation. OSA Tech. Dig. Ser, 1998, 5: 276–278
    [27] M.Nakazawa, K.Tamura, H.Kubota el al. Coherence degradation in the process of supercontinuum generation in an optical fiber. Opt. Fiber Technol, 1998, 4:215–223
    [28] H.Kubota, K.Tamura, M.Nakazawa. Analyzes of coherence maintained ultrashort optical pulse trains and supercontinuum in the presence of soliton-amplified spontaneous-emission interaction. J. Opt. Soc. Amer. B, 1999, 16: 2223–2232
    [29] M.Nakazawa, H.Kubota, K.Tamura. Random evolution and coherence degradation of a high-order optical soliton train in the presenceof noise. Opt. Lett., 1999, 24: 318–320
    [30] K.Tamura, M.Nakazawa. Timing jitter of solitons compressed in dispersion- decreasing fibers. Opt. Lett., 1998, 23: 1360–1362
    [31] K.Mori, H.Takara, S.Kawanishi et al. Flatly broadened supercontinuum generated in a dispersion decreasing fiber with convex dispersion profile. Electron. Lett., 1997, 33: 1806–1808
    [32] T.Okuno, M.Onishi, M.Nishimura. Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber. IEEE Photon. Technol. Lett., 1998, 10: 72–74
    [33] W.Yue, L.CaiYun, H.Ming et al. Effects of pulse chirp on supercontinuum produced in dispersion fiber. Chin. Phys, 2002, 11: 578–582
    [34] J.Yue, X.Wencheng, C.Zhaoxi et al. Effects of chirp on supercontinuum in dispersion flatted and dispersion decreasing fiber. Phys. Lett. A, 2004, 333: 415–419
    [35] K.Tamura, H.Kubota, M.Nakazawa. Fundamentals of Stable Continuum Generation at High Repetition Rates. IEEE J. Quantum. Electron., 2000, 36: 773–779
    [36] L.Boivin, B.C.Collings. Spectrum Slicing of Coherent Sources in Optical Communications. Opt. Fiber. Techol, 2001, 7: 1–20
    [37] B.Mikulla, L.Leng, S.Sears et al. Broad-Band High-Repetition-Rate Source for Spectrally Sliced WDM. IEEE Photon. Technol. Lett., 1999, 11: 418–420
    [38] Y.Takushima, F.Futami, K.Kikuchi. Generation of over 140nm wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source. IEEE Photon. Technol. Lett., 1998, 10: 1560–1562
    [39] F.Futami, Y.Takushima, and K.Kikuchi. Generation of supercontinuum with extremely wideband and flat spectra from a dispersion-flattened fiber in the positivedispersion file. in: proceedings of Optoelectronics and Communications Conf., Tokyo, 1998, 15C3-2: 378–379
    [40] F.Futami, Y.Takushima, K. Kikuchi. Generation of Wideband and Flat Super- continuum over a 280-nm Spectral Range from a Dispersion-Flattened Optical Fiber with Normal Group-Velocity Dispersion. IEICE Tranceactions on Communications, 1999, E82-B: 1265–1272
    [41] Y.Takushima, K.Kikuchi. 10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber. IEEE Photon. Technol. Lett., 1999, 11: 321–324
    [42] F.Futami, K.Kikuchi. Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber. IEEE Photon. Technol. Lett., 2001, 13: 73–75
    [43] S.Taccheo, L.Boivin. Investigation and design rules of supercontinuum sources for WDM applications. in: proceedings of OFC 2000, 2000, 3: 2–4
    [44] S.Taccheo. Amplitude noise and timing jitter of pulses generated by supercontinuum spectrum-slicing for data-regeneration and TDM/WDM applications. in: proceedings of OFC 2001, 2001, 3: WP2-3
    [45] S.Taccheo, K.Ennser. Investigation of amplitude noise and timing jitter of supercontinuum spectrum-sliced pulses. IEEE Photon. Technol. Lett., 2002, 14: 1100–1102
    [46] S.Taccheo P.Vavassori, Dispersion-flattened. fiber for efficient supercontinuum generation. in: proceedings of OFC 2002 , 2002, ThY: 565–567
