近临界水中腈、酰胺的水解反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近临界水(near-critical water,NCW)指温度处在170-370℃之间的压缩液态水。近临界水与常温常压水相比具有突出的性能:电离常数大,因而自身具备酸、碱催化功能,可使某些酸、碱催化反应发生而不必外加酸、碱催化剂;可调节的介电常数,故具有能同时溶解有机物和无机物的特性;另外,还具有优良的传质性能及绿色环保等优点。因此,NCW在绿色化学化工过程、有机化学反应等领域具有潜在的应用前景。
     论文的综述部分简要介绍了近临界水在绿色化工过程中的重要应用价值和国内外在近临界水中进行有机化学反应的研究现状,以及以近临界水作为反应溶剂或催化剂在水解反应、脱水/水合反应、烷基化、酰基化、Diels-Alder反应、重排反应、缩合、氢同位素交换反应、氧化还原反应、有机金属反应等反应类型中的应用。在充分考证近临界水中不同类型反应对反应器材质和构型设计要求不同的基础上,结合化学热力学和动力学原理以及反应过程中传质、传热和物料衡算,并根据实验的自身特点设计一种近临界水发生装置-间歇式高温高压反应釜,以此来研究几类化合物的水解。
     腈是一类含氰基(-CN)的有机化合物,作为合成一系列胺、酸和聚合物的起始原料,其水解反应广泛应用于氨基酸、酰胺、羧酸及其衍生物的合成,在有机合成中占有极其重要的地位。酰胺广泛分布于自然界,如蛋白质是以酰胺键-CONH-(或称肽键)相连的天然高分子化合物等;酰胺同样也是腈水解反应的中间产物。普通的酰胺发生水解可生成羧酸,蛋白质里面的酰胺键亦同样可发生水解生成氨基酸。研究酰胺的水解,有利于进一步明确腈的深度水解反应机理,同时也可以间接了解蛋白质酰胺键在高温下的水解反应性。
     到目前为止,关于近临界水中腈类和酰胺类化合物水解反应的研究比较少,二腈、二酰胺、同时还有腈基和酰胺基化合物以及N-烷基取代酰胺的研究更少,且缺乏规律性的研究与总结。本论文选取亚氨基二乙腈、己二腈、5-氰基戊酰胺、己二酰胺以及N-甲基乙酰胺为各类腈类化合物和酰胺类化合物的代表,采用自行设计的高温高压反应装置,研究这些化合物在近临界水中的水解反应性能、动力学特征及其机理,进而探索并总结NCW中腈类、酰胺类化合物的水解反应规律。具体研究内容如下:
     1.近临界水中亚氨基二乙腈水解反应研究
     首先,利用自行设计的高温高压反应装置,尝试以NCW作为亚氨基二乙腈水解反应的溶剂、反应物,并利用其自身解离提供的丰富H~+或OH~-顺利实现亚氨基二乙腈的催化水解。实验测定了亚氨基二乙腈在近临界水中(压力10MPa,温度200-260℃,反应时间10-60min)的水解反应动力学数据并考察了时间、温度、压力和初始反应物/水比对反应物转化率和产物产率的影响。在最佳反应条件下,210℃、压力10MPa、反应时间20min,反应物几乎完全转化,此时亚氨基二乙酸的产率可达到92.3mol%。根据准一级反应动力学,得到反应的表观活化能E_a和lnA(min~(-1))分别为45.77±5.26kJ/mol和8.6±0.1。最终反应产物主要包括亚氨基二乙酸和氨以及少量的副产物,反应过程中除生成的氨气外其他气体的生成可以忽略。近临界水中亚氨基二乙腈的水解反应机理和普通条件下碱催化水解反应机理相似。本研究第一次实现了近临界水中亚氨基二乙酸合成的绿色化制备,并为NCW在其他二腈中的水解研究提供了基础实验数据。
     2.近临界水中己二腈水解反应研究
     研究了己二腈在近临界水中的反应性,并考察了各实验条件对产物分布的影响。采用正交试验设计(L_(25)(5~6),六因素五水平)并运用统计的方法对每种产物的产率进行优化,优化过程忽略各因素间的相互作用。六个因素包括己二腈浓度(ADN con.wt.%),温度(Tem.℃),时间(T.h),添加物百分比(reactant/additive,wt./wt.%),添加物种类(A.),压力(P.,MPa),各实验参数对各产物产率的影响运用直观分析和方差分析两种方法进行分析。结果显示,在置信度P<0.05时,ADN con.和Tem.对己二酰胺、5-酰胺基戊酸、己二酸的影响较大;在置信度P<0.05,T.是影响5-氰基戊酸产率的主要因素;在置信度P<0.1时,ADN con.的变化对5-氰基戊酰胺的产率影响较大。最后,根据正交试验方法优化所得到的优化参数进行了5个补充实验,结果显示,5个实验中每种产物的最高产率比正交试验方法优化所得到最高产率高,从而证明了正交试验方法的可靠性。实验过程中用碳守恒去衡量实验技术和所得实验数据的可靠性,并根据所得实验结果提出了己二腈在近临界水中的水解路径和机理。正交试验方法的应用,不但减少了实验过程的低水平重复,同时也为NCW中其他物质的水解条件的优化研究提供了有益参考。
     3.近临界水中己二酰胺的水解反应研究
