半焦/改性半焦催化CH_4-CO_2重整特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CH4分子具有高度对称性和稳定性,实现CO2电子的转移需要高达20.4eV的能量,同样具有很强的稳定性。CH4-CO2重整制合成气研究是公认的20世纪催化和能源研究领域最具挑战性的研究方向,CH4-CO2反应涉及到高温反应性和选择性受热力学限制的问题,这些问题需要通过研制高效催化剂来解决。目前,甲烷二氧化碳重整制合成气催化剂的研究主要集中在贵金属和过渡金属,但贵金属受价格昂贵和资源有限等条件制约,而过渡金属做催化剂,其活性位容易被积碳所覆盖而降低催化活性或失活,已经成为CH4-CO2催化研究进展的瓶颈。
     本课题针对甲烷二氧化碳重整反应中催化剂存在易失活或价格昂贵的问题,创新地提出半焦催化CH4-CO2重整反应制合成气技术路线。以宏测褐煤半焦、神木烟煤半焦和晋城无烟煤半焦及高温高压H2O2和氨水改性半焦为催化剂,系统地开展了CH4-CO2重整制合成气研究,考察了反应条件对重整反应的影响;考察了高温高压H2O2和氨水改性对半焦催化CH4-CO2重整反应的影响规律;通过对半焦表面性质与结构变化情况分析,揭示了半焦催化剂在重整反应中的作用实质;考察了加压条件下半焦催化甲烷二氧化碳重整反应特性;探讨了半焦催化甲烷二氧化碳重整反应机理和动力学规律。经研究获得的主要成果和结论如下。
     (1)在不同煤种半焦催化下,甲烷二氧化碳重整转化表现出相同的变化规律,初始阶段转化率较高,随着反应的进行,转化率逐渐降低并趋于平稳,不同煤阶半焦在重整反应中具有相同作用机制。不同煤种半焦的催化活性顺序为:宏测褐煤半焦>神木烟煤半焦>晋城无烟煤半焦,即半焦的催化性能随煤阶的提高而降低,低阶褐煤半焦具有较高的比表面积和丰富的含氧官能团,是其催化活性高的主要原因。部分半焦催化剂在重整反应中与CO2发生气化反应,半焦催化剂是一种“消耗性催化剂”。
     (2)重整反应后,三种半焦在1450cm-1附近的硝基和-NH2吸收峰几乎消失,神木烟煤半焦和晋城无烟煤半焦在3444cm-1附近的羟基OH吸收峰有所减弱,在1023cm-1附近的吸收峰明显减弱,在1598cm-1处的羧基C=O官能团几乎消失,晋城无烟煤半焦在1087cm-1附近的含氮官能团-C-N-吸收峰减弱,半焦表面C=O、-OH、-NH2、脂肪族和环醚等官能团参与了重整反应。
     (3)高温高压H202改性后,初始催化效果低的晋城无烟煤半焦催化性能提升幅度较大,CH4和C02转化率分别提高了24.38%和21.73%,而初始催化效果较高的宏测褐煤半焦活性提升幅度相对较小,CH4和C02转化率仅提高了7.47%和1.28%。宏测褐煤半焦在3444cm-’处的-OH吸收峰明显增强,神木烟煤半焦和晋城无烟煤半焦在1598cm-1附近的羧基C=O和1023cm-1附近脂肪族和环醚等有机官能团含量都明显增加,但晋城无烟煤半焦在1598cm-1附近的羧基C=O吸收峰峰强增加幅度较大。活化后半焦表面的酸碱性官能团含量都有所增加,但碱性官能团含量提高幅度明显高于酸性基团含量的提高量,宏测褐煤半焦、神木烟煤半焦和晋城无烟煤半焦净碱量分别增加了0.161mmol/g、0.103mmol/g和0.102mmol/g,总结果是增加了半焦的净碱量,提高了对C02的吸附作用。
     (4)高温高压氨水改后,晋城无烟煤半焦催化性能提升幅度较大,CH4和C02转化率分别提高了30.42%和27.55%,宏测褐煤半焦活性提升幅度相对较小,CH4和CO2转化率仅提高了12.94%和3.79%。宏测褐煤半焦和神木烟煤半焦在3444cm-1附近的羟基-OH吸收峰,1598cm-1附近的羧基C=O吸收峰,1450cm-1附近由部分硝基、-NH2含氮官能团的吸收峰,1087cm-1附近的含氮官能团-C-N和797cm-1附近的C-H吸收峰都得到增强;晋城无烟煤半焦,在1598cm-1附近的羧基C=O吸收峰,1450cm-1附近的部分硝基、-NH2含氮官能团的吸收峰,1087cm1附近的含氮官能团-C-N吸收峰得到增强。活化后半焦表面碱性官能团含量明显提高,而酸性官能团含量则有所降低,宏测褐煤半焦、神木烟煤半焦和晋城无烟煤半焦酸性官能团含量分别降低了0.012mmol/g、0.014mmol/g和0.009mmol/g,而碱性官能团含量则分别增加了0.361mmol/g、0.311mmol/g和0.240mmol/g,氨水具有弱碱性,能够与半焦表面的酸性官能团发生中和反应,导致酸性基团含量减少。
     (5)完善了小型高温高压反应器基础,获得了加压条件下半焦催化甲烷二氧化碳重整反应规律。甲烷转化率随反应体系压力的增加而下降,而二氧化碳转化率却表现出先升后降的趋势;温度和气固接触时间对重整反应的影响与常压条件下变化规律基本一致,而产品气中CO/H2比值随CH4/CO2的增加而降低,且CO/H2>1,与常压变化规律不同。加压反应后,半焦催化剂在1700cm-1附近的C-O和O-H特征吸收峰,在压力为0.7MPa和1MPa时吸收峰明显减弱,在压力为2MPa和3MPa时与反应前变化不大。在2350cm-1附近出现了强吸收峰,该位置为C02的物理特征吸收峰,验证了催化重整反应,先是反应气在催化剂表面的吸附,然后再在催化剂表面发生反应。加压反应后半焦催化剂表面上覆盖了许多颗粒物,随着重整压力的增加,积碳在催化剂表面呈现出逐渐团聚的过程,即由分散的点的堆积渐变成面的覆盖,尤其是当压力为2MPa和3MPa时,催化剂表面的孔隙已经完全被积碳所覆盖,增加压力提高了积碳在催化剂表面的堆积密度,在催化剂表面形成致密层,阻挡了反应气与催化剂活性位接触,降低了催化剂的催化活性,甚至失活。
     (6)提出了半焦催化甲烷二氧化碳重整反应机理。半焦表面具有活性的含氧官能团首先解离出活性氧原子,同时CO2在高温下也能够解离出活性氧原子和CO,接着活性氧原子与CH4作用,生成活性物种CHxO,然后分解成CO和CH2;同时,CH4与半焦活性中心作用,逐步生成具有活性的碳原子和氢气,一部分碳原子与吸附在催化剂表面的C02发生反应,未及时反应的碳原子就沉积在催化剂表面形成积碳,从而阻碍了部分活性氧原子在半焦催化剂表面的解离,当上述相互作用达到动态平衡时,半焦催化剂就处于稳定状态。建立了半焦催化甲烷二氧化碳重整动力学方程,反应速率常数k=25.81exp(58.4±3.7kJ/RT)。
