石墨烯基导电聚合物复合材料的制备、表征及其超电容特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有大容量、高功率特性、长寿命和良好安全性等优良特性,超级电容器在现代电源存储系统中发挥着越来越重要的作用。具有高法拉第赝电容特性的导电聚合物是一类重要的超级电容器电极材料,但其相对较低的电化学利用率、脱掺杂态下的低电导性和容量的快速衰减限制了导电聚合物实际应用的进一步发展。高比表面积、良好电子导电特性和卓越机械强度的石墨烯(GN)与导电聚合物电活性物质的复合有望实现二者的优势互补,使电极材料具有良好的电化学性能。本论文的研究内容主要集中在石墨烯基导电聚合物复合材料的制备、表征及其在超级电容器中的应用,旨在获得较高的比能量密度和良好循环寿命的超级电容器电极材料。论文的主要内容介绍如下:
     1、以功能化离子液体1-甲基咪唑丙磺酸硫酸氢盐([MIMPS][HSO_4])为GN分散剂和聚苯胺(PANI)掺杂剂机械球磨合成了GN/PANI复合物。以功能化离子液体1-丁基-3-甲基咪唑四氯化铁(Bmim[FeCl_4])作为GN分散剂和聚吡咯(PPy)催化剂与掺杂剂机械球磨合成GN/PPy复合物。在聚合过程中,GN作为支撑材料沉积PANI或PPy,而原位合成的PANI或PPy作为隔离器抑制GN的重新堆垛。强机械力使片状复合物任意堆垛,构筑成三维的分级结构,有利于电解液扩散到电极内部发生充分的氧化还原反应。电化学测试表明复合材料中PANI和PPy的电化学活性和循环稳定性得到明显提高。GN/PANI复合物在电流密度0.2Ag~(-1)时比容量为616Fg~(-1),是纯PANI在相同条件下比容量的两倍多,500圈循环测试后比容量衰减为7%。GN/PPy复合物在0.2Ag~(-1)时比容量为375Fg~(-1),1000圈循环测试后比容量衰减为13%。
     2、以聚苯乙烯磺酸钠(PSS)为GN和碳纳米管(CNT)分散剂,通过原位化学聚合方法制备了一系列GN/PANI/CNT和GN/PPy/CNT三元复合物。负电荷的PSS与苯胺或吡咯单体的静电吸附作用有利于产生均一的聚合物层,然而由于GN比CNT具有更高的理论比表面积和反应活性,导电聚合物优先聚合在GN表面。CNT的引入能有效抑制GN/PANI或GN/PPy复合物的片层堆积,组装成三维松散结构,有利于电解液与电活性物质的接触,同时CNT较高的电导率与GN可以组合形成三维导电网络,有助于电子的传输和电解质离子的快速扩散。电化学测试表明,由于二维GN和一维CNT的协同作用,三元复合物的电化学特性优于纯导电聚合物和导电聚合物与GN或CNT组成的二元复合物。当GN:CNT=5:1时,GN/PANI/CNT在0.2Ag~(-1)条件下比电容最佳,为909Fg~(-1),4Ag~(-1)条件下连续循环2000圈以后容量衰减7%。GN:CNT=8:1时,GN/PPy/CNT在0.2Ag~(-1)条件下最佳比电容为361Fg~(-1),4Ag~(-1)条件下循环2000圈以后容量衰减4%。
     3、真空抽滤氧化石墨(GO)与PANI纳米纤维或PANI/CNT纳米线的混合分散溶液,流动组装得到自支撑GO/PANI或GO/PANI/CNT复合薄膜,再利用气态水合肼还原复合薄膜中GO,最后重新氧化和掺杂还原态PANI,制备了一维PANI纳米纤维或PANI/CNT纳米线均匀插层GN的“三明治”结构的自支撑复合薄膜材料。在复合薄膜中,GN片可作为集流体改善PANI在充放电过程中的电荷传输,也可作为弹性缓冲器适应PANI链的体积改变;纳米尺寸PANI或PANI/CNT能提供高氧化还原感应电容,提高GN片的层间距和改善GN片的溶液浸润性。特别在GN/PANI/CNT三元复合薄膜中,刚性CNT核的引入不仅极大的提高了PANI的电化学活性,而且近一步改善了PANI的机械稳定性。GN/PANI/CNT自支撑薄膜在电流密度为0.1Ag~(-1)条件下,达到了569Fg~(-1)的质量比电容和188Fcm~(-3)的体积比电容,5000圈循环测试后电容仅损失4%。
     4、以二维GN为柔性基体,利用真空抽滤GN和PPy/CNT混合分散溶液的方法制备了PPy/CNT纳米线均一分散在GN片间的柔性GN/PPy/CNT薄膜。在独特的层状结构当中,PPy/CNT不仅增加了GN片层空间,而且为电极提供氧化还原赝电容。在0.2Ag~(-1)电流密度下,柔性GN/PPy/CNT的质量比电容和体积比电容(211Fg~(-1)和122Fcm~(-3))高于GN(73Fg~(-1)和79Fcm~(-3))和PPy/CNT(164Fg~(-1)和67Fcm~(-3))。当电流密度增至12Ag~(-1)时,GN/PPy/CNT的电容保持率达到78%。有重要意义的是,由于柔性GN层和刚性CNT核协同释放PPy链在充放电过程中的内应力,无支撑柔性GN/PPy/CNT薄膜电极在5000圈充放电循环后仅损失5%的容量。
Supercapacitors play an increasingly important role in modern power source application due to their high capacitance, high power density, long cycle life and good operational safety. Conducting polymers with high Faradaic pseudo-capacitor are important electrode materials for supercapacitor applications. However, the poor electrochemical utilization, low electronic conductivity in dedoping state and rapid capacity decay limit their further advancements in promising applications. The combination of conducting polymers and graphene (GN) with high specific surface area, good conducting property and exceptional mechanical strength has been proposed as perfect electrode materials with good electrochemical properties for supercapacitors due to the synergistic effect of GN and conducting polymers. Consequently, the thesis is aimed at the preparation and characterization of the GN-based conducting polymer composites and their application in supercapacitors in order for the synchronous realization of large specific energy density and good cycle stability.