     对己二酰胺在近临界水中无催化剂存在下的水解反应性进行了研究,反应条件为:温度250到310℃,最高压力30 MPa,反应时间30到120min。通过对己二酰胺水解产物的液相分析结果得知,其最终产物包括5-酰胺基戊酸和己二酸。实验分别考察了温度、时间、压力、反应物浓度及pH值对己二酰胺水解的影响,通过研究己二酰胺浓度和反应时间的关系得出:在所研究的温度范围内,己二酰胺的水解基于其自身倾向于准二级反应动力学行为。产物中5-酰胺基戊酸含量较高说明己二酰胺在高温水中水解时是其中一个酰胺基先发生水解,而后第二个酰胺基再发生水解。根据阿伦尼乌斯方程对反应的活化能和指前因子进行了计算,活化能E_a=119.1 kJ/mol,lnA为27.2。根据实验结果,提出了己二酰胺在高温水中水解反应路径及机理。己二酰胺在NCW中的较强反应性,为多酰胺的无污染降解提供了实验依据,同时也有助于推动NCW绿色反应介质在其他水解反应上的应用。
     4.近临界水中5-氰基戊酰胺水解反应研究
     实验条件,温度250℃、270℃、290℃、310℃,压力20 MPa,反应时间30 min,60 min,90 min,120 min。实验结果表明,5-氰基戊酰胺在近临界水中无催化剂存在的条件下可顺利发生水解,水解的主要产物包括己二酰胺、5-酰胺基戊酸、己二酸以及微量的5-氰基戊酸。在310℃时,反应进行120min,5-氰基戊酰胺几乎可完全转化。实验结果表明,5-氰基戊酰胺中的腈基比酰胺基较易进行水解,在所研究的温度范围内,5-氰基戊酰胺在近临界水中的水解相对于5-氰基戊酰胺为准二级反应。根据阿伦尼乌斯方程对反应的活化能和指前因子进行了计算,活化能E_a=100.51kJ/mol,lnA为21.3。以实验为基础,对反应的碳守恒进行了计算,并根据所检测到的产物种类和量给出了近临界水中5-氰基戊酰胺水解可能的反应路径和机理。第一次证实了两种不同官能团在NCW中的反应性强弱,为同类化合物的选择性水解提供了实验依据。
     5.高温水中N-甲基乙酰胺水解反应研究
     在200-400℃温度反应内,以N-甲基乙酰胺为N-烷基取代酰胺模型化合物在有、无催化剂存在的条件下研究其水解动力学行为和反应机理。N-甲基乙酰胺在高温水中水解的主要产物为乙酸和甲胺,且该反应为可逆反应。实验研究表明,N-甲基乙酰胺水解无论是在近临界水或者超临界水中的水解反应级数都为1。通过在反应体系中添加酸(HCl)和碱(NaOH)来考察pH值对其水解反应机理的影响。研究发现,在较高或者较低的pH值环境中,N-甲基乙酰胺的转化率都会随着酸或碱的量的增加而增加;而在近乎中性的环境中,pH的变化对其转化率几乎无影响。根据实验结果以及pH值对其转化率的影响规律,提出了N-甲基乙酰胺在水中发生水解的动力模型。这个含有三个参数的动力学模型拟合所得的实验数据和实验所得数据非常吻合。同时研究还发现,在超临界水条件下,通过增加水密度以及引入盐进而增大反应体系的介电常数,反应的速率常数也在增加,说明中间态的极性比反应物的极性强。最有可能的反应机理是S_N2反应机理,且水直接作为亲核试剂参加反应。本研究首次报道了高温水中酰胺的水解反应机理以及水在酰胺水解过程中所起的作用,为肽键以及蛋白质在高温水的水解研究提供了科学依据。
Near-critical water(near-critical water,NCW)refers to the compressed liquid water at the temperature between 170℃and 350℃.The outstanding performance of NCW comparing to the water at normal temperature and pressure is the large ionization constant.And thus,it possesses the property of acid/base catalytic function which will enable some of the acid-base catalytic reactions to occur without the addition of any acid/base catalysts.NCW also has a small enough dielectric constant,and can dissolve the organic and inorganic compounds.At the same time, near-critical water also has an excellent mass transfer and green,environmental protection properties,etc.And therefore it has the potential applications in green chemistry and chemical process,organic reactions areas.