    [47] Z.Yusoff, P.Petropoulos, K.Furusawa et al. A 36 channel x 10 GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fibre, IEEE Photon Technol. Lett., 2003, 15: 1689–1691
    [48] K.Mori, K.Sato, H.Takara et al. Supercontinuum lightwave source generating 50GHz spaced optical ITU grid seamlessly over S-, C- and L-bands. Electron Lett., 2003, 39: 544–546
    [49] S.Watanabe, F.Futami. Optical signal processing with nonlinear fibers. in: proceedings of OFC 2003, 2003, TuQ: 273–274
    [50] E.Yamada, H.Takara, T.Ohara. 150 channel supercontinuum CW optical source withhigh SNR andprecise 25 GHz spacing for 10 Gbit/s DWDM systems. Elecron.Lett., 2001, 37: 304–306
    [51] J.Zhao, L.K.Chen, C.K.Chan et al. Analysis ofperformance optimization in supercontinuum sources. Opt. Lett., 2004, 29: 489–491
    [52] J.Dongfang, D.Yongkui, H.Zhiyong et al. Studies on the mechanism of supercontinuum generation in fiber, Journal of Optoelectronics. Lase, 2004, 15: 613–616
    [53] J.Zhao, L.K.Chen, C.K.Chan et al. Performance sensitivity to system parameters in multi-wavelength supercontinuum sources. IEEE J. Quantum Electron., 2005, 41: 709–716
    [54] S.Oda, A.Maruta. Experimental demonstration of optical quantizer based on slicing super-continuum spectrum for all-optical analog-to-digital conversion. in: Proceedings of ECOC 2004, Stockholm, Sweden, 2004, We4: 084–086
    [55] S.Oda, A.Maruta. A novel quantization scheme by slicing supercontinuum spectrum for all optical analog-to-digital conversion. IEEE Photon. Technol. Lett., 2005, 17: 465–467
    [56] S.Oda, A.Maruta. All-optical analog-to-digital conversion by slicing supercontinuum spectrum and switching with nonlinear optical loop mirror. in: Proceedings of OFC 2005, Anaheim, 2005, OThN3:123–125
    [57] X.Ge, H.DeXiu, C.XiaoGang et al. Broadband 40-GHz Coherent Source Based on Supercontinuum Generation in Highly Nonlinear Fiber. Microwave and Opt Technol Lett., 2005, 47: 73–76
    [58] X. Ge, H.DeXiu, Y.XiuHua et al. An optimized scheme for broadening optical spectrum of 40-GHz ultra-short optical pulse trains. in: Proceedings of SPIE, Shanghai, 2005, 6021:560–567
    [59] G.A.Nowak, J.Y.Kim, M.N.Islam. Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber. Applied Optics, 1999, 38: 7364–7369
    [60] C.YongZhu, L.YuZhong, Q.Gui et al. Numerical research of flat wideband supercontinuum generation in anomalous dispersion-flattened fibers. Acta. Phys. Sin., 2006, 55 :717–722
    [61] J.K.Ranka, R.S.Windeler, A.J.Stentz. Visible continuum generation in air silicamicrostructure optical fibers with anomalous dispersion at 800nm. Opt. Lett., 2000, 25: 25–27
    [62] A.V.Husakou, J.Herrmann. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett., 2001, 87: 203–205
    [63] S.Coen, A.H.L.Chau, R.Leonhardt et al. White light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Opt. Lett., 2001, 26: 1356–1358
    [64] K.P.Hansen. Super Continuum Generation at 800 nm in Highly Nonlinear Photonic Crystal Fibers with Normal Dispersion. CLEO, 2001, ThG2:67–68
    [65] X.Gu, L.Xu, M.Kimmel et al. Frequencyresolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. Opt. Lett., 2002, 27:1174–1176
    [66] J.M.Dudley, S.Coen. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett., 2002, 27:1180–1182
    [67] A.O.Blanch, J.C.Knight, P.S.J.Russell. Pulse breaking and supercontinuum generation with 200-fs pump pulses in PCF. J. Opt. Soc. Amer. B, 2002, 19: 2567–2572