The CH4molecules have high symmetry and stability, and the electron transfer of the CO2have needed the energy of up to20.4eV, which similarly have strong self-stability. The CH4-CO2reforming is one of the most challenging projects in catalysis and energy research areas. The high-temperature reactivity and selectivity of the CH4-CO2reforming limited by the thermodynamic are needed to be solved by developing efficient catalyst. Currently, studies on the catalysts used in CH4-CO2reforming mainly focused on the noble metals and transition metals used. However, the noble metals are expensive and these resources are limited while the transition metals are easily deactivated due to carbon deposition, which has become the bottleneck of its industrial application.
     Based on the existing problems, semi-cokes were creatively proposed to be used as the catalyst in the process of the CH4-CO2reforming. The effects of Hongce lignite semi-cokes, Shenmu bituminous coal semi-cokes and Jincheng anthracite semi-cokes on the CH4-CO2reforming were investigated by using a fixed-bed reactor. The factors affecting the catalyst stability and activity were investigated. The semi-cokes were activated by the high-temperature and high-pressure during the hydrothermal reaction of ammonia and hydrogen peroxide, and the rules regarding the effect of activation conditions on the CH4-CO2reforming were investigated. The essence of the semi-cokes catalysts were revealed by analysing the changes of the surface properties and structure before and after reaction. The reaction characteristic of the CH4-CO2reforming was investigated under the condition of pressure. The mechanism of the CH4-CO2reforming over semi-cokes was studied, and the kinetics model was established. The conclusions are drawn as follows:
     (1) The CH4-CO2reforming has been studied over different semi-cokes. The CH4-CO2reforming shows the same conversion trend with different semi-cokes, where the CH4and CO2conversions are higher at the initial phase, and as the reaction progresses, the conversions gradually decrease and tend to be stable. Therefore it is shown that the reaction mechanism is the same in the CH4-CO2reforming over different semi-coke. When the reaction became stable, the order of the catalyst activity was Hongce lignite semi-cokes>Shenmu bituminous coal semi-cokes> Jincheng anthracite semi-cokes, indicating that the catalyst activity of the semi-cokes was lower with the increasing of coal rank. Hongce lignite semi-cokes have high catalyst activity because it has large specific surface area, low ash and rich oxygenic groups. The analysis of carbon balance shows part of semi-cokes catalyst participated in gasification reaction with CO2, and the semi-cokes catalyst is a consumptive catalyst.