     The literature review section of the thesis gave a brief introduction of the important applications in the green chemical process as well as the status of organic reactions research in NCW,and also summarized the applications in different kind of reactions such as hydrolysis,dehydration/hydration,alkylation,acylation, Diels-Alder reactions,rearrangements,condensations,hydrogen isotope exchange reaction,oxidation-reduction reaction,organometallic reactions.In present research, we have designed one type of reactor-batch reactor based on a full investigation of different types of reactions in NCW,which requires different type of reactors and reactor materials,also considering a combination of chemical thermodynamics and kinetics theory as well as the mass transfer,heat transfer and material balance in the reaction process,and as well as involving a consideration of the characteristics of our reactions.
     Nitrile is a kind of organic compounds containing cyano group,it is a starting material to synthesize a series of amine,acid and polymer.Hydrolysis reactions of nitriles have been widely applied in plentiful of organic synthesis such as amino acid, amide,carboxylic acid and its derivatives,which occupy an extremely important position in organic synthesis.Amides are also widely spread all over the nature,such as protein is the polymer linkaged with amide bond,it is also the hydrolysis intermediate of nitrile.The amide can be hydrolyized to acid as well the amide linkaged in protein hydrolyizing to amino acid.Research on amide hydrolysis can further understand clearly the deep hydrolysis reaction mechanism of nitrile as well as understanding the reactivity of protein amide linkage at a high temperature water.
     Up to now,researches on nitriles and amides hydrolysis especially dinitriles, diamides,N-alkyl substituted amides in near-critical water were relatively few and lack of systematical exploration and summary.In this dissertation, iminodiacetonitrile,adiponitrile,5-cyanovaleramide,adipamide and N-methylacetamide were selected as research models,and using self-developed high-temperature and high-pressure reactor to investigate their reaction kinetics and mechanisms in NCW,and finally the rule of these kind of nitriles and amides hydrolysis in NCW were also explored.
     1.Research on the hydrolysis of iminodiacetonitrile in near-critical water
     First of all,this study utilizing the high-pressure reactor designed by ourselves attempt to employ NCW as solvent and reactant for iminoacetonitrile hydrolysis,and using rich of H~+and OH~-dissociated by itself to realize the successful hydrolysis of iminoacetonitrile.Near-critical water is a promising reaction medium for conducting the hydrolysis of nitriles without the addition of any acid/base catalysts. Iminodiacetonitrile(IDAN)was chosen as a heteroatom-containing model compound for the hydrolytic kinetic and mechanism investigations of dinitriles because IDAN is an important raw material for the preparation of iminodiacetic acid (IDA)which is an indispensable intermediate in herbicide manufacturing. Hydrolysis of IDAN in near-critical water,without added catalysts,has been successfully conducted.Hydrolysis kinetics data of the reaction were measured at 10MPa with temperature and residence time ranges of 200-260℃and 10-60 min, respectively.The effects of temperature,pressure,and initial reactant/water ratio on conversion and yield have been investigated.Final reaction products primarily included iminodiacetic acid(IDA)and ammonia associated with other byproducts; gas formation was negligible.The maximum yield of IDA was 92.3mol%at 210℃, 10 MPa with a conversion almost of 100%.The apparent activation energy and lnA(min~(-1))of IDAN hydrolysis were evaluated as 45.77±5.26 kJ/mol and 8.6±0.1 based on the assumption of pseudo-first-order reaction kinetics.Reaction mechanism and network are similar to that of base-catalyzed reactions of nitriles examined in less severe conditions.In this study,we first realized the green preparation of iminodiacetic acid,and provided basic experimental data for other dinitriles hydrolysis in NCW.
