铬渣解毒与氧化铬清洁制备工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬盐是无机盐行业主要产品之一,在国民经济中具有重要作用。铬盐广泛应用于电镀、鞣革、印染、医药、颜料、催化剂、氧化剂及金属缓蚀剂等方面。而铬盐工业也是一个重污染行业,其污染主要源于固体危险废物,主要固体危险废物有铬渣和含Cr(Ⅵ)硫酸盐。铬渣是铬盐生产中的熟料经水浸出所得到的高碱残渣,是铬盐工业第一大公害;含Cr(Ⅵ)硫酸盐是铬盐制备过程中所产生的硫酸钠和硫酸氢钠,是铬盐工业的第二大公害。
     铬盐的生产是从铬铁矿的焙烧开始的。铬铁矿的焙烧主要有钙焙烧法和无钙焙烧法两种。有钙焙烧法的主要缺点是铬渣量多,且难以解毒或利用,而无钙焙烧法可以避免上述缺点。虽然我国铬盐生产未来发展方向是无钙焙烧法,但历年留下大量的待处理的铬渣,对环境构成严重污染。
     目前,工业上生产氧化铬的方法主要有两种:重铬酸钠与硫酸铵热分解法和铬酸酐热分解法,主要存在硫酸消耗高、含Cr(Ⅵ)硫酸盐污染等问题。
     因此,针对上述有钙铬渣和传统氧化铬工业所产生的含Cr(Ⅵ)硫酸盐污染问题,本文围绕铬渣解毒和氧化铬清洁制备工艺两大主题,对淀粉水热法解毒铬渣、制革污泥干法解毒铬渣、含氟废水湿法解毒铬渣和淀粉水热法、干法制备氧化铬的相关基础理论和技术进行了系统的研究。研究表明:
     含Cr(Ⅵ)针状钙矾石的生成是导致含硫物质常温湿法解毒铬渣不彻底的主要原因。本文在硫酸浸出铬渣热力学分析过程中发现,温度的升高能有效抑制钙矾石的生成,并在实验中得到了验证。在所确定的实验条件下,淀粉水热法解毒后的铬渣达到了进入生活垃圾填埋场的标准。
     在温度超过400℃时,制革污泥中的油脂和蛋白质等有机物会分解成一氧化碳和烃类有机物,能将铬渣中的Cr(Ⅵ)还原为Cr(Ⅲ),从而实现铬渣的解毒。在适宜的条件下,制革污泥干法解毒后的处理渣达到了进入生活垃圾填埋场的标准。
     对氢氟酸浸出铬渣过程热力学、动力学和含氟废水解毒铬渣工艺进行分析和研究,发现氢氟酸和含氟废水也能够有效破坏铬渣中含Cr(Ⅵ)矿物和其它矿物的结构,将其中的Cr(Ⅵ)释放出来;铬渣中酸溶性Cr(Ⅵ)的浸出过程动力学可以用粒径不变的收缩未反应核模型来描述,其浸出过程为内扩散控制;柱浸和槽浸结果非常相似。用含氟废水浸出30d后,其浸出渣达到了进入一般工业垃圾填埋场标准。用硫酸亚铁溶液作还原剂,继续柱浸1d经含氟废水浸出60d后的柱浸渣,其还原渣达到了进入生活垃圾填埋场的标准。用硫酸亚铁作还原剂、氢氧化钙作沉淀剂处理含氟废水浸出液,处理后的废水Cr(Ⅵ)达到了国家污水排放标准。
     对淀粉水热还原Cr(Ⅵ)过程动力学和水热法制备氧化铬进行了研究,表明淀粉水热还原Cr(Ⅵ)的动力学模型可以用等温、恒容、不可逆反应动力学模型来描述,且属化学反应控制;在所确定的实验条件下,Cr(Ⅵ)还原率达到98%以上,得到660-880nrn、粒度均匀的氧化铬粉体;通过添加表面活性剂,可以制得110-130nm的粒度均匀的球形的超细氧化铬粉体。
     对淀粉干法还原Cr(Ⅵ)过程热力学和干法还原制备氧化铬进行分析和研究,发现干法还原Cr(Ⅵ)的还原产物因铬酸盐种类和温度的不同而不同。淀粉干法还原铬酸钠的还原产物为亚铬酸钠,而重铬酸钠的还原产物与温度有关。在温度低于550℃时,重铬酸钠的还原产物主要为氧化铬,随着反应温度的升高,还原产物由氧化铬逐渐过渡到亚铬酸钠,亦即,高温会导致氧化铬向亚铬酸钠转变。在所确定的实验条件下,Cr(Ⅵ)还原率达到98%以上,得到418-438nm形状不规则的超细氧化铬粉体。
Chromates, as one of the main products of inorganic chemicals, are widely used in many aspects such as electroplating, tannage, printing and dyeing, medicine, paint, catalyst, oxidant and metal inhibitor, playing a very important role in the national economy. However, the chromate industry produces a large amount of solid hazardous wastes mainly including chromite ore processing residue (COPR) and sulphates containing hexavalent chromium (Cr(Ⅵ)), which are the first and second hazard in the process, respectively.