     1. A simple and effective ionic liquid (IL)-assisted mechanochemical route is used to synthesize GN/PANI and GN/PPy composites. Functionalized IL1-(3-sulfonic acid) propyl-3-methylimidazolium hydrogen sulfate ([MIMPS][HSO4]) acts as the dispersant of GN and the dopant of PANI to prepare GN/PANI composite. Functionalized IL1-butyl-3-methylimidazolium tetrachloroferrate (Bmim[FeCl4]) acts as not only the dispersant of GN, but also the catalyst and dopant in the synthesis of GN/PPy composite. GN serve as a support material for depositing PANI or PPy during polymerization process, while in-situ produced PANI or PPy deposited onto GN can be used as spacer to effectively avoid the restacking of GN. The strong mechanical energy makes the laminated composites random stack and reconstructs hierarchical architecture, which is convenient for diffusion of the electrolyte ions into the inner region of electrodes to take place redox reaction. Electorchemical tests indicate that the electroactive and cycling stability of PANI and PPy have obvious improving. The GN/PANI shows a specific capacitance of616F g-1at0.2A g-1and a capacity loss of7%after500continuous cycles. For GN/PPy composite, a specific capacitance of375F g-1at0.2A g-1and a capacity degradation of13%after1000continuous cycles can be obtained.
     2. A series of GN/PANI/carbon nanotube (CNT) and GN/PPy/CNT ternary composites have been fabricated via in situ polymerization method using poly(sodium4-styrene sulfonate)(PSS) for dispersing GN and CNT. The electrostatic interaction between negatively charged PSS and pyrrole or aniline monomer facilitates the generation of homogeneous polymer layer. The conducting polymers preferentially deposit on the surface of GN due to the high chemical activity and high theoretical surface area of GN. The introduction of one-dimensional CNT effectively inhibits the stacking of nanosheet-like GN/PANI or GN/PPy to form three-dimensional hierarchical architecture, favoring the contact between the electrolyte ions and electroactive materials. The high conducting of CNT and GN can construct a3-D conductive architecture for electron transfer and fast ions transport. Owing to the synergistic effect between two-dimensional GN and one-dimensional CNT, electrochemical results demonstrate that the electrochemical properties of ternary composites are better than pure conducting polemers and binary composites of conducting polemers with GN or CNT. A specific capacitance of909F g-1at0.2A g-1and a capacity loss of7%at4A g-1after2000continuous cycles can be obtainedand for GN/PANI/CNT composite with GN:CNT=5:1. The GN/PPy/CNT composite with GN:CNT=8:1has a maximum specific capacitance of372F g-1at0.2A g-1and a capacity degradation of4%after2000continuous cycles at4A g-1.
     3. Freestanding "sandwich-like" films with PANI nanofibres or PANI/CNT nanocables uniformly distributed between GN sheets have been fabricated by reducing a graphite oxide (GO)/PANI or GO/PANI/CNT precursors prepared by flow-directed assembly from a complex dispersion of GO and PANI or PANI/CNT, followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. In the composite film, the GN sheets can act as the current collector to improve the electronic and ionic transportation during the redox process of PANI, and elastic buffering to accommodate the volumetric change of the PANI chains. The PANI or PANI/CNT provides high faradaic capacitance and increases the basal spacing between GN sheets to enhance the accessibility to the GN surfaces. Especially for ternary GN/PANI/CNT composite film, rigid CNT core can not only effectively enhance the electroactive of PANI, but also further improve the mechanical stability of PANI. The GN/PANI/CNT film shows that the mass and volume specific capacitances of are569F g-1and188F cm-3at a current density of0.2A g-1, and a capacity loss of4%after5000continuous charge/discharge cycles.
     4. Unique flexible film with PPy/CNT composite homogeneously distributed between GN sheets is successfully prepared by flow-assembly of the mixture dispersion of GN and PPy/CNT. In such layered structure, the coaxial PPy/CNT nanocables can not only enlarge the space between GN sheets but also provide pseudo-capacitance to enhance the total capacitance of electrodes. According to the galvanostatic charge/discharge analysis, the mass and volume specific capacitances of GN/PPy/CNT are211F g-1and122F cm-3at a current density of0.2A g-1, higher than those of the GN film (73F g-1and79F cm-3) and PPy/CNT (164F g-1and67F cm-3). Significantly, the GN/PPy/CNT electrode shows excellent cycling stability (5%capacity loss after5000cycles) due to the flexible GN layer and the rigid CNT core synergistical releasing the intrinsic differential strain of PPy chains during long-term charge/discharge cycles.
引文
[1]B.E. Conway, V. Birss, J. Wojtowicz, et al. The role and utilization of pseudocapacitance for energy storage by supercapacitor. Journal of Power Sources[J],1997,66(1-2):1-14.
    [2]W.G. Pell, B.E. Conway, W.A. William, et al. Electrochemical efficiency in multiple discharge/recharge cycling of super-capacitors in hybrid EV application. Journal of Power Sources[J],1999,80(1-2):134-141.