     (2) The changes of functional groups and the surface structure of the semi-cokes before and after the reforming reaction have been analysed. After the reaction, the absorption peak near1450cm-1almost vanished for all three semi-cokes, the absorption peak at1023cm-1was obviously diminished for the Shenmu bituminous coal semi-cokes and Jincheng anthracite semi-cokes, and the absorption peak at1598cm-1for the carboxyl C=O function group almost disappeared. These changes indicate that the functional groups on the surface of the semi-cokes participated in the reforming reaction. The result shows that the coal rank and the BET are the main factors which influence the catalyst performance, and the functional groups on the surface of the semi-cokes and the types and amounts of alkaline metals have a certain type of influence on the activity of the reforming reaction. After480min of reaction, the diffraction peaks of the semi-cokes mainly emerge in carbon and silica. The peaks for the alkaline earth metals have almost completely diminished
     (3) The semi-cokes activated by H2O2under high temperature and high pressure have been carried out. The catalytic performance of Jincheng anthracite semi-cokes whose initial catalytic effect is poor increased significantly, with the conversions of CH4and CO2increasing by24.38%and21.73%, respectively. The catalytic performance of Hongce lignite semi-cokes whose initial catalytic effect is good increased little, with the conversions of CH4and CO2increasing by just7.47%and1.28%, respectively. After activated, the Hongce lignite semi-cokes absorption peak at3444cm-1is caused by OH increase significantly, The Shenmu bituminous coal semi-cokes and Jincheng anthracite semi-cokes absorption peak near1598cm-1is caused by C=O and the absorption peak near1023cm-1is caused by the organic functional groups such as fat clusters and alkylene oxides, etc. strengthen significantly. However, Jincheng anthracite semi-cokes absorption peak near1598cm-1caused by C=O increased more than others. At the same time, the content of acid and alkaline functional groups on the surface of semi-cokes has increased, and the content of alkaline functional groups increased higher than the acid functional groups, meaning that the content of alkaline has increased. The net amount of basicity of Hongce lignite semi-cokes, Shenmu bituminous coal semi-cokes and Jincheng anthracite semi-cokes increased by0.161mmol/g,0.103mmol/g and0.102mmol/g, respectively.
     (4) The semi-cokes activated by ammonia under high temperature and high pressure have been carried out. After being activated, the Hongce lignite semi-cokes and the Shenmu bituminous coal semi-cokes absorption peak near3444cm-1are caused by-OH, the peak near1589cm-1is caused by OO, that near1450cm-1is caused by nitro and-NH2, that near1087cm-1is caused by-C-N, that near797cm-1is caused by C-H. These absorption peaks were increased significantly, Jincheng anthracite semi-cokes absorption peak near1589cm-1is caused by C=O, that near1450cm-1is caused by nitro and NH2, that near1087cm-1is caused by-C-N. These absorption peaks were also increased significantly. After ammonia hydrothermal reaction under high temperature and high pressure, the content of alkaline functional groups on the surface of semi-cokes have been increased greatly, but the content of acid functional groups have been decreased. The amounts of basicity of Hongce lignite semi-cokes, Shenmu bituminous coal semi-cokes and Jincheng anthracite semi-cokes were increased by0.361mmol/g,0.311mmol/g and0.240mmol/g, respectively. But the amount of acidity was decreased by0.012mmol/g,0.014mmol/g and0.009mmol/g, respectively. On the one hand, ammonia has a weak alkaline, which can carry out a neutralization reaction with acid functional groups to reduce the content of acid functional groups. On the other hand, it becomes easy to be combined with phenol and at last it enhanced the content of alkaline functional groups on the surface of semi-cokes.
     (5) A small high temperature and high pressure reactor has been improved and built, and the rule of CH4-CO2reforming over semi-cokes under pressure has been gained. The conversion rate of methane decreased with the reaction pressure increased, but the conversion rate of carbon dioxide increased at the initial phase, then decreased and trend to stable at last; the reaction temperature and the gas-solid contact time have the same influence on the CH4-CO2reforming under atmospheric pressure, but the ratio of CO/H2decreased as the ratio of CH4/CO2increased and CO/H2>1, which is different from atmospheric pressure variation. After the reaction under pressure, the absorption peak of semi-coke at1700cm"1is caused by C-O and O-H declines significantly under pressure of0.7MPa and IMPa. Instead the absorption peak has changed little under pressure of2MPa and3MPa, which shows the catalyst activity of the semi-cokes decreased with increasing pressure; meanwhile it exhibited a strong absorption peak near2350cm-1which is just the physical characteristics of CO2absorption peak, and further validates the steps of catalytic reforming reaction. To be specific, at first reaction gas is adsorbed by the surface of catalyst, then it reacted on the surface of catalyst. The SEM figure shows a lot of granular objects are covered on the surface of semi-cokes catalyst after the pressurized reaction, and with the increase of reforming pressure, carbon deposit would agglomerate on the surface of semi-cokes catalyst, which means dispersed points accumulate gradually into the cover, especially under the pressure of2MPa and3MPa. The pores distributed in the catalyst surface have been completely covered by carbon deposition, and the pore structure on the surface of semi-cokes catalyst decreased progressively until it disappeared with the increase of reforming pressure, when pressure increased. The bulk density of carbon deposition on the surface of semi-cokes catalyst was improved, resulting in forming a dense layer on the surface of semi-cokes catalyst, which has prevented the reaction gas from contacting with the active sites of catalyst and reduced the activity of catalysts or even deactivated the catalysts.
     (6) The reaction mechanism of the CH4-CO2reforming over semi-cokes has been proposed. It is considered that the oxygenic functional groups on the surface of semi-cokes first dissociate activated oxygen atoms, and at the same time carbon dioxide can also dissociate activated oxygen atoms and carbon monoxide under high temperature; then the activated oxygen reacted with methane to form activated CHXO, and was decomposed into carbon monoxide and methylene CH2. Meanwhile methane reacted with semi-cokes active site to form gradually activated carbon atoms and H2. A part of carbon reacted with carbon dioxide which was adsorbed on the surface of catalyst, while the others which were too late to react would deposit on the surface of catalyst to form carbon deposition. It was not good for partially activated oxygen atoms to be free on the semi-cokes catalyst surface. When the above interaction reached dynamic balance, Semi-coke catalyst would reach steady state. The kinetic equation of the CH4-CO2reforming over semi-cokes has been built, and dynamics parameters have been gained, with the reaction rate constant. k=25.81exp(58.4±3.7kJ/RT).