     Chromates production is beginned with the roasting process of chromite ore. There are two main processes for extracting chromate from chromite ore. One is the high lime roasting process characterised by large amount of COPR produced, and the other is the non-lime roasting process with less amount of COPR. The trends of chromates production is the non-lime roasting process in the future in China, but there is plenty of COPR to be treated in the past several decades.
     There are also two processes for producing chromium oxide (Cr2O3): one is the pyrolysis of sodium dichromate and ammonium sulphate, and the other is pyrolysis of chromic anhydride (CrO3). Both processes have the problem of high consumption of sulphuric acid and produce hazardous material of suphates containing Cr(VI).
     So this dissertation mainly focused on the theory and technology of COPR remediation with starch by hydrothermal process, with tannage sludge by pyrolysis process and with wastewater containing hydrofluoric acid. The theory and technology of clean production of Cr2O3was also investigated with starch by hydrothermal process and dry reduction process. The main argumentations and original conclusions were made as follows:
     The formation of acicular ettringite bearing Cr(Ⅵ) was the main reason of incomplete remediation of COPR with sulphur-containing reductants in aqueous solution at the ambient temperature. The thermodynamic calculation showed that increasing temperature could effectively suppress ettringite formation, which was further verified by experimental results, subsequently. The COPR treated with starch by hydrothermal process could meet the standard of entering the landfill yard of household garbage under the optimized conditions.
     Carbon monoxide and hydrocarbon organic compounds released from the decomposition of grease and protein of tannage sludge could reduce Cr(Ⅵ) in COPR to trivalent chromium (Cr(Ⅲ)) for the remediation of COPR at temperature of over400℃. And COPR treated with tannage sludge by pyrolysis process also met the standard of entering the landfill yard of household garbage.
     Thermodynamic calculation and kinetic study of the leaching of COPR with hydrofluoric acid as well as the remediation technology of COPR with wastewater containing hydrofluoric acid were investigated in this work. Results showed that hydrofluoric acid and wastewater containing hydrofluoric acid could also destroy the structures of minerals containing Cr(Ⅵ), leading to release Cr(Ⅵ) in COPR. And the leaching kinetics of acidic Cr(Ⅵ) from COPR followed the shrinking unreacted core model and was controlled by inner diffusion. Results also showed that the remediation effect of column leaching was very close to that of the pond leaching. The COPR treated with wastewater containing hydrofluoric acid for30days met the standard of entering the landfill yard of general industrial wastes. And the COPR treated with wastewater containing hydrofluoric acid for60days by column leaching, further column leached by ferrous sulphate solution for1day, could meet the standard of entering the landfill yard of household garbage. In addition, the Cr(Ⅵ) content of the leachate treated with ferrous sulphate solution and calcium hydroxide reached the national sewage discharge standard.
     The kinetics and technology of preparation of Cr2O3by hydrothermal process of Cr(Ⅵ) with starch as the reductant were also conducted. Results showed that the kinetics could be described by the kinetic model of isothermal irreversible reaction with constant volume, and the hydrothermal reduction was controlled by the chemical reaction. Homogeneously distributed Cr2O3powder with particle size of660-880nm was obtained with Cr(Ⅵ) reduction rate of more than98%by hydrothermal process. Furthermore, ultra-fine near-spherical or spherical Cr2O3powder with uniform size of110-130nm could be prepared by the application of surfactant in the hydrothermal process.