    [3]李凯.利用超大容量电容器改善内燃机柴油发电机组的电启动性能.机车电传动[J],2002,2(3):37-39.
    [4]L.P. Jarvis, T.B. Atwater, P.J. Cygan, et al. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications. Journal of Power Sources[J],1999,79(1):60-63.
    [5]E. Faggioli, P. Rena, V. Danel, et al. Supercapacitors for the energy management of electric vehicles. Journal of Power Soures[J],1999,84(2):261-269.
    [6]马仁志,魏秉庆,徐才录,等.应用于超级电容器的碳纳米管电极的几个特点.清华大学学报(自然科学版)[J],2000,40(8):7-10.
    [7]张治安,邓梅根,胡永达等.电化学电容器的特点及应用.电子元件与材料[J],2003,22(11):2-5.
    [8]M. Winter, R.J. Brodd. What are batteries, fuel cells, and supercapacitors. Chemical Reviews [J],2004,104(10):4245-4269.
    [9]B. Andrew. Ultracapacitor:Why, how and where is the technology. Journal of Power Sources[J],2000,91(1):37-50.
    [10]D.Y. Jung, Y.H. Kim, S.W. Kim, et al. Development of ultracapacitor modules for42-V automotive electrical systems. Journal of Power Sources[J],2003,114(2):366-373.
    [11]R.A. Huggins. Supercapacitors and electrochemical pulse sources. Solid State Ionics[J],2000,134(1-2):179-195.
    [12]L.P. Jarvis, T.B. Atwater, P.J. Cygan. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications. Journal of Power Sources[J],1999,79(1):60-63.
    [13]X.X. Yan, D. Patterson. Novel power management for high performance and cost reduction in an electric vehicle. Renewable Energy[J],2001,22(1-3):177-183.
    [14]韦文生,梁吉,徐才录.碳纳米管超大容量电容器在光伏系统中的应用.太阳能学报[J],2002,23(2):223-2493.
    [15]S. Nomoto, H. Nakata, K. Yoshioka, et al. Advanced capacitors and their application. Journal of Power Sources[J],2001(97-98):807-811.
    [16]IB. Weinstock. Recent advances in the US department of energy energy storage technology research and development programs for hybrid electric and electric vehicles. Journal of Power Sources[J],2002,110(2):471-478.
    [17]L.L. Zhang, X.S. Zhao. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews[J],2009,38:2520-2531.
    [18]A.G. Pandolfo, A.F. Hollenkamp. Carbon properties and their role in supercapacitors. Journal of Power Sources[J],2006,157(1)11-27.
    [19]D.L. Chapman. A contribution to the theory of electrocapillarity. Philosophical Magazine [J],1913,25(6):475-481.
    [20]O. Stern. The theory of the electrolytic double shift. Zeitschrift Fur Elektrochemie Und Angewandte Physikalische Chemie[J],1924,30:508-516.
    [21]D. Qu, H. Shi. Studies of activated carbons used in double-layer capacitors. Journal of Power Sources[J],1998,74(1):99-107.
    [22]M. Endo, T. Maeda, T. Takeda, et al. Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. Journal of the Electrochemical Society[J],2001,148(8):A910-A914.
    [23]E. Raymundo-Pinero, K. Kierzek, J. Machnikowski et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon [J],2006,44(12):2498-2507.
    [24]P. Simon, Y. Gogotsi. Materials for electrochemical capacitors. Nature Material[J],2008,7:845-854.
    [25]J. Huang, B.G. Sumpter, V. Meunier. A Universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry-A European Journal[J],2008,14(22):6614-6626.
    [26]S.W. Lee, B.M. Gallant, H.R. Byon, et al. Nanostructured carbon-based electrodes:bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy&Environmental Science[J],2011,4:1972-1985.
    [27]Y. Zhang, H. Feng, X.B. Wu. Progress of electrochemical capacitor electrode materials:A review. International Journal of Hydrogen Energy [J],2009,34(11):4889-4899.
    [28]C.Z. Yuan, B. Gao, L.F. Shen, et al. Hierarchically structured carbon-based composites:Design, synthesis and their application in electrochemical capacitors. Nanoscale[J],2011,3:529-545.
    [29]唐致远,许国祥.电子导电聚合物在电化学电容器中的应用.化工进展[J],2002,21(9):652-655.
    [30]G.A. Snook, P. Kao, A.S. Best. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources[J],2011,196(1):1-12.
    [31]C. Arbizzani, M. Mastragostino, L. meneghllo. Polymer-based redox supercapacitors:A comparative study. Electrochimica Acta[J],1996,41(1):21-26.
    [32]J.W. Lang, L.B. Kong, M. Liu, et al. Co0.56Ni0.44oxide nanoflake materials and activated carbon for asymmetric supercapacitor. Journal of The Electrochemical Society[J],2010,157(12): A1341-A1346.
    [33]L.H. Wang, T. Morishita, M. Toyoda, et al. Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions. Electrochimica Acta[J],2007,53(2):882-886.
    [34]H.L. Wang, Q.M. Gao, J. Hu. Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrodes. Journal of Power Sources[J],2010,195(9):3017-3024.
    [35]X. Zhao, C. Johnston, P.S. Grant. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. Journal of Material Chemistry[J],2009,19:8755-8760.
    [36]A.T. Chidembo, K.I. Ozoemena, B.O. Agboola, et al. Nickel(Ⅱ) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy&Environmental Science[J],2010,3:228-236.
    [37]Y.J. Kim, Y. Horie, S. Ozaki, et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon[J],2004,42(8-9):1491-1500.