引文
[1]谢克昌.高碳能源要低碳化利用[J].山西能源与节能,2010,(8):1-4.
    [2]杨力,董跃,张永发,等.中国焦炉煤气利用现状及发展前景[J].山西能源与节能,2006,(1):1-4.
    [3]Zhang Yongfa. A new technology of three products from coal based on a L T integrated apparatus [C]. Beijing:Proceeding of workshop on coal gasification for clean and secure energy for china,2003,235-246.
    [4]Huseyin Arbag, Sena Yasyerli, Nail Yasyerli, et al. Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane [J]. International Journal of hydrogen energy,2010,35(16):2296-2304.
    [5]N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat. Synthesis gas production from dry reforming of methane over Ce0.75Zr0.25O2 supported Ru catalysts [J]. Chemical Engineering Journal,2005,112(1-3):13-22.
    [6]Liu Dapeng, Raymond Lau, Armando Borgna, et al. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts [J]. Applied Catalysis A:General, 2009,(358)2:110-118.
    [7]Edwards J H, Maitra A M. The chemistry of methane reforming with carbon dioxide and its current and potential applications [J]. Fuel Processing Technology,1995, (86)2: 269-289.
    [8]Huang Tao, Huang Wei, Huang Jian, et al. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts [J]. Fuel Processing Technology,2011,92(10):1868-1875.
    [9]Fischer F., Tropsch H. The preparation of synthetic oil mixtures from carbon monoxide and hydrogen [J]. Brennst-Chem,1923,276-285.
    [10]Abbott J, Crewdson B. Gas heated reforming improves Fischer tropsch process [J]. Oil & Gas Journal,2002, (100):64-66.
    [11]孙长庚,刘宗章,张敏华.甲烷催化部分氧化制合成气的研究进展[J].化学工业 与工程,2004,21(4):276-280.
    [12]Sun Laizhi, Tan Yisheng, Zhang Qingde, et al. Combined air partial oxidation and CO2 reforming of coal bed methane to synthesis gas over co-precipitated Ni-Mg-ZrO2 catalyst [J]. International Journal of Hydrogen Energy,2011,36(19):12259-12267.
    [13]Li Baitao, Xu Xiujuan, Zhang Shuyi. Synthesis gas production in the combined CO2 reforming with partial oxidation of methane over Ce-promoted Ni/SiO2 catalysts [J]. International Journal of Hydrogen Energy,2013,38(2):890-900.
    [14]Byrnc Jr P J, Gohr R J, Haslam R T. Recent progress in hydrogenation of petroleum [J]. Industrial and Engineering Chemistry Research,1932,24 (10):1129-1135.
    [15]高志博,王晓波,刘金明,等.甲烷水蒸气重整制合成气的研究进展[J].高师理科学刊,2012,(2):79-81.
    [16]Hyo-Won Kim, Ki-Moon Kang, Ho-Young Kwak, et al. Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane [J]. Chemical Engineering Journal,2011,168(2):775-783.
    [17]Preeti Gangadharan, Krishna C. Kanchi, Helen H. Lou. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane [J]. Chemical Engineering Research and Design,2012,90(11):1956-1968.
    [18]王大文.La活化的Ni基整体式催化剂上甲烷水蒸气催化重整性能研究[J].天然气化工,2010,35(3):17-20.
    [19]蔡秀兰,董新法,林维明.甲烷自热重整制氢技术的研究进展[J].现代化工2006,26(1):24-27.
    [20]Zeinab Mosayebi, Mehran Rezaei, Abolfazl Biabani Ravandi, et al. Autothermal reforming of methane over nickel catalysts supported on nanocrystalline MgAl2O4 with high surface area [J]. International Journal of Hydrogen Energy,2012,37(2): 1236-1242.
    [21]Gao Jing, Guo Jianzhong, Liang Dan, et al. Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2-ZrO2/SiO2 supported Ni catalysts [J]. International Journal of Hydrogen Energy,2008,33(20): 5493-5500.
    [22]陈玉民,赵永椿,张军营,等.甲烷自热重整制氢的热力学和动力学分析[J].燃料化学学报,2011,39(8):632-640.
    [23]J.H. Bitter, W. Hally, K. Seshan, et al. The role of the oxide support on the deactivation of Pt catalysts during the CO2 reforming of methane [J]. Catalysis Today,1996, 29(1-4):349-353.
    [24]Xu Leilei, Song Huanling, Chou Lingjun. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides [J]. Applied Catalysis B: Environmental,2011,108-109(10):177-190.
    [25]Yu Xiaopeng, Wang Ning, Chu Wei, et al. Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites [J]. Chemical Engineering Journal,2012,209(10):623-632.
    [26]Huang Jian, Ma Renxiong, Gao Zhihua, et al. Characterization and Catalytic Activity of CeO2-Ni/Mo/SBA-15 Catalysts for Carbon Dioxide Reforming of Methane [J]. Chinese Journal of Catalysis,2012,33(4):637-644.
    [27]yma Ozkara-Aydinoglu, A. Erhan Aksoylu. A comparative study on the kinetics of carbon dioxide reforming of methane over Pt-Ni/Al2O3 catalyst:Effect of Pt/Ni Ratio [J]. Chemical Engineering Journal,2013,215-216(1):542-549.