     The thermodynamics and technology of preparation of Cr2O3by dry-process of Cr(Ⅵ) with starch were carried out. Results indicated that the reduction product varied with the kind of chromates and the reduction temperature. The reduction product of sodium chromate was sodium chromate(Ⅲ)(NaCrO2), while the reduction product of sodium dichromate depended on the temperature. Cr2O3was obtained with the reduction temperature of lower than550℃, and Cr2O3gradually tranformed to NaCrO2with increasing the reduction temperature. Irregular Cr2O3powder with the particle size of418-438nm was produced with the Cr(Ⅵ) reduction rate of above98%under the optimal conditions.
引文
[1]成思危,丁翼,杨春荣.铬盐生产工艺[M].北京:化学工业出版社,1988
    [2]丁翼,纪柱.铬化合物与应用[M].北京:化学工业出版社,2003
    [3]《铬及其化合物工业污染物排放标准》编制组.《铬及其化合物工业污染物排放标准》编制说明.2008
    [4]纪柱.关于铬矿有钙、少钙、低钙、无钙焙烧的区别[J].铬盐工业,2005,2:28-31
    [5]纪柱.开发实施中的中国铬酸钠新工艺(I)[J].无机盐工业,2010,42(1):l-4
    [6]纪柱.铬渣的危害及无害化处理综述[J].无机盐工业,2003,35(3):1-4
    [7]李小斌,周秋生,彭志宏,等.一种综合处理含铬铝泥回收铬和铝的工艺[P].中国专利,CN101063184,2007-10-31
    [8]Kowalski Z, Gollinger-Tarajko M. Environmental evaluation of different variants of the chromium compound production model using chromic waste[J]. Waste Management,2003,23(8):771-783
    [9]Sungur S, Babaoglu S. Investigation of the effects of some parameters in the production of chromate from chromite ores in Iskenderun region[J]. Steel Research,2006,77(7):492-494
    [10]Xu Hongbin, Zhang Yi, Li Zuohu. Development of a new cleaner production process for producing chromic oxide from chromite ore[J]. Journal of Cleaner Production,2006,14(2):211-219
    [11]李小斌,齐天贵,彭志宏,等.铬铁矿氧化焙烧动力学[J].中国有色金属学报,20(9):1822-1827
    [12]李小斌,齐天贵,彭志宏,等.含铬物料强氧化焙烧技术[P].中国专利,CN101456589,2009-0-17
    [13]张懿,李佐虎,王志宽,等.绿色化学与铬盐工业的新一代产业革命[J].化工进展,1998,10(2):172-178
    [14]Zhang Yi, Li Zuohu, Qi Tao, et al. Green chemistry of chromate cleaner production[J].Chinese Journal of Chemisry,1999,17(3):258-266
    [15]张懿.绿色过程工程[J].过程工程学报,2001,1(1):10-15
    [16]杨文刚.清洁生产过程中铬渣的深度资源化-产品化研究[D].北京:北京科 技大学硕士论文,2006
    [17]Hillier S, Roe M J, Geelhoed J S, et al. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue[J]. The Science of the Total Environment,2003,308(3):195-210
    [18]潘金芳,冯晓西,张大年.化工铬渣中铬的存在形态的研究[J].上海环境科学,1996,15(3):15-17
    [19]纪柱.铬渣解毒的两个关键[J].无机盐工业,2004,36(5):1-4
    [20]Geelhoed J S, Meeussen J C, Hillier S, et al. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue[J]. Geochimica et Cosmochimica Acta, 2002,66(22):3927-3942
    [21]Hillier S, Lumsdond D G, Brydson R, et al. Hydrogarnet:A host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes [J]. Environmental Science and Technology,2007,41(6):1921-1927
    [22]Wittbrodt P R, Palmer C D. Reduction of Cr(VI) in the presence of excess solid fulvic acid [J]. Environmental Science and Technology,1995,29 (1):255-263
    [23]谭怀琴.铬渣生物解毒工艺及解毒动力学研究[D].重庆:重庆大学硕士学位论文,2003
    [24]江澜,王小兰.铬的生物作用及污染治理[J].重庆工学院学报(自然科学版),2004,21(4):325-328
    [25]龙腾发.还原Cr(Ⅵ)的特异功能菌的选育及其解毒铬的初步研究[D].长沙:中南大学硕士论文,2005
    [26]环境科学大辞典编辑委员会.环节科学大辞典[M].北京:中国环境科学出版社,1991:217-219
    [27]Jagupilla S C, Moon D H, Waznea M, et al. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate[J]. Journal of Hazardous Materials,2009,168(1):121-128
    [28]Wazne M, Jagupilla S C, Moon D H, et al. Leaching mechanisms of Cr(VI) from chromite ore processing residue [J] Journal of Environmental quality, 2008,37(6):2125-2134