     2.Research on the hydrolysis of adiponitrile in subcritical water
     Hydrolysis of adiponitrile(ADN)was performed in subcritical water to research products distribution dependence on experimental conditions.An L_(25)(5~6) orthogonal array design(OAD)with six factors at five levels using statistical analysis was employed to optimize the experimental conditions for each product in which the interactions between the variables were temporarily neglected.The six factors contained adiponitrile concentration(ADN con.,wt.%),temperature (Tem.,℃),time(T.,h),percentage of additives(reactant/additive,wt./wt.%), additives(A.),pressure(P.,MPa).Effects of these parameters were investigated using the direct analysis and analysis of variance(ANOVA)to determine the relationship between experimental conditions and yield levels of different products. The results showed that ADN con.and Tern,had significant influences on the yields of adipamide,adipamic acid,and adipic acid at P<0.05,T.was the statistically significant factor for the yield of 5-cyanovalermic acid at P<0.05,and ADN con.was the significant factor for the yield of 5-cyanovaleramide at P<0.1.Finally,five supplementary experiments were conducted under optimized conditions predicted by the Taguchi method;the results showed that the obtained yield of each product was higher than that of the highest in the 25 experiments,also proving the reliability of orthogonal method.Carbon balance was calculated to demonstrate good experimental technique and reliable results.Based on experimental results,a possible reaction mechanism was proposed.Application of orthogonal test method, not only less cumbersome process of the experiment,but also provides a useful reference for the experimental conditions optimization study of other substances hydrolysis in NCW.
     3.Research on the hydrolysis of adipamide in near-critical water
     Hydrolysis of adipamide(ADAM)in high temperature water without added catalysts has been successfully demonstrated at temperatures ranging from 250 to 310℃under estimated pressures of up to 30 MPa for reaction times of 30 to 120 min. Final reaction products resulting from the hydrolysis of ADAM,primarily including adipamic acid and adipic acid,were detected by high performance liquid chromatography.Effects of temperature,time,pressure,reactant concentration,and pH on ADAM hydrolysis reaction kinetics have been investigated.The relations between ADAM concentration and residence time revealed that hydrolysis of ADAM inclines to pseudo-second-order reaction kinetics at the investigated temperature ranges.The higher content of adipamic acid in the reaction products at the initial hydrolysis reaction stage suggested that only one amide group was attacked at one time then followed by transformation to a carboxyl.The reaction rate constants, average apparent activation energy and pre-exponential factor were evaluated according to the Arrhenius equation.Based on the experimental results,hydrolysis reaction scheme and mechanism were proposed.The high reactivity of diamide in NCW provides an experimental basis for the other pollution-free degradation of polyamides,and promotes the applications of NCW as a green reaction medium in the other hydrolysis reaction.
     4.Research on the hydrolysis of 5-cyanovaleramide in near-critical water
     Hydrolysis of 5-cyanovaleramide(5-CVAM)in near-critical water,without the addition of any catalysts,was investigated.The experiments were conducted at temperatures of 250℃,270℃,290℃,310℃under the estimated pressure of 20 MPa for reaction times of 30 min,60 min,90 min,120 min.Final reaction products resulting from the hydrolysis of 5-CVAM,primarily including adipamide,adipamic acid,adipic acid,and trace of 5-cyanovalermic acid,were detected by high performance liquid chromatography;gas formation was negligible. 5-cyanovaleramide can be hydrolyzed to amide and acid in near-critical water without the addition of any catalysts.A nearly complete conversion was achieved at a reaction time of 120 min,at temperature of 310℃.The relations between the 5-CVAM concentration and residence time reveal that hydrolysis of 5-CVAM shows pseudo-second-order reaction kinetics at the investigated temperature ranges.Based on the results of the products quantitative analysis,a carbon balance was determined, and a possible hydrolysis reaction scheme of 5-CVAM was proposed.We confirmed for the first time the reactivity of two different functional groups in NCW,providing a literature reference for the selective hydrolysis of similar compounds.