    [38]O. Barbieri, M. Hahn, A. Herzog, R. Koetz. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon[J],2005,43(6):1303-1310.
    [39]M. Toupin, D. Belanger, I. Hill, et al. Quinn. Performance of experimental carbon blacks in aqueous supercapacitors. Journal of Power Sources[J],2005,140(1):203-210.
    [40]A. Alonso, V. Ruiz, C. Blanco, et al. Activated carbon produced from sasol-lurgi gasifier pitch and its application as electrodes in supercapacitors. Carbon[J],2006,44(3):441-446.
    [41]T.E. Rufford, D. Hulicova, D. Cazorla-Amoros, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon[J],2003,41(9):1765-1775.
    [42]K. Kierzek, E. Frackwiak, G. Lota, et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta[J],2004,49(4):515-523.
    [43]M.J. Bleda-Martinez, J.A. Macia-Agullo, D. Lozano-Castello, et al. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon[J],2005,43(13):2677-2684.
    [44]E. Raymundo-Pinero, K. Kierzek, J. Machnilowski, et al. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon [J],2006,44(12):2498-2507.
    [45]C. Largeot, C. Portet, J. Chmiola, et al. Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society[J],2008,130(9):2730-2731.
    [46]C.O. Ania, V. Khomenko, E. Raymundo-Pinero, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Advanced Functional Materials[J],2007,17(11):1828-1836.
    [47]D. Wang, F. Li, M. Liu, et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie International Edition[J],2008,47(2):373-376.
    [48]H. Yamada, H. Nakamura, F. Nakahara, et al. Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores. The Journal of Physical Chemistry C[J],2007,111(1):227-233.
    [49]C. Niu, E.K. Sichel, R. Hoch, et al. High power electro-chemical capacitors based on carbon nanotube electrodes. Applied Physics Letters[J],1997,70(11):1480-1482.
    [50]H. Zhang, G.P. Cao, Y.S. Yang et al. Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. Journal of The Electrochemical Society[J],2008,155(2):K19-K22.
    [51]H. Zhang, G.P. Cao, Z.Y. Wang, et al. Electrochemical capacitive properties of carbon nanotube arrays directly grown on glassy carbon and tantalum foils. Carbon[J],2008,46(5):822-824.
    [52]朱绍文,贾志杰.碳纳米管及其应用的研究现状.功能材料[J],2000,31(2):118-120.
    [53]D.A. Walters, L.M. Ereson, M.J. Casavnat, et al. Elastic strain of freely suspended single-wall carbon nanotube ropes. Applied Physics Letters[J],1999,25(74):3803-3807.
    [54]S. Iijima, C. Brbaee, A. Maiti, et al. Structural flexibility of carbon nanotubes. The Journal of Chemical Physics [J],1996,104:2089-2092.
    [55]施锦.碳纳米管复合材料的制备表征与应用.博士学位论文.兰州:兰州大学,2006.
    [56]韩相宇.功能化碳纳米管及其性质研究.硕士学位论文.重庆重庆大学,2007.
    [57]L.B. Hu, H. Wu, Y. Cui. Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Applied Physics Letters[J],2010,96:183502.
    [58]L.B. Hu, M. Pasta, F.L. Mantia, et al. Stretchable, porous, and conductive energy textiles. Nano Letters[J],2010,10(2):708-714.
    [59]Z.Q. Niu, W.Y. Zhou, J. Chen. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy&Environmental Science[J],2011,4:1440-1446.
    [60]S.W. Lee, B.S. Kim, S. Chen, et al. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. Journal of the American Chemical Society[J],2009,131(2):671-679.
    [61]K.S. Novoselov, A.K. Geim, S.V. Morozov, et al. Electric field effect in atomically thin carbon films. Science[J],2004,306(5696):666-669.
    [62]D. Li, R.B. Kaner. Graphene-based materials. Science[J],2008,320(5880):1170-1171.
    [63]T. Enoki, K. Takai, V. Osipov, et al. Nanographene and nanodiamond; new members in the nanocarbon family. Chemistry-An Asian Journal[J],2009,4(6):796-804.
    [64]M.J. Allen, V.C. Tung, R.B. Kaner. Honeycomb carbon:a review of graphene. Chemical Reviews [J],2010,110(1):132-145.
    [65]C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, et al. Graphene:the new two-dimensional nanomaterial. Angewandte Chemie International Edition[J],2009,48(42):7752-7778.
    [66]C.N.R. Rao, A.K. Sood, R. Voggu, et al. Some novel attributes of graphene. The Journal of Physical Chemistry Letters[J],2010,1(2):572-580.
    [67]J.C. Meyer, A.K. Geim, M.I. Katsnelson, et al. The structure of suspended graphene sheets. Nature[J],2007,446(7131):60-63.
    [68]P.W. Sutter, J. Flege, E.A. Sutter. Epitaxial graphene on ruthenium. Nature[J],2008,7(5):406-411.
    [69]L.M. Viculis, J.J. Mack, O.M. Mayer, et al. Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Materials Chemistry[J],2005,15:974-978.
    [70]S. Stankovich, D.A. Dikin, R.D. Piner, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon[J],2007,45(7):1558-1565.
    [71]Z.S. Wu, W.C. Ren, L.B. Gao, et al. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon[J],2009,47(2):493-499.
    [72]S.Y. Yang, K.H. Chang, H.W. Tien, et al. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. Journal of Materials Chemistry[J],2011,21:2374-2380.
    [73]N. Mohanty, A. Nagaraja, J. Armesto, et al. High-throughput, ultrafast synthesis of solution-dispersed graphene via a facile hydride chemistry. Small[J],2009,6(2):226-231.