    [29]Dermatas D, Bonaparte R., Chrysochoou M, et al. Chromite ore processing residue (COPR):contaminated soil or hazardous waste? Journal of ASTM International,2006,3(7):145-1524
    [30]Dermatas D, Chrysochoou M, Moon D H, et al. Ettringite-Induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment. Environmental Science & Technology,2006,40(18):5786-5792
    [31]Moon D H, Dermatas D, Chrysochoou M, et al. An investigation of the heaving mechanism related to chromite ore processing residue[J]. Journal of ASTM International,2006,3(6):155-164
    [32]Wazne M, Jagupilla S C, Moon D H, et al. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR)[J]. Journal of Hazardous Materials,2007,143(3):620-628
    [33]Wazne M, Moon D H, Jagupilla S C. et al. Remediation of chromite ore processing residue using ferrous sulfate and calcium polysulfide[J]. Geosciences Journal,2007,11(2):105-110
    [34]Moon D H, Wazne M, Dermatas D, et al. Long-term treatment issues with chromite ore processing residue (COPR):Cr6+ reduction and heave[J]. Journal of Hazardous Materials,2007,143(3):629-635
    [35]Deakin D, West L J, Stewart D I. Leaching behaviour of a chromium smelter waste heap[J]. Waste Management,2001,21(3):265-270
    [36]盛灿文,柴立元,王云燕,等.铬渣的湿法解毒研究现状及发展前景[J].工业安全与环保,2006,32(2):1-3
    [37]Terry P A. Characterization of Cr ion exchange with hydrotalcite[J]. Chemosphere,2004,57(7):41-546
    [38]Farmer J G, Paterson E, Bewley R J F, et al. The implications of integrated assessment and modeling studies for the future remediation of chromite ore processing residue disposal sites[J]. Science of the Total Environment,2006, 360(3):90-97
    [39]景学森.铬渣Cr(Ⅵ)浸出特性及铬渣酸溶湿法解毒工艺研究[D].杨凌:西北农林科技大学硕士论文,2007
    [40]周久权,胡晓东.高炉处理铬渣的研究和实践[J].浙江冶金,2007,2:45-47
    [41]石玉敏,都兴红,隋智通.碳高温还原解毒铬渣中CaCrO4的反应热力学研究[J].环境污染与防治,2007,29(6):4451-454
    [42]李晓红,刘作华,刘仁龙,等.微波技术在含铬废渣解毒中的应用[J].压电与声光,2004,26(4):334-336
    [43]宁平,刘天成,梁波,等.微波解毒含铬废渣[J].环境工程,2006,26(1):56-58
    [44]杨丽芳,王宜明,李理,等.微波辐照铬渣解毒的工艺研究[J].环境工程学报,2008,2(6):820-825
    [45]Barton L L. Treatment of metultontaminated water using bacterial sulfated reduction:results from pilot scale reactors[J]. Biotechnology and Bioengineering,1992,40(5):609-616
    [46]Tan Baohua. Review on metal pollution and its biological treatment[J]. Hunan Nonferrous Metals,2000,16(2):38-40
    [47]Chai Liyuan, He Dewen, Yu Xia, et al. Technological progress on detoxification and comprehensive utilization of chromium containing slag[J]. Transactions of Nonferrous Metals Society of China,2002,12(3):514-518
    [48]Tinjum J M, Benson C H, Edil T B. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment [J]. Science of the Total Environment, 2008,391(1):13-25
    [49]Margaret C, Graham, Farmer J G, et al. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue[J]. Science of the Total Environment,2006,364(3):32-44
    [50]Moon D H, Waznea M, Jagupilla S C, et al. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5)[J]. Science of the Total Environment,2008,399(1):2-10
    [51]Moon D H, Waznea M, Koutsospyrosb A, et al. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt[J]. Journal of Hazardous Materials,2009,166(1):27-32
    [52]Dermatas D, Chrysochoou M, Moon D.H, et al. Ettringite-induced heave in chromite ore processing residue (COPR) up ferrous sulfate treatment[J]. Environmental Science and Technology,2006,40(18):5786-5792.