     5.Research on the hydrolysis of N-methylacetamide in high temperature water N-methylacetamide(NMA)was selected as a model compound of N-substituted amide to investigate its hydrolysis kinetics and mechanism in high temperature water(HTW)with and without added acid or base catalysts at temperatures 200-400℃.The major products measured are acetic acid and methylamine.The reaction is reversible.Batch reactor studies revealed that there is no change of the reaction order no matter what the reaction condition is subcritical region or supercritical region.A global reaction order of one was tested for the NMA disappearance at temperatures of 200℃,300℃and 400℃,respectively. Examination the relations between water density and rate constant suggests a reaction order also of one in water.We also have examined the pH effect on the hydrolysis rate of NMA with added acid(HCl)and base(NaOH)in order to get its hydrolysis mechanism.The results suggest that apparent reactions order for H~+and OH~-are basically one.These experiments also revealed three distinct regions of pH dependence.At low and high pH,the conversion increased rapidly with added acid and base.At near-neutral pH,however,the rate was essentially insensitive to changes in pH.We generated a detailed chemical kinetics model for the hydrolysis reaction in the literature.This three-parameter model fits the experimental data for NMA disappearance and formation of acetic acid and methylamine.We also found that the rate constant for hydrolysis increased with water density and with the addition of salts.This consistent with a polar hydrolysis reaction mechanism wherein the rate constant would be increased with increases the solvent polarity.An S_N2 mechanism with water as the nucleophile appears to be the most likely candidate.We reported for the first time the hydrolysis reaction mechanism of amide in high temperature water,and found a scientistic base for the hydrolysis possibility of amide linkages in peptide and protein in HTW.
引文
1.Li C.J.,Chem.Rev.,1993,1993,93(6),2023.
    2.Watanabe M.,Soto T.,Inomata H.,et.al.,Chem.Rev.,2004,104(12),5803.
    3.Akiya N.,Savage P.E.,Chem.Rev.,2002,102(8),2725.
    4.Katritzky A.R.,Nichols D.A.,Siskin.M.,Chem.Rev.,2001,101(4),837.
    5.Marshall W.L.,Frank E.U.,J.Phys.Chem.Ref.Data,1981,10,295.
    6.Connolly J.F.,J.Chem.Eng.Data,1966,11(1),13.
    7.Paszun D.,Spychaj T.,Ind.Eng.Chem.Res.,1997,36(4),1373.
    8.Madras G.,McCoy B.J.,Ind.Eng.Chem.Res.,1999,38(2),3527.
    9.Suzuki Y.,Tagaya H.,Asou T.,et al.,Ind.Eng.Chem.Res.,1999,38(4),1391.
    10.Yang Y.,Hawthorne S.B.,Miller D.,J.Env.Sci.& Technol.,1997,31(2),430.
    11.Hawthorne S.B.,Yang Y.,David J.M.,Anal.Chem.,1994,66(18),2912.
    12.Yang Y.,Bowadt S.,Hawthorne S.B.,MillerD.,Anal.Chem.,1995,67(24),4571.
    13.Basile A.,Jimenez-Carmona M.M.,Clifford A.A.,J.Agr.Food Chem.,1998,46,5205.
    14.郭娟,丘泰球,杨日福,范晓丹,现代化工,2007,12,19.
    15.王耀,陆晓华,食品工业科技,2006,27(16),178.
    16.Smith R.M.,Burgess R.J.,Anal.Commun.,1996,33(9),327
    17.David J.M.,Steven B.H.,Anal.Chem.,1997,69(4),623.
    18.李玲,陆峰,孙鹏,原永芳,等,药学学报,2000,35(11),832.
    19.Eckert C.A.,Chandler K.,J.Supercrit.Fluids,1998,139(1-3),187.
    20.Siskin M.,Katritzky A.R.,Science,1991,254,231.
    21.Shaw R.W.,Brill T.B.,Clifford A.A.,et al.,C&E N,1991,69(51),26.
    22.Savage P.E.,Gopalan S.,Mizan T.I.,et al.,AIChE J..,1995,41(7),1723.
    23.L(u|¨) X.Y.,He L.,Zheng Z.-S.,et al.,Chem.Ind.Eng.Prog.,2003,22(4),477.
    24.Yu D.,Aihara M.,Antal M.J.Jr.,Energy Fuels,1993,7,574.
    25.Xu X.D.,Matsumura Y.,Stenberg J.,et al.,Ind.Eng.Chem.Res.,1996,35,2522.
    26.Torry L.A.,Kaminsky R.,Klein M.T.,Klotz M.R.,J.Supercrit.Fluids,1992,5,163.
    27.吕秀阳,夏文莉,刘田春,Transactions of the CSAE,2001,17(3),132.
    28.吕秀阳,Sakoda A.,Suzuki M.,J.Chem.Eng.Chinese Univ,2001,15(1),40.