    [74]O.C. Compton, S.T. Nguyen. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small[J],2010,6(6):711-723.
    [75]D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al. Improved synthesis of graphene oxide. ACS Nano[J],2010,4(8):4806-4814.
    [76]H.K. Chae, D.Y. Siberio-Perez, J. Kim, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature[J],2004,427:523-527.
    [77]C.G. Lee, X.D. Wei, J.W. Kysar, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science[J],2008,321(5887):385-388.
    [78]M.D. Stoller, S.J. Park, Y.W. Zhu, et al. Graphene-based ultracapacitors. Nano Letters[J],2008,8(10):3498-3502.
    [79]H.C. Schniepp, J.L. Li, M.J. McAllister, et al. Functionalized single graphene sheets derived from splitting graphite oxide. The Journal of Physical Chemistry B[J],2006,110(17):8535-8539.
    [80]Q.L. Du, M.B. Zheng, L.F. Zhang, et al. Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochimica Acta[J],2010,55(12):3897-3903.
    [81]W. Lv, D.M. Tang, Y.B. He, et al. Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano[J],2009,3(11):3730-3736.
    [82]Y.W. Zhu, S.T. Murali, M.D. Stoller, et al. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon[J],2010,48(7):2118-2122.
    [83]Y.X. Xu, K.X. Sheng, C. Li et al. Self-sssembled graphene hydrogel via a one-step hydrothermal process. ACS Nano[J],2010,4(7):4324-4330.
    [84]F. Liu, T.S. Seo. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films. Advanced Functional Materials[J],2010,20(12):1930-1936.
    [85]Y.W. Zhu, S. Murali, M.D. Stoller, et al. Carbon-based supercapacitors produced by activation of graphene. Science[J],2011,332(6037):1537-1541.
    [86]J. Yan, T. Wei, B. Shao, et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon[J],2010,48(6)1731-1737.
    [87]S.Y. Yang, K.H. Chang, H.W. Tien, et al. Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. Journal of Materials Chemistry[J],2011,21:2374-2380.
    [88]C.X. Guo, C.M. Li. A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy&Environmental Science[J],2011,4:328-331.
    [89]S.J. An, Y.W. Zhu, S.H. Lee, et al. Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. The Journal of Physical Chemistry Letters[J],2010,1(8):1259-1263.
    [90]D.S. Yu, L.M. Dai. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. The Journal of Physical Chemistry Letters [J],2010,1(2):467-470.
    [91]L. Qiu, X.W. Yang, X.L. Gou, et al. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chemistry-A European Journal[J],2010,16(35):10653-10658.
    [92]X.J. Lu, H. Dou, B. Gao, et al. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta[J],2011,56(14):5115-5121.
    [93]Shirakawa, E.J. Louis, A.G. MacDiarmid, et al. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene,(CH)x. Chemical Communications [J],1977,16(5):578-580.
    [94]J.C. Seott, P. Pfluger, M.T. Krounbi, et al. Electron-spin-resonance studies of pyrrole polymers: evidence for bipolarons. Physical Review B[J],1983,28(4):2140-2145.
    [95]李永舫.导电聚合物.化学进展[J],2002,14(3):207-211.
    [96]S. Bhadra, N.K. Singha, D. Khastgir. Polyaniline by new miniemulsion polymerization and the effect of reducing agent on conductivity. Synthetic Metal[J],2006,156(16-17):1148-1154.
    [97]S. Bhadra, S. Chattopadhyay, N.K. Singha, et al. Effect of different reaction parameters on the conductivity and dielectric properties of polyaniline synthesized electrochemically and modeling of conductivity against reaction parameters through regression analysis. Journal of Polymer Science Polymer Physics[J],2007,45(15):2046-2059.
    [98]S. Bhadra, N.K. Singha, D. Khastgir. Dual functionality of PTSA as electrolyte and dopant in the electrochemical synthesis of polyaniline, and its effect on electrical properties. Polymer International[J],2007,56(7):919-927.
    [99]C.P. Andrieux, P. Audebert, P. Haipot, et al. Identification of the first steps of the electrochemical polymerization of pyrroles by means of fast potential step techniques. The Journal of Physical Chemistry[J],1991,95(24):10158-10164.
    [100]T.H. Chao, J.J. March. A study of polypyrrole synthesized with oxidative transition metal ions. Journal of Polymer Science Part A. Polymer Chemistry[J],1988,26(3):743-753.
    [101]Y.E. Whang, J.H. Han, T. Motobe, et al. Polypyrroles prepared by chemical oxidative polymerization at different oxidation potentials. Synthetic Metal[J],1991,45(2):151-161.
    [102]Y.E. Whang, J.H. Han, H.S. Nalwa, et al. Chemical synthesis of highly electrically conductive polymers by control of oxidation potential. Synthetic Metal[J],1991,43(1-2):3043-3048.
    [103]H.L. Li, J.X. Wang, Q.X. Chu, et al. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. Journal of Power Sources[J],2009,190(2):578-586.
    [104]G.Y. Zhao, H.L. Li. Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors. Microporous and Mesoporous Materials[J],2008,110(2-3):590-594.
    [105]K. Wang, J.Y. Huang, Z.X. Wei. Conducting polyaniline nanowire arrays for high performance supercapacitors. The Journal of Physical Chemistry C[J],2010,114(17):8062-8067.
    [106]B.K. Kuila, B.Nandan, M. Bohme, et al. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chemical Communications [J],2009,35:5749-5751.