    [28]Wang S B, Lu G Q. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts:state of the art [J]. Energy & Fuels,1996,10:896-904.
    [29]Tokunaga O, Ogasawara S. Reduction of carbon dioxide with methane over Ni-catalyst [J]. Reaction kinetics and catalysis letters,1989,39:69-74.
    [30]C. Mateos-Pedrero, C. Cellier, P. Eloy, et al. Partial oxidation of methane towards hydrogen production over a promising class of catalysts:Rh supported on Ti-modified MgO [J]. Catalysis Today,2007,128(3-4):216-222.
    [31]Yan Q G, Wu T H, Weng W Z, et al. Partial oxidation of methane to H2 and CO over Rh/SiO2 and Ru/SiO2 catalysts [J]. Catalysis Letters,2004,226:247-259.
    [32]Van Looij F, Stobbe E F, Geus J W. Mechanism of the partial oxidation of methane to synthesis gas over Pd [J]. Catalysis Letters,1998,39(5):59-67.
    [33]Schaper H, Doesburg E B M, Van Reijen L. The influence of lanthanum oxide on the thermal stability of gamma alumina catalyst support [J]. Applied Catalysis A:General, 1983,7(2):211-220.
    [34]Brandford M C J, Nannice M A. CO2 reforming of CH4 [J]. Catalysis Reviews Science and Engineering,1999,41:1-42.
    [35]Bradford Michael C.J., Vannice M A. CO2 reforming of CH4 over supported Pt catalysts [J]. Catalysis Letters,1998,173(1):157-171.
    [36]Voget E T C, Geus J W. Prevention of growth of filamentary carbon in supported iron and nickel catalysts [J]. Studies in Surface Science and Catalysis,1987,34:221-223.
    [37]Huseyin Arbag, Sena Yasyerli, Nail Yasyerli, et al. Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane [J]. International Journal of hydrogen energy,2010,35(9):2296-2304.
    [38]V.R. Choudhary, A.S. Mamman. Energy efficient conversion of methane to syngas over NiO-MgO solid solution [J]. Applied Energy,2000,66 (1):161-175.
    [39]N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat. Synthesis gas production from dry reforming of methane over Ce0.75Zr0.25O2 supported Ru catalysts [J]. Chemical Engineering Journal,2005,112(1-3):13-22.
    [40]Huang Wei, Huang Tao, Huang Jian, et al. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts [J]. Fuel Processing Technology,2011,92(10):1868-1875.
    [41]姜玄珍.甲烷部分氧化制合成气Ⅱ:载体的影响[J].分子催化,1995,9(1):7-11.
    [42]Mun-Sing Fan, Ahmad Zuhairi Abdullah, Subhash Bhatia. Hydrogen production from carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2 catalyst:Process optimization [J]. International Journal of Hydrogen Energy,2011,36(8):4875-4886.
    [43]郭芳,储伟,黄丽琼,等.载体酸碱性对CO2/CH4重整反应用镍基催化剂的影响[J].合成化学,2008,16(5):495-498.
    [44]Man'a Martha Barroso-Quiroga, Adolfo Eduardo Castro-Luna. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane [J]. International journal of Hydrogen Energy, 2010, 35(ll):6052-6056.
    [45]路勇,余长春,丁雪加,等.负载型镍金属催化剂上甲烷与二氧化碳重整制合成气[J].催化学报,1996,17(3):212-216.
    [46]Cai Xiulan, Cai Yuanxing, Lin Weiming. Autothermal reforming of methane over Nicatalysts supported over ZrO2-CeO2-Al2O3[J]. Journal of Natural Gas Chemistry. 2008, 17(2):201-207.
    [47]张蕾.曾尚红,苏海全,等.载体对Co基和Ni基催化剂甲烷二氧化碳重整制合成气催化性能的影响[J].化工进展,2010,S1:707-711.
    [48]Eli Ruckenstein, Yun Hang Hu. The effect of precursor and preparation conditions of MgO on the CO2 reforming of CH4 over NiO/MgO catalysts [J]. Applied Catalysis A: General, 1997, 154(2): 185-205.
    [49]宋艳玲,马长捷CH4-CO2重整催化剂用纳米MgO载体的制备[J].工业催化,2007.15(11):59-62.
    [50]李文泽,杨瑞芹,高巍,等.稀土助剂CeO2在CH4-CO2重整反应中的应用[J].沈阳工业大学学报.2008,30(2):237-240.
    [51]S.M. Stagg. D.E. Resasco. Effect of promoters on supported Pt catalysts for CO2 reforming of CH4 [J]. Studies in Surface Science and Catalysis. 1998, 119: 813-818.
    [52]Supaporn Therdthianwong, Chairut Siangchin, Apichai Therdthianwong. Improvement of coke resistance of Ni/AlO3 catalyst in CH4/CO2 reforming by ZrO2 addition [J]. Fuel Processing Technology, 2008, 89(2):160-168.
    [53]石磊,杨瑞芹,范文玉,等.稀土助剂LaO3在CH4-CO2重整反应中的应用[J]. 沈阳化工学院学报,2009, 23(4):301-304.
    [54]刘延,程铁欣,李文兴,等.负载型NiO/六铝酸盐催化剂载体中镍离子的存在对催化剂的结构及甲烷二氧化碳重整反应性能的影响[J].复旦大学学报,2003,42(3):401-404.