    29.Paszun D.,Spychaj T.,Ind.Eng.Chem.Res,1997,36(4),1373.
    30.Madras G.,McCoy B.J.,Ind.Eng.Chem.Res.,1999,38(2),352-357.
    31.Suyama K.,Kubota M.,Shirai M.,et al.,Polym.Degradation Stab.,2007,2(2),317.
    32.Parsons E.J.,Chemtech.,1996,26(6),30.
    33.Buback M.,Elstner U.,Rindfleisch F.,et al.,Macromole.Chem.and Phys.,1997,198(4),1189.
    34.Reardon P.,Mets S.,Critendon C.,et al.,Organomet.,1995,14(8),3810.
    35.Savage P.E.,Chem.Rev.,1999,99(2),603.
    36.Kruse A.,Dinjus E.,J.Supercrit.Fluids,2007,39,362.
    37.Br(o|¨)ll D.,Kaul C.,Kr(a|¨)rner A.,et al.,Angew.Chem.Int.Ed.,1999,38,2998.
    38.Krammer P.,Vogel H.,J.Supercrit.Fluids.,2000,16,189.
    39.袁佩青,程振民,刘涛等,华东理工大学学报,2003,22(3),225.
    40.Iyer S.D.,Nicol G.R.,Klein M.T.,J.Supercrit.Fluids,1996,9,26.
    41.Kr(a|¨)mer A.,Mittelstadt S.,Vogel H.,Chem.Eng.Technol.,1999,22(6),494.
    42.Krammer P.,Mittelstadt S.,Vogel H.,Chem.Eng.Technol.,1999,22(2),126.
    43.Harrell C.L.,Moscariello J.S.,Klein M.T.,J.SupercritFluids,1999,14,219.
    44.Izzo B.J.,Dissertation Abstracts International,Volume:59-05,Section:B,page,2317.
    45.Gonz(?)lez G.,Montan(?) D.,AIChE J.,2005,51(3),971
    46.Salvatierra D.,Taylor J.D.,Marrone P.A.,Tester J.W.,Ind.Eng.Chem.Res.,1999,38(11),4169.
    47.Xu X.,Antal M.J.,Presented at AIChE Annual Meeting,Los Angeles,C A,Nov,1991,17.
    48.Xu X.,Antal M.J.,Anderson D.G.,Ind.Eng.Chem.Res.,1997,36(1),23.
    49.Kuhlmann B.,Arnet E.M.,Siskin M.,J.Org.Chem.,1994,59(11),3098.
    50.Hunter S.E.,Ehrenberger C.E.,Savage P.E.,J.Org.Chem.,2006,71(16),6229.
    51.Yang Y.,Duan P.G.,Wang Y.Y,et al.,Chem.Eng.Process,2008,47(12), 2402.
    52.Tomita K.,Koda S.,Oshima Y.,Ind.Eng.Chem.Res.,2002,41(14),3341.
    53.Tomita K.,Oshima Y.,Ind.Eng.Chem.Res.,2004,43(10),2345.
    54.Jerome K.S.,Parsons E.J.,Organomet.,1993,12(8),2991.
    55.Sato T.,Sekiguchi G.,Adschiri T.,et al.,Ind.Eng.Chem.Res.,2002,41(13),3046.
    56.Chandler,K.,Deng F.,Dillow A.K.,Ind.Eng.Chem.Res.1997,36(12),5175.
    57.Chandler K.,Liota C.L.,Eckert C.A.,AlChEJ.,1998,44(9),2080.
    58.Brown J.S.,Glaser R.,Liotta C.L.,Eckert C.A.,Chem.Commun.,2000,1295.
    59.Reardon P.,Metts S.,Crittendon C.,et al.,Organomet,1995,14(8),3810.
    60.Diminnie J.,Metts S.,Parsons E.J.,Organomet,1995,14(8),4023.
    61.Harano Y.,,Sato H.,Hirata F.S.,J.Am.Chem.Soc.,2000,122,2289.
    62.An J.,Bagnell L.,Cablewski T.,et al.,J.Org.Chem.,1997,62(8),2505.
    63.Kuhlmann B.,Amet E.M.,Siskin M.,J.Org.Chem,1994,59(11),3098
    64.Kuhlmann B.,Arnett E.M.,Siskin M.,J.Org.Chem.,1994,59(18),5377.