    [68] G.Genty, M.Lehtonen, H.Ludvigsen et al. Spectral broadening of femtosecond pulses into continuum generation in microstructured fibers. Opt. Express, 2002, 10: 1083–1098
    [69] A.L. Gaeta. Nonlinear propagation and continuum generation in microstructured optical fibers. Opt Lett., 2002, 27: 924–926
    [70] J.Herrmann, U.Griebner, N.Zhavoronkov et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Phys. Rev. Lett., 2002, 88: 173–176
    [71] J.M.Dudley, L.Provino, N. Grossard et al. Supercontinuum generation in air–silica microstructured fiber with nanosecond and femtosecond pulse pumping. J. Opt. Soc. Amer. B, 2002, 19: 765–771
    [72] S.Coen, A.H.L.Chau, R.Leonhardt et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J. Opt. Soc. Amer. B, 2002, 19: 753–764
    [73] A.Apolonski, B.Povazay, A.Unterhuber et al. Spectral shaping of supercontinuum ina cobweb photonic-crystal fiber with sub-20-fs pulses. J. Opt. Soc. Amer. B, 2002, 19: 2165–2170
    [74] W.J.Wadsworth, A.Ortigosa-Blanch, J.C.Knight. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Amer. B, 2002, 19: 2148–2155
    [75] T.Yamamoto, H.Kubota, S.Kawanishi. Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Opt. Express, 2003, 11: 1537–1540
    [76] K.L.Corwin, N.R.Newbury, J.M.Dudley et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber. Phys. Rev. Lett., 2003, 90: 113–116
    [77] N.I.Nikolov, T.Sorensen, O.Bang et al. Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave-mixing. J. Opt. Soc. Amer. B, 2003, 11: 2329–2337
    [78] K.L.Corwin, N.R.Newbury, J.M.Dudley et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in microstructure fiber. Appl. Phys. B, 2003, 77: 269–277
    [79] M.Seefeldt, A.Heuer, R.Menzel. Compact white-light source with an average output power of 2.4W and 900nm spectral bandwidth. Opt. Commun., 2003, 216:199-202
    [80] M.Lehtonen, G.Genty, H.Ludvigsen et al. Supercontinuum generation in a highly birefringent microstructured fiber. Appl. Phys. Lett., 2003, 82: 2197–2199
    [81] K.M.Hilligs?e, H.N.Paulsen, J.Th?gersen et al. Initial steps of supercontinuum generation in photonic crystal fibers. J. Opt. Soc. Amer. B, 2003, 20: 1887–1893
    [82] J.W.Nicholson, P.S.Westbrook, K.S.Feder et al. Supercontinuum generation in ultra violet irradiated fibers, Opt. Lett., 2004, 29: 2363–2365
    [83] B.R.Washburn, N.R.Newbury. Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber. Opt. Express, 2004, 12: 2166–2175
    [84] M.Tianprateep, J.Tada, T.Yamazaki, F. Kannari. Spectral-shape-controllable supercontinuum generation in microstructured fibers using adaptive pulse shaping technique. Jpn. J. Appl. Phys., 2004, 43: 8059– 8063
    [85] S.M.Kobtsev, S.V.Smirnov. Optimization of temporal characteristics of supercontinuumgenerated in tapered air-clad fibers. in: Proc. SPIE, 2004, 5480: 64–71
    [86] J.Takanayagi, N.Nishizawa, H.Nagai et al. Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system. IEEE Photon. Technol. Lett., 2005, 17: 37–39
    [87] F.Bahloul, P.L.Swart, L.M.Zghal et al. Supercontinuum generation in microstructure optical fiber with two zero dispersion wavelengths. in: proceedings of CLEO, 2005, 32?35
    [88] Y.Peiguang, J.Yaqing, S.Hongxin. Broadband continuum generation in an irregularly multicore microstructured optical fiber. Chin. Opt. Lett., 2005, 3:355?357
    [89] B.Schenkel, R.Paschotta, U.Keller. Pulse compression with supercontinuum generation in microstructure fibers. J. Opt. Soc. Amer. B, 2005, 22: 687-693