    [53]Moon D H, Dermatas D, Wazne M, et al. Swelling related to ettringite crystal formation in chromite ore processing residue[J]. Environmental Geochemistry and Health,2007,29(4):289-294
    [54]景学森,蔡木林,杨亚提.铬渣处理处置技术研究进展[J].环境技术,2006,3:33-36
    [55]张敖荣.铬渣综合利用制水泥[J].铬盐工业,2000,2:40-43
    [56]纪柱.掺烧少量铬渣对水泥生产的影响、解毒原理与效果[J].铬盐工业,2001,1:25-33
    [57]陈俊敏,李刚,欧阳锋,等.铬渣作水泥矿化剂的经济及环境效应分析[J].四川环境,2002,21(2):34-36
    [58]孟凡伟,张茂山,肖勇,等.铬渣作矿化剂制备水泥应用研究[J].无机盐工业,2009,39(10):49-51
    [59]田俊京,周秋林.铬矿渣替代Cr203生产翡翠绿玻璃的试验[J].玻璃,2010,6(225):7-8
    [60]来克立,李何.铬渣的无害化处理及在建材工业上的应用[J].辽宁城乡环境科技,2006,26(4):59-64
    [61]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用[J].再生资源研究,2004,6:34-38
    [62]纪柱.铬渣的危害及无害化综述[J].无机盐工业,2003,35(3):1-4
    [63]王洪海,李玉信.利用烧结炼铁工艺环保处理铬渣[J].工业安全与环保,2007,33(7):43-45
    [64]张茂山,肖勇,朱元洪,等.铬渣治理技术及应用现状[J].中国资源综合利用,2007,25(10):16-18
    [65]那贤昭,齐渊洪.铬渣在钢铁冶金过程中的资源化利用[J].钢铁研究学报,2009,21(4):1-4
    [66]谌英武,陈静.重铬酸钠铵盐还原法制备三氧化二铬方法研究[J].无机盐工业,1999,31(16):8-9
    [67]Zeller R L, Seper K W, Morgan R J. Method of making chromic oxide[P]. USA Patent:5215727,1993-11-13
    [68]姚芝茂.水热还原法制备氧化铬清洁工艺的基础性研究[D].北京:中国科学院过程工程研究所博士学位论文,2003
    [69]姚芝茂,李佐虎,张懿.水热法还原铬酸钾/重铬酸钾制备水合氧化铬的实验[J].过程工程学报,2003,3(1):62-67
    [70]张鹏,曹宏斌,郑诗礼,等.一种采用水热还原铬酸盐制备氧化铬粉体的方法[P].中国专利,CN100999335A,2007-07-08
    [71]张逸庭,杨逢乐,杨馗,等.蔗糖厂“三废”资源化治理工程实践[J].环境保护,2003,5:55-57
    [72]李春林,李铁英,李铁荣,等.碳还原法制备三氧化二铬及综合回收生产工艺[P].中国专利,CN1158822A,1997-09-10
    [73]Tsuzuki T, McCormick P G. Synthesis of Cr2O3 nanoparticles by mechanochemical processing[J]. Acta materialia,.2000,48 (11):2795-2801
    [74]Balachandran U, Siegel R W, Liao Y X,et al. Synthesis, sintering and magnetic properties of nanophase Cr2O3[J]. Nanostructured Materials,1995,5(5):505-509
    [75]Vollath D, Szabo D V,Willis J O. Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma[J]. Materials letters,1996,29(426):271-279
    [76]Kern J A, Schwahn H G, Schramm B. Synthesis of fine chromiun(III) oxide powders by laser pyrolysis[J]. Materials Chemistry and physics,1989,21(4):391-408
    [77]崔正刚,殷福珊.微乳化技术与应用[M].北京:中国轻工业出版社,1999:2-4
    [78]Akio Kawabata, Masaru Yoshinaka, Ken Hirota, et al. Hot is ostatic pressing and characterization of sol-gel-derived chromium(Ⅲ) oxide[J]. Journal of the American Ceramic Society,1995,78(8):2276-2273
    [79]Lima M D, Bonadimann R, M.J. de Andrade, Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis[J]. Journal of the European Ceramic Society,2006,26(7):1213-1220