    65.Ikushima Y.,Hatakeda K.,Sato O.,et al.,J.Am.Chem.Soc.,2000,122(9),1908.
    66.Comisar C.M.,Savage P.E.,Ind.Eng.Chem.Res.2007,46,1690.
    67.朱自强,曾健青,刘莉玫,广州化学,2002,2,17.
    68.朱自强,曾健青,刘莉玫,广州化学,2002,4,6.
    69.Nolen S.A.,Liotta C.L.,Eckert C.A.,et al.,Green Chem.,2003,5,663.
    70.Hallmatm M.M.,Conradi M.S.,J.Supercrit.Fluids,1998,14,1.
    71.Richter T.,Vogel H.,Chem.Eng.Technol.,2002,25,1.
    72.Richter T,Vogel H.,Chem.Eng.Technol.,2003,26,688.
    73.Holliday R.L.,Jong B.Y.M,Kolis J.W.,J.Supercit.Fluids,1998,12,255.
    74.Wang L.,Li P.H.,Yah J.C.,Chen J.H.,Chemical Journal on Internet.2003,Vol.5,No.1
    75.Biox C.,Delafuente J.M.,PoliakoffM.,New J.Chem.1999,23,641.
    76.Boix C.,Poliakoff M.,J.Chem.Soc.,Perkin Trans.I,1999,1,1487.
    77.Tsujino Y.,Wakai C.,Matubayashi N.,et al.,Chem.Lett.,1999,4,287.
    78.Ikushima Y.,Hatakeda K.,Sato O.,et al.,Angew.Chem.,2001,113(1),216.
    79.Zhang R.,Sato O.,Zhao F.,Sato M.,Ikushima Y.,Chem.,2004,10,1501.
    80.Parsons E.J.,Chemtech.,1996,30.
    81.Reardon P.,Metts S.,Crittendon C.,et al.,Organomet,1995,14,3810.
    82.Diminnie J.,Metts S.,Parsons E.J.,Organomet,1995,14,4023.
    83.Hori T.,Takahashi H.,NittaT.,J.Chem.Phys.2003,119,8492.
    84.Li P.H.,Yan J.C.,Wang M.,Wang L.,Chin.J.Chem.,2004,22,219.
    85.Bryson T.A.,Stewart J.J.,Gillepie S.,et al.,Green Chem.,2004,15,74.
    86.Dinjus E.,Riffel W.,Borwieck H.,Patent Appl.DE-OS2000,19853371.
    87.Carlsson M.,Habenieht C.,Kam L.C.,et al.,Ind.Eng.Chem.Res.,1994,33,1989.
    88.Izzo B.,Klein M.Y.,LaMarca C.,et al.,Ind.Eng.Chem.Res.,1999,38(4),1183.
    89.Izzo B.J.,Harrell C.L.,Klein M.T.,AIChE J.,1997,43,2048.
    90.Lee D.S.,Gloyna E.F.,Environ.Sci.Technol.,1992,26(8),1587.
    91.龙中柱,高勇,化工进展,2001,5,15.
    92.Iwaya T.,Sasaki M.,Goto M.,Polym.Degradation Stab.,2006,91(9),1989.
    93.Meng L.H.,Zhang Y.,Huang Y.D.,et al.,Polym.Degradation Stab.,2004,83(3),389.
    94.葛红光,甄宝勤,郭小华,等,化学上业与工程技术,2005,25(5),4.
    95.颜守保,化工生产与技术,2008,15(2),9.
    96.冯练享,陈均志,任便利,农药,2006,45(1),12.
    97.徐六兴,许文松,王蓓,等,农药,2006,45(11),751.
    98.王佩琳,龙晓钦,化学工业,2008,8,28.
    99.刘长春,应用化工,2001,30(2),16.
    100.周刚,涂玉庆,化学世界,2000,41(3),159.
    101.高玲玲,左莹,汪琼,等,化学世界,2008,49(2),79.
    102.葛红光,甄宝勤,郭小华,等,化学上业与工程技术,2005,25(5),4.
    103.Jennifer S.R,Gary J.K.,Timothy A.N.,Anal.Chim.Acta.,1997,341(2-3),195.
    104.Chen S.G.,Cheng K.L,Vogt C.R.,MicrochimicaActa,1983,79(5-6),473.
    105.段培高,王炫,戴立益,功能材料,2007,11(38),1845.
    106.Yildirim S.,Ruinatscha R.,Gross R.et al.,J.Mol.Catal.B:Enzym.,2006,38(2),76.