    [90] B.Kibler, J.M.Dudley, S.Coen et al. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area. Appl. Phys., 2005, B81: 337–342
    [91] T.Schreiber, T.Andersen, D.Schimpf. Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths. Opt. Express, 2005, 13: 9556–9569
    [92] M.Frosz, P.Falk, O.Bang. The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. Opt. Express, 2005, 13: 6181–6192
    [93] I.Zeylikovich, V.Kartazaev, R.R.Alfano. Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber. J. Opt. Soc. Amer. B, 2005, 22: 1453–1460
    [94] J.C.Travers, S.V.Popov, J.R.Taylor. Extended blue supercontinuum generation in cascaded holey fibers. Opt. Lett., 2005, 30: 3132–3134
    [95] M.L.Hu, C.Y.Wang, Y.F.Li et. al. Tunable supercontinuum generation in a high-index-step photonic-crystal fiber with a comma-shaped core. Opt. Express, 2006, 14: 1942-1950
    [96] M.L.V.Tse, P.Horak, F.Poletti. Supercontinuum generation at 1.06μm in holey fibers with dispersion flattened profiles. Opt.Express, 2006, 14: 4445-4451
    [97] F.G.Omenetto, N.A.Wolchover, M.R.Wehner et al. Spectrally smooth super-continuum from 350 nm to 3μm in sub-centimeter lengths of soft-glass photonic crystal fibers. Opt.Express, 2006, 14: 4928–4934
    [98] S.John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58: 2486–2489
    [99] P.St.J.Russell. Photonic band gaps. Phys. World, 1992, 5: 37?42
    [100] N.Nishizawa, T.Goto. Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers. IEEE Selec. Top. Quan. Elect., 2001, 7: 518-524
    [101] J. W.Nicholson, M. F.Yan, P.Wisk et al. All-fiber, octave-spanning supercontinuum. Opt. Lett., 2003, 28: 643–645
    [102] Supplementary Information of The Nobel Prize in Physics 2005, http://www.kva.se/ KVA_Root/files/newspics/DOC_200510491323_31439464112_phypubeng05.pdf
    [103] D.A.Jones, S.A.Diddams, J.K.Ranka et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 2000, 288: 635–639
    [104] S.A.Diddams, D.J.Jones, J.Ye et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett., 2000, 84: 5102–5105
    [105] M.Bellini, T.W.H?nsch. Phase-locked white-light continuum pulses: Toward a universal optical frequencycomb synthesizer. Opt. Lett., 2000, 25: 1049–1051
    [106] S.A.Diddams, D.J.Jones, J.Ye et al. Towards the ultimate control of light: Optical frequency metrology and the phase control of femtosecond pulses. Opt. Photon. News, 2000, 11: 16–22
    [107] R.Holzwarth, M.Zimmermann, Th.Udem et al. Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer. Appl. Phys. B, 2001, 73: 269–271
    [108] S.A.Diddams, D.J.Jones, J.Ye et al. Direct RF to optical frequency measurements with a femtosecond laser comb. IEEE Trans. Instrum. Meas., 2001, 50: 552–555
    [109] H. T. Shang. Chromatic dispersion measurement by white light interferometry on meter-length single-mode optical fiber. J. Opt. Soc. Amer., 1981, 71:1587–1592
    [110] B.Costa, D.Mazzoni, M.Puleo. Phase shift technique for the measurement ofchromatic dispersion in optical fibers using LED's. IEEE J. Quantum Electron., 1982, 18: 1509–1515
    [111] M.Fujise, M.Kuwazuru, M.Numokawa et al. Chromatic dispersion measurement over a 100km dispersion-shifted single-mode fiber by a new phase-shift technique. Electron.Lett., 1991, 22: 570–572
    [112] L.G.Cohen. Comparison of single-mode fiber dispersion measurement techniques. J. Lightwave Technol., 1985, 3: 958–966
    [113] L.G.Cohen, C.Lin. Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. Appl.Opt., 1977, 16: 3136–3136