    [107]Y.Y. Cao, T.E. Mallouk. Morphology of template-grown polyaniline nanowires and its effect on the electrochemical capacitance of nanowire arrays. Chemistry of Materials[J],2008,20(16):5260-5265.
    [108]S.H. Mujawar, S.B. Ambade, T. Battumur, et al. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochimica Acta[J],2011,56(12):4462-4466.
    [109]G.R. Li, Z.P. Feng, J.H. Zhong, et al. Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules[J],2010,43(5):2178-2183.
    [110]J.L. Liu, M.Q. Zhou, L.Z. Fan, et al. Porous polyaniline exhibits highly enhanced electrochemical capacitance Performance. Electrochimica Acta[J],2010,55(20):5819-5822.
    [111]Y.F. Yan, Q.L. Cheng, G.C. Wang, et al. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. Journal of Power Sources[J],2011,18(15):7835-7840.
    [112]H. Zhang, G.P. Cao, Z.Y. Wang, et al. Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochemistry Communications[J],2008,10(7):1056-1059.
    [113]Y.Q. Dou, Y.P. Zhai, H.J. Liu, et al. Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and their electrochemical capacitive performance in alkaline solution. Journal of Power Sources [J],2011,196(3):1608-1614.
    [114]K. Zhang, L.L. Zhang, X.S. Zhao, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials [J],2010,22(4):1392-1401.
    [115]X.M. Feng, R.M. Li, Y.W. Ma, et al. One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Advanced Functional Materials[J],2011,21(15):2989-2996.
    [116]X.B. Yan, Z.X. Tai, J.T. Chen, et al. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Nanoscale[J],2011,3(1):212-216.
    [117]Y.Y. Horng, Y.C. Lu, Y.K. Hsu, et al. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. Journal of Power Sources[J],2010,195(13):4418-4422.
    [118]C.Z. Meng, C.H. Liu, S.S. Fan. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochemistry Communications [J],2009,11(1):186-189.
    [119]D.W. Wang, F. Li, J.P. Zhao, et al. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano[J],2009,3(7):1745-1752.
    [120]C.Z. Meng, C.H. Liu, L.Z. Chen, et al. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Letters[J],2010,10(10):4025-4031.
    [121]Q.F. Wu, K.X. He, H.Y. Mi, et al. Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template. Materials Chemistry and Physics[J],2007,101(2-3):367-371.
    [122]J. Wang, Y.L. Xu, F. Yan, et al. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life. Journal of Power Sources[J],2011,196(4):2373-2379.
    [123]C. Yang, P. Liu, T.M. Wang. Well-defined core-shell carbon black/polypyrrole nanocomposites for electrochemical energy storage. ACS Applied Materials&Interfaces[J],20113(4):1109-1114.
    [124]H.F. An, Y. Wang, X.Y. Wang, et al. Polypyrrole/carbon aerogel composite materials for supercapacitor. Journal of Power Sources[J],2010,195(19):6964-6969.
    [125]J. Wang, Y.L. Xu, X. Chen, et al. Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Composites Science and Technology [J],2007,67(14):2981-2985.
    [126]C.H. Xu, J. Sun, L. Gao. Synthesis of novel hierarchical graphene/polypyrrole nanosheet composites and their superior electrochemical performance. Journal of Materials Chemistry[J],2011,21:11253-11258.
    [127]A.R. Liu, C. Li, H. Bai, et al. Electrochemical deposition of polypyrrole/sulfonated graphene composite films. The Journal of Physical Chemistry C[J],2010,114(51):22783-22789.
    [128]H.Y. Mi, X.G. Zhang, X.G. Ye, et al. Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. Journal of Power Source[J],2008,176(1):403-409.
    [129]R.K. Sharma, A.C. Rastogil, S.B. Desu. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor. Electrochimica Acta[J],2008,53(26)7690-7695.
    [130]R.K. Sharma, A. Karakotic, S. Seal, et al. Multiwall carbon nanotube-poly(4-styrenesulfonic acid) supported polypyrrole/manganese oxide nano-composites for high performance electrochemical electrodes. Journal of Power Sources[J],2010,195(4):1256-1262.
    [131]X. Zhao, C.L. Johnston, A. Crossley, et al. Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. Journal of Materials Chemistry[J],2010,20:7637-7644.
    [132]S. Biswas, L.T. Drzal. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chemistry of Materials[J],2010,22(20):5667-5671.
    [133]Y.P. Fang, J.W. Liu, D.J. Yu, et al. Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. Journal of Power Sources[J],2010,195(2):674-679.
    [134]R. Liu, S.I. Cho, S.B. Lee. Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology[J],2008,19:215710.
    [135]Y. Li, B.C. Wang, H.M. Chen, et al. Improvement of the electrochemical properties via poly(3,4-ethylenedioxythiophene) oriented micro/nanorods. Journal of Power Sources[J],2010,195(9):3025-3030.
    [136]A. Laforgue. All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers. Journal of Power Sources[J],2011,196(1):559-564.
    [137]R. Liu, J. Duay, T. Lane, et al. Synthesis and characterization of RuO2/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors. Physical Chemistry Chemical Physics[J],2010,12:4309-4316.
    [138]Y. Hou, Y.W. Cheng, T. Hobson, et al. Design and synthesis of hierarchical MnO2nanopspheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Letters[J],2010,10(7):2727-2733.
    [139]L. Chen, C.Z. Yuan, H. Dou, et al. Synthesis and electrochemical capacitance of core-shell poly(3,4-ethylenedioxythiophene)/poly(sodium4-styrenesulfonate)-modified mutiwalled carbon nanotube nanocomposites. Electrochimica Acta[J],2009,54(8):2335-2341.