    [55]斯钦德力根,杨志杰.M02C负载量对甲烷二氧化碳重整制合成气催化剂Mo2C/γ-Al2O3的影响[J].内蒙古石油化工,2009,8:42-43.
    [56]Zhang Anjie, Zhu Aimin, Chen Bingbing, et.al. In situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane [J]. Catalysis Communications,2011,12(9):803-807.
    [57]LI Xiancai, HU Quanhong, Yang Yifeng, et al. Effects of sol-gel method and lanthanum addition on catalytic performances ofnickel-based catalysts for methane reforming with carbon dioxide [J]. Journal of Rare Earths,2008,26(6):864-808.
    [58]李凝,陈俭省,蒋锡福,等.NiO-ZrO2-Al2O3催化剂的制备方法对其催化性能的影响[J].精细石油化工,2011,27(6):34-38.
    [59]Anita Horvath, Gyorgyi Stefler, Olga Geszti, et al. Methane dry reforming with CO2 on CeZr-oxide supported Ni, NiRh and NiCo catalysts prepared by solgel technique: Relationship between activity and coke formation [J]. Catalysis Today,2011, 169(1):102-111.
    [60]胡全红,黎先财,杨爱军.Ni/La-BaTiO3催化剂的低温CH4/CO2重整性能研究[J].石油与天然气化工,2010,39(6):479-483.
    [61]P.D.F. Vernon, M.L.H. Green, A.K. Cheetham, et al. Partial oxidation of methane to synthesis gas and carbon dioxide as an oxidising agent for methane conversion [J]. Catalysis Today,1992,13(2-3):417-426.
    [62]Richardson J T, Paripatyadarm S A. Carbon dioxide reforming of methane with supported rhodium [J]. Applied Catalysis A:General,1990,61(1):293-309.
    [63]Udengaard N R, Hansen J H, Hanson D C, et al. Sulfur-Passivated reforming process lowers syngas hydrogen/carbon ratio [J]. Oil & gas journal,1992,90:62-69.
    [64]Tsipouriari V A, Estathiou A M, Zhang Z L, et al. Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts [J]. Catalysis Today,1994, 21(2-3):579-587.
    [65]井强山,方林霞,楼辉,等.CH4/C3H8部分氧化C02重整反应的积碳研究[J].石油化工,2008,37(4):338-344.
    [66]Tatsuro Horiuchi, Kaori Sakuma, Takehisa Fukui, et al. Suppression of carbon deposition in the CO2 reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst [J]. Applied Catalysis A:General,1996,144(1):111-120.
    [67]Toshihiko Osaki, Tatsuro Horiuchi, Kenzi Suzuki, et al. Catalyst performance of MoS2 and WS2 for the CO2 reforming of CH4 Suppression of carbon deposition [J]. Applied Catalysis A:General,1997,155(2):229-238.
    [68]Xenophon E Verykios. Mechanistic aspects of the reaction of CO2 reforming of methane over Rh/Al2O3 catalyst [J]. Applied Catalysis A:General,2003, 255(1):101-111.
    [69]柳海涛,田宏,王晓来.Mo、W金属氧化物对CH4-CO2重整Ni基催化剂性能的影响[J].分子催化,2007,21(4):304-307.
    [70]吴晓滨Ni-Ce-ZrO2催化剂在二氧化碳甲烷重整制合成气中的研究[J].内蒙古石油化工,2006,(11):8-10.
    [71]牛春艳,徐占林.不同焙烧温度制备的类钙钛矿型复合氧化物La2NiO4的性能研究[J].硅酸盐通报,2010,29(5):1231-1234.
    [72]许铮,李玉敏,张继炎,等.甲烷二氧化碳重整制合成气的镍基催化剂性能:碱性助剂的作用[J].催化学报,1997,18(5):364-367.
    [73]B. Pholjaroen, N. Laosiripojana, P. Praserthdam, et al. Reactivity of Ni/SiO2·MgO toward carbon dioxide reforming of methane under steady state and periodic operations [J]. Journal of Industrial and Engineering chemistry,2009,15(4):488-497.
    [74]栾超,由长福.甲烷二氧化碳重整反应镍基催化剂的研究[J].工程热物理学报,2010,31(10):1772-1774.
    [75]Petar Djinovic, Jurka Batista, Albin Pintar. Efficient catalytic abatement of greenhouse gases:Methane reforming with CO2 using a novel and thermally stable Rh-CeO2 [J]. Catalyst,2011,(1):1-9.
    [76]A.T.Ashcrosft, A.K.Cheethma, M.L.HGrene, et al. Partial oxidation of methane to synthesis gas using carbon dioxide [J]. Nature,1991,352:225-226.
    [77]孙艳朋,聂勇,吴昂山,等.热等离子体重整甲烷和二氧化碳制合成气的热力学研究[J].天然气化工,2010,35(2):22-28.
    [78]姜洪涛,李会泉,张懿.Ni/Al2O3催化剂上CH4三重整反应催化剂床层温度分布 [J].燃料化学学报,2007,35(1):72-78.
    [79]郭建军.复合氧化物负载的镍基催化剂上甲烷二氧化碳重整反应及其机理研究[D].浙江:浙江大学,2005.
    [80]Li Daihong, Li Xiang, Bai Meigui, et al. CO2 reforming of CH4 by atmospheric pressure glow discharge plasma:A high conversion ability [J]. International Journal of Hydrogen Energy,2009,34(1):308-313.