    [80]张鹏,曹宏斌,徐红彬,等.水热还原法制备超细氧化铬及粒径调控[J].过程工程学报,2006,7(1):95-99
    [81]徐红彬,裴振昭,张懿,等.一种纳米氧化铬颗粒的制备方法[P],中国专利,CN101239741A,2008-08-13
    [82]池汝安,蔡再华,李中军,等.一种超细氧化铬的制备方法[P],中国专利,CN1865156A,2006-11-23
    [83]金征宇,顾正彪,童群义,等.碳水化合物化学—原理与应用[M].北京:化学工业出版社,2008:306-322
    [84]金世勋,刘桂存,张文智,等.物理化学[M].北京:高等教育出版社,1980,210-410
    [85]杜清枝,杨继舜.物理化学[M].重庆:重庆大学出版社,1997,126-128
    [86]刘光,邱贞花.离子溶液物理化学[M].福州:福建科技出版社,1987,139-187
    [87]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998,21-69
    [88]杨显万,何蔼平,袁宝州.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983:2-3
    [89]Lee Y M, Nassaralla C L. Standard free energy of formation of calcium chromate[J]. Materials Science and Engineering A,2006,437(2):334-339
    [90]Allada R K. Thermochemistry of hydrotalcite-like compounds relevant to fate and transport of aqueous metal and anionic species in the environment[D]. California:University of California,1999
    [91]中南大学冶金科学与工程学院氧化铝所.氧化铝热力学数据库[M].长沙:中南大学,2005
    [92]薛君轩.钙矾石相得形成、稳定和膨胀——记钙矾石学术讨论会[J].硅酸盐学报,1983,11(2):247-251
    [93]Cody A M, Lee H, Cody R D, et al. The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al(OH)6]2(SO4)3-26H2O[J]. Cement and Concrete Research,2004,34(5):869-881
    [94]Chrysochoou M, Dermatas D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization:Literature review and experimental study [J]. Journal of Hazardous Materials,2006,136 (1):20-33
    [95]徐文彬,李斌,李小斌,等.淀粉水热还原铬酸钠过程动力学研究[J].北京化工大学学报(自然科学版),2009,36(4):33-37
    [96]中华人民共和国国家标准.GB 5.85.3-2007.危险废物鉴别标准——浸出毒性鉴别,2007-10-01
    [97]中华人民共和国国家标准.GB/T 15555.7-1995.固体废物 六价铬的测定——酸亚铁铵滴定法,1995-03-28
    [99]中华人民共和国国家标准.GB/T 15555.8-1995.固体废物 总铬的测定——酸亚铁铵滴定法,199.5-03-28
    [99]中华人民共和国国家标准.GB/T 15555.4-1995.固体废物 六价铬的测定——二苯碳酰二肼分光光度法,1995-03-28
    [100]中华人民共和国国家标准.GB/T 15555.5-1995.固体废物总铬的测定—一二苯碳酰二肼分光光度法,1995-03-28
    [101]中华人民共和国国家标准.GB/T 15555.12-1995.固体废物 腐蚀性测定——玻璃电极法,1995-03-28
    [102]Material's Data Inc. Jade Version 7.1, California, USA,2005
    [103]Rietveld H M. A profile refinement method for nuclear and magnetic structures [J]. Journal of Applied Crystallography,1969,2(1):65-71
    [104]Powder Diffraction File. PDF-2 Database Release, announcement of new database release, International Centre for Diffraction Data (ICDD),2002
    [105]Fachinformationszentrum Karlsruhe. Inorganic Crystal Structure Database (ICSD), Germany,2005.