    107.Rabinovitch B.S.,Winkler C.A.,Can.J.Res.,1942,20,185.
    108.Barbalace K.,Chemical Database-Adiponitrile.Environmental Chemistry.com.1995-2009.
    109.Ramaiah S.,Mehendale H.M.,Encyclopedia of Toxicology,2005,Pages 49-50.
    110.Cerbelaud E.,Bontoux M.C.,Foray F.,et al.,Ind.Chem.Lib.,1996(8),189.
    111.Alini S.,Bottino A.,Capannelli G.,et al.,J.Mol.Catal.A:Chem.,2003,206(1-2),363.
    112.王志峰,四川化工与腐蚀控制,1999,2(4),48.
    113.吕清海,河南化工,2006,23(3),1.
    114.章文,上海化工,2008,33(6),35
    115.Atsumi T.,J.Comb.Theory,Ser.A,1983,35(3),241.
    116.Ray-Chaudhuri D.K.,Zhu T.B.,J.Stat.Plan Infer.,1997,58(1),177.
    117.Kolaiti E.,Koukouvinos C.,Stat.Probab.Lett.,2006,76(3),266.
    118.Fisher R.A.,Trans.Roy.Soc.Edinb.,1918,52,399.
    119.Fisher R.A.,Philos.Trans.Roy.Soc.London A.,1922,222,309.
    120.Taguchi G..,Konishi S.,Taguchi Methods Orthogonal Arrays and Linear Graphs:Tools for Quality Engineering.April 1987.
    121.Wiley A.H.,Morgan,H.S,J.Org.Chem.1950,15(4),800.
    122.Zil'berman E.N.,Zh.Org.Khim.,1955,25,2127.
    123.Bergstrom F.W.,Fernelius W.C.,Chem.Rev.,1933,12(1),43.
    124.Kemnitz C.R.,Loewen M.J.,J.Am.Chem.Soc.,2007,129(9),2521.
    125.胡宏文《有机化学》(第二版)1990,高等教育出版社。
    126.Glover S.A.,Tetrahedron,1998,54(26),7229.
    127.Zahn D.,Eur.J.Org.Chem.,2004,19,4020.
    128.Brown R.S.,Bennet A.J.,Slebocka-Tilk H.,Acc.Chem.Res.,1992,25(11),481.
    129.Antonczak S.,Ruiz-Mpez M.F.,Rivail J.L.,J.Am.Chem.Soc.,1994,116(9),3912.
    130.Hann E.C.,Eisenberg A.,Fager S.K.,Bioorg.Med.Chem.,1999,7(10),2239.
    131.Zhu H.S.,Ho J.J,J.Phys.Chem.A,2001,105(26),6543.
    132.Brill T.B.,J.Phys.Chem.A,2000,104(19),4343.
    133.Weing(a|¨)rtner H.,Franck E.U.,Angew.Chem.Int.Ed,2005,44(18),2672.
    134.Brunner G.,J.Supercrit.Fluids,2009,47(3)373.
    135.Dzumakaev K.,Kagarlitskii A.D.,Fedolyak G.T.,React.Kinet.Catal.Lett.,1986,30(2),289.
    136.Bellefon C.D,Fouilloux P.,Catal.Rev.Sci.Eng.,1994,36(3),459.
    137.Savage P.E.,Smith M.A.,Environ.Sci.Technol.,1995,29(1),216.
    138.Scientist,version 3.0,MicroMath,Inc.:Salt Lake City,UT,1995.
    139.Bolton P.D.,Aus.J.Chem.,1966,19,1013.
    140.Frantz,J.D.,Marshall,W.L.,Am.J.Sci.,1984,284,651
    141.Chen X.,Gillespie S.E.,Oscarson J.L.,et al.,J.Sol.Chem.,1992,21(8),803.
    142.Gates,B.C.Catalytic Chemistry,John Wiley & Sons:New York,1992,pp 26-27.
    143.Hunter,S.E.,Savage,P.E.,J.Org.Chem.,2004,69(14),4724.
    144.Ingold,C.K.,“Structure and Mechanism in Organic Chemistry”,784(Bell,1953).
    145.Duffy J.A.,Leisten J.A,Nature,1956,178,1242.
    146.Perrin M.W.,Trans.Faraday.Soc,1938,34,144.
    147.Laidler K.J.,Chemical Kinetics,third ed.,HarperCollins Publishers,New York,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700