    [140]张锐.现代材料分析方法.北京,化学工业出版社[M],2007:5-221.
    [141]陈国珍,黄贤智,刘文远.分光光度法(上册),北京,原子能出版社[M],1980:74-76.
    [142]周瑞发.韩雅芬,陈祥宝.纳米材料技术,北京,国防工业出版社[M],2003:34-45.
    [143]祁景玉.现代分析测试技术.上海,同济大学出版社[M],2005:86-385.
    [144]J.F. Shen, Y.Z. Hu, C. Li, et al. Synthesis of amphiphilic graphene nanoplatelets. Small[J],2009,5(1):82-85.
    [145]Y. Zhu, A.L. Higginbotham, J.M. Tour. Covalent functionalization of surfactant-wrapped graphene nanoribbons. Chemistry of Materials [J],2009,21(21):5284-5291.
    [146]Y.C. Si, E.T. Samulski. Synthesis of water soluble graphene. Nano Letters[J],2008,8(6):1679-1682.
    [147]A.J. Patil, J.L. Vickery, T.B. Scott, et al. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Advanced Materials [J],2009,21(31):3159-3164.
    [148]H. Liu, J. Gao, M.Q. Xue, et al. Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir[J],2009,25(20):12006-12010.
    [149]G.X. Wang, X.P. Shen, B. Wang, et al. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon[J],2009,47(5):1359-1364.
    [150]B.Q. Zhang, W. Ning, J.M. Zhang, et al. Stable dispersions of reduced graphene oxide in ionic liquids. Journal of Materials Chemistry[J],2010,20:5401-5403.
    [151]A.P. Saxena, M. Deepa, A.G. Joshi, et al. Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures:improved conduction and electrochromism. ACS Applied Materials&Interfaces[J],2011,3(4):1115-1126.
    [152]J.X. Huang, J.A. Moore, J.H. Acquaye, et al. Mechanochemical route to the conducting polymer polyaniline. Macromolecules[J],2005,38(2):317-321.
    [153]S. Yoshimoto, F. Ohashi, Y. Ohnishi, et al. Solvent free synthesis of polyaniline-clay nanocomposites from mechanochemically intercalated anilinium fluoride. Chemical Communications [J],2004,17:1924-1925
    [154]S. Yoshimoto, F. Ohashi, T. Kameyama. Simple preparation of sulfate anion-doped polyaniline-clay nanocomposites by an environmentally friendly mechanochemical synthesis route. Macromolecular Rapid Communications [J],2004,25(19):1687-1691.
    [155]X.S. Du, C.F. Zhou, G.T. Wang, et al. Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chemistry of Materials [J],2008,20(9):3806-3808.
    [156]吴芹,董斌琦,韩明汉,等.光谱学与光谱分析[Jl,2007,27(10):2027-2031.
    [157]N. Liu, F. Luo, H.X. Wu, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Advanced Functional Materials[J],2008,18(10):1518-1525.
    [158]Y.S. Shim, H.J. Kim. Solvation of carbon nanotubes in a room-temperature ionic liquid. ACS Nano[J],2009,3(7):1693-1702.
    [159]J.Y. Wang, H.B. Chu, Y. Li. Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano[J],2008,2(12):2540-2546.
    [160]M.Q. Wu, G.A. Snook, V. Gupta, et al. Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry[J],2005,15(23):2297-2303
    [161]Y.W. Lin, T.M. Wu. Synthesis and characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites. Composite Science Technology [J],2009,69(15):2559-2565.
    [162]T. Ramanathan, H. Liu, L.C. Brinson. Functionalized SWNT/polymer nanocomposites for dramatic property improvement. Journal of Polymer Science Part B:Polymer Physics[J],2005,43(17):2269-2279.
    [163]M. Foroutan, A.T. Nasrabadi. investigation of the interfacial binding between single-walled carbon nanotubes and heterocyclic conjugated polymers. The Journal of Physical Chemistry B[J],2010,114(16):5320-5326.
    [164]J.Y. Kim, J.T. Kim, E.A. Song, et al. Polypyrrole nanostructures self-assembled in magnetic ionic liquid as a template. Macromolecules[J],2008,41(8):2886-2889.
    [165]L. Li, Y. Huang, G.P. Yan, et al. Poly(3,4-ethylenedioxythiophene) nanospheres synthesized in magnetic ionic liquid. Materials Letters[J],2009,63(1):8-10.
    [166]S.M. Shang, L. Li, X.M. Yang, et al. Synthesis and characterization of poly(3-methyl thiophene) nanospheres in magnetic ionic liquid. Journal of Colloid and Interface Science[J],2009,333(1):415-418.
    [167]M.S. Sitze, E.R. Schreiter, E.V. Patterson, et al. Ionic liquids based on FeCl3and FeCl2raman scattering and initio calculations. Inorganic Chemistry[J],2001,40(10):2298-2304.
    [168]H.L. Wang, Q.L. Hao, X.J. Yang. Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications [J],2009,11(6):1158-1161.
    [169]J.J. Xu, K. Wang, S.Z. Zu, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano[J],2010,4(9):5019-5026.
    [170]Y.Q. Han, L. Hao, X.G. Zhang. Preparation and electrochemical performances of graphite oxide/polypyrrole composites. Synthetic Metals[J],2010,160(21-22):2336-2340.
    [171]S. Chen, J.W. Zhu, X.D. Wu, et al. Graphene oxide-MnO2nanocomposites for supercapacitors. ACS Nano[J],2010,4(5):2822-2830.