    [81]孙志强,吴晋沪,Zhang Dongke.甲烷和二氧化碳在煤焦上反应制备合成气实验研究[J].燃料化学学报,2009,37(6):641-647.
    [82]杨怀旺,申峻,刘振东,等.焦炉煤气中富甲烷气与二氧化碳催化转化制合成气[J].煤炭学报,2008,33(2):205-209.
    [83]陈吉祥,王日杰,张继炎.压力对CH4/CO2重整制取合成气反应性能的影响[J].化学反应工程与工艺,2005,21(4):365-369.
    [84]张丙模.小型高温高压反应器及加压炭催化CH4/CO2重整研究[D].太原:太原理工大学,2010.
    [85]Zhang Yongfa, Zhang Guojie, Zhang Bingmo, Effects of pressure on CO2 reforming of CH4 over carbonaceous catalyst, Chemical Engineering Journal,2011, (173)2: 592-597.
    [86]王玉和,徐柏庆.加压下Ni/MgO催化剂催化CO2重整CH4反应的特性[J].催化学报,2005,26(4):277-283.
    [87]Arun S.K. Raju, Chan S. Park, et al. Synthesis gas production using steam hydro gasification and steam reforming [J]. Fuel Processing Technology,2009, 90(2):330-336.
    [88]Cui Yuehua, Xu Hengyong, Ge Qingjie, et al. Kinetic study on the CH4/CO2 reforming reaction:Ni-H in Ni/α-Al2O3 catalysts greatly improves the initial activity [J]. Journal of Molecular Catalysis A:Chemical,2006,243(2):226-232.
    [89]Cui Yuehua, Zhang Huidong, Xu Hengyong, et al. The CO2 reforming of CH4 over Ni/La2O3/α-Al2O3 catalysts:The effect of La2O3 contents on the kinetic performance [J]. Applied Catalysis A:General,2007,311(16):60-69.
    [90]Cui Yuehua, Zhang Huidong. Xu Hengyong, et al. Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst:The effect of temperature on the reforming mechanism [J]. Applied Catalysis A:General,2007, 318(20):79-88.
    [91]A. Nandini, K.K. Pant,S.C. Dhingra. Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 [J]. catalyst 2006, 308(10).119-127.
    [92]孙志强.吴晋泸,王洋.煤与甲烷共转化过程中煤焦二氧化碳气化动力学研究[J].燃料化学学报,2009,37(4):410-415.
    [93]纪敏,吴志芸,毕颖丽,等.甲烷与二氧化碳重整制取合成气反应的研究ⅢSr(La)NiAl11O19积炭动力学[J].分子催化.1998,12(5):355-361.
    [94]Aritomo Yamaguchi, Enrique Iglesia. Catalytic activation and reforming of methane on supported palladium clusters [J]. Journal of Catalysis,2010.274(1):52-63.
    [95]Y. Schuurman, C. Marquez-Alvarez, V.C.H. Kroll. et al. Unraveling mechanistic features for the methane reforming by carbon dioxide over different metals and supports by TAP experiments [J]. Catalysis Today,1998.46 (2-3):185-192.
    [96]P. Ferreira-Aparicio. I. Rodr'iguez-Ramos. J.A. Anderson, et al. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts [J]. Applied Catalysis A: General,2000,202(2):183-196.
    [97]N. Laosiripojana, S. Assabumrungrat. Catalytic dry reforming of methane over high surface area ceria [J]. Applied Catalysis B:Environmental,2005,60(1-2):107-116.
    [98]A. Slagtern, Y. Schuurman, C. Leclercq, et al. Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/LaiO3 Catalyst [J]. Journal of Catalysis,1997,172(1):118-126.
    [99]钱鸿森.微波加热技术及应用[M].哈尔滨:黑龙江科学技术出版社,1985.
    [100]B. Fidalgo, A. Dominguez, J.J. Pis, et al. Microwave-assisted dry reforming of methane [J]. International Journal of Hydrogen Energy,2008,33(16):4337-4344.
    [101]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社,2001.
    [102]Tao Xumei, Bai Meigui, Li Xiang, et al. CH4-CO2 reforming by plasma-challenges and opportunities [J]. Progress in Energy and Combustion Science,2011, 37(2):113-124.
    [103]翟林燕,于淼,周倩,等.等离子体作用下二氧化碳氧化甲烷反应研究-过渡金属氧化物的催化作用[J].低温与特气,2011,29(2):31-34.
    [104]Ni Guohua, Lan Yan, Cheng Cheng, et al.Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure [J]. International Journal of Hydrogen Energy,2011,36(20):12869-12876.
    [105]Zhang Xu, Wang Baowei, Liu Yongwei, et al. Conversion of Methane by Steam Reforming Using Dielectric-barrier Discharge [J]. Chinese Journal of Chemical Engineering,2009,17(4):625-629.
    [106]A.M. Ghorbanzadeh, R. Lotfalipour, S. Rezaei. Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma [J]. International Journal of Hydrogen Energy,2009,34(1):293-298.
    [107]Tao Xumei, Bai Meigui, Wu Qingyou, et al. CO2 reforming of CH4 by binode thermal plasma [J]. International Journal of Hydrogen Energy,2009,34(23):9373-9378.
    [108]施玉川,李新德.太阳能应用[M].西安:陕西科学技术出版社,2001.
    [109]桑丽霞,刘晓倩,黄莹,等.太阳能甲烷重整反应的研究进展[J].天然气化工(Cl化学与化工),2009,3:67-71.