    [114] K.Mori, T.Moroka, M.Saruwatari. Group velocity dispersion measurement using supercontinuum picosecond pulses generation in an optical fiber. Electron. Lett., 1993, 29: 987–988
    [115] K.Mori, T.Morioka, M.Saruwatari. Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by 1.5μm compact laser source. IEEE Trans. Instrum.Meas., 1995, 44: 712–715
    [116] B.P.Nelson, N.J.Doran. Optical sampling oscilloscope using nonlinear fiber loop mirror. Electron.Lett., 1991, 27: 204–205
    [117] P.A.Nndrekson. Picosecond optical sampling using four-wave-mixing in fiber. Electron. Lett. 1991, 27: 1440–1441
    [118] H.Takara, S.Kawanishi, T.Morioka et al. 100Gbit/s optical wave-form measurement with 0.6ps resolution optical sampling using subpicosecond supercontinuum pulses. Electron. Lett., 1994, 30: 1152–1153
    [119] A.F.Fercher, W.Drexler, C.K.Hitzenberger et al. Optical coherence tomography—principles and applications. Rep. Progr. Phys., 2003, 66: 239–303
    [120] W.Drexler. Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt., 2004, 9: 47–74
    [121] K.Morioka, K.Mori, S.Kawanishi et al. Pulse-width tunable, self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation. Elecron.Lett., 1994, 30:1960–1962
    [122] H.Takara. Multiple optical carrier generation supercontinuum source. Optics & News, 2002, 3: 48–51
    [123] K.Takada, M.Abe, T.Shibata. 5 GHz-spaced 4200-channel two-stage tandem demultiplexer forultra-multi-wavelength light source using supercontinuum generation. 2002, 38: 572–574
    [124] H.Takara, T.Ohara, K.Sato. Over 1000 km DWDM transmission with supercontinuum multi-carrier source. Elecron. Lett., 2003, 39:1078–1079
    [125] T.Ohara, H.Takara, T.Yamamoto. Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source. J. lightwave Technol., 2006, 24: 2311–2317
    [126] S.Hideyuki, C.Wataru, K.Ken-ichi. 1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4OCDM×40WDM×40Gb/s) transmission experiment using optical hard thresholding. IEEE Photon. Technol. Lett., 2002, 14: 555–557
    [127] H.Sotobayashi, W.Chujo. Inter-wavelength-band conversions and demultiplexings of 640 Gbit/s OTDM signals. in: Proceedins of OFC 2002, 2002, Mar(17-20): 261–262
    [128] H.Sotobayashi, W.Chujo, K.Kitayama. Photonic gateway: TDM-to-WDM-to-TDM conversion and reconversion at 40Gbit/s (4 channels×10 Gbits/s). J. lightwave Technol., 2002, 22: 2022–2028
    [129] Y.Kodama, A.Hasegawa. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron., 1987, QE-23: 510–524
    [130] O.Boyraz. Generation of S-band WDM source by using nonlinear properties of sillica fibers, Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Engineering, 2002. 1–37
    [131] G.A.Nowak. Optical fiber sources and transmission controls for multi-Tb/s systems. UMI, 1999
    [132] R.H.Stolen, C.Lin. Self-phase modulation in silica optical fibers. Phys. Rev. A, 1978, 17: 1448–1453
    [133] G.Shuqin, X.Wenrui, L.Zhonghao et al. Third-order dispersion compensation in pico second pulse tansmission system. Acta Opitca Sinica , 2001, 21: 652–655
    [134] C.Yongzhu, X.Wencheng, C.Hu et al. The effect of fiber dispersion on generation of supercontinuum. Acta Optica Sinica, 2003, 23: 297–301
    [135] G.P. Agrawal著.非线性光纤光学原理及应用.贾东方,余震虹等译.北京:电子工业出版社,2002. 79
    [136] K.Tajima. Compensation of soliton broadening in nonlinear optical fibers with loss. Opt. Lett., 1987, 12: 54–56
    [137] H.Hatami-Hanza, A.Mostofi, P.L.Chu et al. Optimum dispersion profile for soliton compression in dispersion decreasing fibers. in: proceedings of ACOFT, Coolum Beach, Queensland, Australia, 1995. 279–282