    [172]C.Z. Yuan, L. Chen, B. Gao, et al. Synthesis and utilization of RuO2xH2O nanodots well dispersed on poly(sodium4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors. Journal of Materials Chemistry[J],2009,19:246-252.
    [173]C.Z. Yuan, S.L. Xiong, X.G. Zhang, et al. Template-free synthesis of ordered mesoporous NiO/poly (sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Research[J],2009,2(9):722-732.
    [174]L. Chen, C.Z. Yuan, H. Dou, et al. Synthesis and electrochemical capacitance of core-shell poly (3,4-ethylenedioxythiophene)/poly (sodium4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites. Electrochimica Acta[J],2009,54(8):2335-2341.
    [175]W.S. Hummers, R.E. Offeman, et al. Preparation of graphite oxide. Journal of the American Chemical Society[J],1958,80(6):1339.
    [176]S. Stankovich, R.D. Piner, X.Q. Chen, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium4-styrenesulfonate). Journal of Materials Chemistry[J],2006,16:155-158.
    [177]Q. Li, J.H. Liu, J.H. Zou, et al. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2ternary coaxial nanostructures for supercapacitors. Journal of Power Sources[J],2011,196(1):565-572.
    [178]S.R. Sivakkumar, J.M. Ko, D.Y. Kim, et al. Performance evaluation of CNT/polypyrrole/MnO2composite electrodes for electrochemical capacitors. Electrochimica Acta[J],2007,52(25):7377-7385.
    [179]S.M. Paek, E. Yoo, I. Honma. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Letters[J],2009,9(1):72-75.
    [180]J. Yan, T. Wei, Z.J. Fan, et al. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources[J],2010,195(9):3041-3045.
    [181]S.Y. Yang, K.H. Chang, Y.F. Lee, et al. Constructing a hierarchical graphene-carbon nanotube architecture for enhancing exposure of graphene and electrochemical activity of Pt nanoclusters. Electrochemistry Communications [J],2010,12(9):1206-1209.
    [182]B. Gao, Q.B. Fu, L.H. Su, et al. Preparation and electrochemical properties of polyaniline doped with benzenesulfonic functionalized multi-walled carbon nanotubes. Electrochimica Acta[J],2010,55(7):2311-2318.
    [183]C.Z. Yuan, X.G. Zhang, L.H. Su, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry[J],2009,19:5772-5777.
    [184]A.P. Yu, I. Roes, A. Davies, et al. Ultrathin, transparent, and flexible graphene films for supercapacitor application. Applied Physics Letters[J],2010,96(25):253105.
    [185]P. Jimenez, W.K. Maser, P. Castell, et al. Nanofibrilar polyaniline:direct route to carbon nanotube water dispersions of high concentration. Macromolecular Rapid Communications [J],2009,30(6):418-422.
    [186]D. Li, R.B. Kaner. Processable stabilizer-free polyaniline nanofiber aqueous colloids, Chemical Communications [J],2005,26:3286-3288.
    [187]D. Li, M.M. B, G. Scott, et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology[J],2008,3(2):101-105.
    [188]L.A.P. Kane-Maguire, A.G. Macdiarmid, I.D. Norris, et al. Facile preparation of optically active polyanilines via the in situ chemical oxidative polymerisation of aniline. Synthetical Metal[J],1999,106(3):171-176.
    [189]H.L. Wang, Q.L. Hao, X.J. Yang, et al. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Applied Materials&Interfaces[J],2010,2(3):821-828.
    [190]J.X. Huang, R.B. Kaner. A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society[J],2004,126(3):851-855.
    [191]X.R. Zeng, T.M. Ko. Structures and properties of chemically reduced polyanilines. Polymer[J],1998,39(5):1187-1195.
    [192]S.F. Pei, J.P. Zhao, J.H. Du, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon[J],2010,48(15):4466-4474.
    [193]H.L. Li, S.P. Pang, X.L. Feng, et al. Polyoxometalate assisted photoreduction of graphene oxide and its nanocomposite formation. Chemical Communications [J],2010,46:6243-6245.
    [194]K.T. Nam, D.W. Kim, P.J. Yoo, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science[J],2006,312(5775):885-888.
    [195]P. Hiralal, S. Imaizumi, H.E. Unalan, et al. Nanomaterial-enhanced all-solid flexible zinc-carbon batteries. ACS Nano[J],2010,4(5):2730-2734.
    [196]A.M. Gaikwad, G.L. Whiting, D.A. Steingart, et al. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Advanced Materials[J],2011,23(29):3251-3255.
    [197]M. Kaltenbrunner, G. Kettlgruber, C. Siket, et al. Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Advanced Materials[J],2010,22(18):2065-2067.
    [198]G. Nystrm, A. Razaq, M. Strmme, et al. Ultrafast all-polymer paper-based batteries. Nano Letters[J],2009,9(10):3635-3639.
    [199]P. A. Mini, A. Balakrishnan, S.V. Nair, et al. Highly super capacitive electrodes made of graphene/poly(pyrrole). Chemical Communications [J],2011,47:5753-5755.
    [200]T.M. Wu, H.L. Chang, Y.W. Lin. Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Composites Science and Technology [J],2009,69(5):639-644.
    [201]B. Gao, C.Z. Yuan, L.H. Su, et al. High dispersion and electrochemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes. Electrochimica Acta[J],2009,54(13):3561-3567.
    [202]C. Peng, J. Jin, G.Z. Chen. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochimica Acta[J],2007,53(2):525-537.
    [203]J.Y. Kim, K.H. Kim, K.B. Kim. Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. Journal of Power Sources[J],2008,176(1):396-402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700