    [106]Moon D H, Dermatas D, ASCE M, et al. Assessment of brownmillerite and periclase hydration in chromite ore processing residue at elevated temperature [J]. ASCE Conference Proceedings,2008,309(47):375-382
    [107]纪柱.铬渣的物相组成及其对铬渣解毒和综合利用的影响[J].化工环保,1984,4(1):37-41
    [108]王力,马继红,郭增维,等.水热法制备硫酸钙晶须及其结晶形态的研究[J].材料科学与工艺,2006,14(6):626-629
    [109]Zhou Shun gui, Zhou Li xiang, Wang Shi mei, et al. Removal of Cr from tannery sludge by bioleaching method. Journal of Environmental Science, 2006,18(5):885-890
    [110]林炜,穆畅道,唐建华.制革污泥处理与资源化利用[J].皮革科学与工程,2005,15(4):57-61
    [111]管蓓,吴浩汀,周永根.制革污泥的处理与处置[J].中国皮革,2008,37(9):31-33
    [112]Haroun M, Idris A, Syed Omar S R. A study of heavy metals and their fate in the composting of tannery sludge[J]. Waste Management,2007,27(11):1541-1550
    [113]Kim Y, Parker W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil[J]. Bioresource Technology,2008, 99(5):1409-1416
    [114]李润卿,范国梁,渠荣遴.有机结构波谱分析[M].天津:天津大学出版社,2002:78-108
    [115]Spoler F, Frentz M, Forst M, et al. Analysis of hydrofluoric acid penetration and decontamination of the eye by means of time-resolved optical coherence tomography[J],Burns,2008,34(4):549-555
    [116]Feng Qiming, Shao Yanhai, Ou Leming, et al. Kinetics of nickel leaching from roasting-dissolving residue of spent catalyst with sulfuric acid[J]. Journal of Central South University of Technology,2009,16(3):410-415
    [7]孙会兰,于海燕,王波,等.12CaO·7Al2O3溶出动力学[J].中国有色金属学报,2008,18(10):1920-1925
    [118]李浩然,冯雅丽,罗小兵,等.湿法浸出年途中钒的动力学[J].中南大学学报(自然科学版),2008,39(6):1181-1184
    [119]Lozano L J, Juan D. Leaching of vanadium from spent sulfuric acid catalysts [J]. Minerals Engineering,2001,14(5):543-546
    [120]Mohammad S S, Davood M, Mehdi O I. Kinetics of sulfuric acid leaching of cadmium from Cd-Ni zinc plant residues [J]. Journal of Hazardous Materials, 2009,163(2):880-890
    [121]朱屯.现代铜湿法冶金[M].北京:冶金工业出版社,2002:15-28
    [122]夏清.化学还原法处理含铬废水工艺条件研究[J].无机盐工业,2003,35(3):37-39
    [123]Mitewa M, Bontcher P P. Chromium(Ⅴ) Coordination Chemistry[J]. Coordination Chemistry Reviews,1985,61(1):241-272
    [124]Drljaca A, Spiccia L. Early stages of the hydrolysis of chromium(Ⅲ) in aqueous solution-X. Kinetics of formation of trimer from monomer and dimmer[J].Ployhydron,1995,14(12):1653-1660
    [125]Drljaca A, Spiccia L. Early stages of hydrolysis of the hydrolysis of chromium(Ⅲ) in aqueous solution-Ⅻ. Kinetics of cleavage of the trimer and tetramer in acidic solution[J]. Polyhydron,1996,15 (24):4373-4385
    [126]杨俊香.硫化物还原六价铬反应动力学及其影响因素研究[D].南京:南京农业大学硕士论文,2005
    [127]Park D, Yun Y S, Cho H Y, et al. Chromium biosorption by thermally treated biomass of the brown seaweed Ecklonia sp.[J]. Industrial Engineering Chemistry Research,2004,43(26):8226-8232
    [128]Park D, Yun Y S, Park J M. Reduction of hexavalent chromium with the brown seadweed Ecklonia biomass[J]. Environmental Science and Technology,2004,38(18):4860-4864
    [129]Park D, Yun Y S, Park J M. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia. sp.[J]. Chemosphere,2005,60(10): 1356-1364
    [130]Park D, Yun Y S, Ahn C K, et al. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass[J]. Chemosphere,2007, 66(5):939-946
    [131]杜巧云,葛虹.表面活性剂基础及应用[M].北京:中国石化出版社,1996,46-47
    [132]邓双,李会泉,张懿.纳米Cr2O3的制备、表征及催化性能[J].无机化学学报,2003,19(8):825-830
    [133]周立群,王弛伟,杨念华,等.Cr2O3纳米粉体的合成及性能研究[J].武汉大学学报(理学版),2005,51(4):407-410
    [134]中华人民共和国国家技术监督局.G.B/T 223.69-1997.中华人民共和国国家标准——管式炉内燃烧后气体容量法测定碳含量.1997-03-17
    [135]叶大伦,胡建华.实用无机物热力学数据手册(第二版)[M].北京:冶金工业出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700