    [138] P.V.Mamyshev, S.V.Chernikov, E.M.Dianov. Generation of fundamental soliton trains for high bit rate optical fiber communication lines. IEEE J. Quantum Electron, 1991, 27: 2347–2355
    [139] M.J.Guy, S.V.Chernikov, J.R.Taylor et al. 200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator. Electron. Lett., 1995, 31: 740–741
    [140] M.Nakazawa, E.Yoshida, H.Kubota et al. Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55μm using a dispersion decreasing, erbium-doped active soliton compressor. Electron. Lett., 1994, 30: 2038–2040
    [141] M.D. Pelusi, H.F.Liu. Higher order soliton pulse compression in dispersion- decreasing optical fibers. IEEE J. Quantum. Electron., 1991, 27: 2347–2355
    [142] H.H.Kuehl. Solitons on an axially nonuniform optical fiber. J. Opt. Soc. Amer. B, 1988, 5: 709–713
    [143] E.M.Dianov, P.V.Mamyshev, A.M.Prokhorov et al. Generation of a train of fundamental solitons at a high repetition rate in optical fibers. Opt. Lett., 1989, 14: 1008–1010
    [144] A.Hasegawa. Optical Solitons in Fibers. Berlin, Germany: Springer Verlag, 1989. 236
    [145] J.P.Gordon. Theory of the soliton self-frequency shift. Opt. Lett., 1986, 11: 662–664
    [146] D.Anderson, M.Desaix, M.Lisak et al. Wave breaking in nonlinear-optical fibers. J. Opt. Soc. Amer. B, 1992, 8: 1358–1361
    [147] X.Ge, H.DeXiu, Y.XiuHua. Investigation of supercontinuum generation in normal dispersion-flattened fiber by pico second seed pulses. Acta. Phys. Sin., 2007, 56: (accepted)
    [148] G.P. Agrawal著.非线性光纤光学原理及应用.贾东方,余震虹等译.北京:电子工业出版社,2002. 74
    [149] K.Mori, H.Tackara, S.Kawanishi. Nonlinear guided waves and their applications. Tech. dig., 1998, NFC5: 276–278
    [150] X.Ge, H.DeXiu. Experimental investigation on optical spectrum broadening of 40GHz pico second pulse train. Optoelectronics.Laser, 2006, 17: 319–323
    [151] X.Ge, H.DeXiu. Investgation of 40GHz supercontinuum source generated in highly nonlinear fiber with large normal dispersion, Optical Engineering (accepted)
    [152] T.Okuno, M.Onishi, T.Kashiwada. Silica-based functional fibers with enhanced nonlinearity and their applications. IEEE. J. Selected Topics in Quantum Electron, 1999, 5: 1385–1391
    [153] D.K.Mynbaev and L.L.Scheiner著.光纤通信技术.徐公权,段鲲等译.北京:机械工业出版社,2002. 230
    [154] K.Igarashi, S.Namiki. A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains. Furukawa Review, 2004, 25: 9–12
    [155] OFS leading optical innovations specialty photonics division, Broadband supercontinuum sources, 2004, www.ofsoptics.com/product_info
    [156] F.Futami, Y.Takushima. Generation of 10 GHz, fourier-transform-limited optical pulse train from modelocked semiconductor laser at 1.55μm by pulse compression using dispersion-flattened fibre with normal group-velocity dispersion. Electron Lett., 1998, 34: 2129–2130
    [157] F.Futami, K.Kikuchi. Practical sub-picosecond pulse generation at 1.55μm by means of a pulse compressor featuring a highly-nonlinear dispersion-shifted fiber. in: proceedings of CLEO/Pacific Rim '99.1, 1999. 19–20
    [158] M.Matsuura, N.Kishi. Continuum spectrum generation utilizing adiabatic compression in Raman amplifier for multi-wavelength pulse source. Opt. Express, 2003, 11: 1856–1861
    [159] M.Presi, A.D.Errico, G.Contestabile et al. High power, multiwavelength 40 GHz pulse source for WDM–OTDM applications. Opt.Commun., 2004, 233: 359–362

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700