    [110]J.H. Edwards, K.T. Do, A.M. Maitra, et al. The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat [J]. Energy Conversion and management,1996,37(6-8):1339-1344.
    [111]Reiner Buck, James F. Muir, Roy E. Hogan. Carbon dioxide reforming of methane in a solar volumetric receiver/reactor:the CAESAR project [J]. Solar Energy Materials, 1991,24(1-4):449-463.
    [112]Nobuyuki Gokon, Yuhei Yamawaki, Daisuke Nakazawa, et al. Ni/MgO-Al2O3 and Ni-Mg-O catalyzed SiC foam absorbers for high temperature solar reforming of methane [J]. International Journal of Hydrogen Energy,2010,35(14):7441-7453.
    [113]Muradov Nazimz. CO2 Free Production of Hydrogen by Catalytic Pyrolysis of Hydrocarbon Fuel [J]. Energy & Fuels,1998,12(1).41-48.
    [114]MuradovN. Catalysis of methane decomposition over elemental carbon [J]. Catalysis Communications,2001,2(3-4):89-94.
    [115]Muradov N, Chen Z, Smith F. Fossil hydrogen with reduced CO2 emission:Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles [J]. International Journal of Hydrogen Energy,2005,30(10):1149-1158.
    [116]Sun Zhiqiang, Wu Jinhu. Methane cracking over a bituminous coal char [J]. Energy & Fuels,2007,21(2):1601-1605.
    [117]Sun Zhingqiang, Wu Jinhu, Wang Yang, et al. Methane cracking over a Chinese coal char in a fixed-bed reactor [C].5th Asia-Pacific Conference on Combustion. Australia, 2005.
    [118]徐泽夕,吴晋沪,王洋,等.甲烷在褐煤煤焦上的裂解反应研究[J].燃料化学学报,2009,37(3):277-281.
    [119]Wei Ling, Tan Yisheng, Han Yizhuo, et al. Hydrogen production by methane cracking over different coal chars [J]. Fuel,2011,90(11):3473-3479.
    [120]白宗庆,陈皓侃,李文,等.甲烷在活性炭上裂解制氢研究[J].燃料化学学报,2006,34(1):66-70.
    [121]贺苗,陈久岭,李永丹.处理方法对活性炭在流化床反应器内甲烷催化裂解制氢活性的影响[J].燃料化学学报,2007,35(3):308-312.
    [122]白宗庆,陈皓侃,李文,等.酸处理对活性炭性质及其催化裂解甲烷制氢性能的影响[J].中国矿业大学学报,2006,35(2):246-250.
    [123]Bai Zongqing, Chen Haokan, Li Wen, et al. Hydrogen production by methane decomposition over coal char [J]. International Journal of Hydrogen Energy,2006, 31(7):899-905.
    [124]Myung Hwan Kim, Eun Kyoung Lee, Jin Hyuk Jun, et al. Hydrogen production by catalytic decomposition of methane over activated carbons:kinetic study [J]. International Journal of Hydrogen Energy,2004,29(2):187-193.
    [125]Yuki Kameya, Katsunori Hanamura. Kinetic and Raman spectroscopic study on catalytic characteristics of carbon blacks in methane decomposition [J]. Chemical Engineering Journal,2011,173(2):627-635.
    [126]He Xinfu, Liu Sibao, Hu Haoquan,et al. Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15 [J].International Journal of Hydrogen Energy,2011, 36(15):8978-8984.
    [127]Muradov, Z. Chen, F.Smith. Fossil hydrogen with reduced CO2 emission:Modeling thermocatalytic decomposition of methane in a fluidized bed of carbon [J]. International Journal of Hydrogen Energy,2005,30(10):1149-1158.
    [128]A. Dufour, A. Celzard, V. Fierro, et al. Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas[J], Applied Catalysis A:General, 2008,346(1-2):164-173.
    [129]Chen Jiuling, He Miao, Wang Gaowei, et al. Production of hydrogen from methane decomposition using nanosized carbon black as catalyst in a fluidized-bed reactor [J]. International Journal of Hydrogen Energy,2009,34(24):9730-9736.
    [130]R. Moliner, I. Suelves, M.J. Lazaro, et al. Thermocatalytic decomposition of methane over activated carbons:influence of textural properties and surface chemistry[J]. International Journal of Hydrogen Energy,2005,30(3):293-300.
    [131]Zhang Guojie, Dong Yue, Feng Meirong, et al. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst [J]. Chemical Engineering,2010, (156)3:519-523.
    [132]M. Khoshtinat Nikoo, N.A.S. Amin. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation [J]. Fuel Processing Technology,2011,92(3):678-691.
    [133]J.L. Pinilla, S. de Llobet, I. Suelves, et al. Catalytic decomposition of methane and methane/CO2 mixtures to produce synthesis gas and nanostructures [J]. carbonaceous material,2011,90(6):2245-2253.
    [134]R. Utrilla, J.L. Pinilla, I. Suelves, et al. Catalytic decomposition of methane for the simultaneous co-production of CO2-free hydrogen and carbon nanofibre based polymers [J]. Fuel,2011,90(1):430-432.
    [135]张华伟,赵炜,张永发.半焦在富含甲烷气体转化制备合成气中的作用[J].煤炭转化,2005,28(1):40-43.
    [136]尹兴良.炭材料负载金属催化剂催化CH4-CO2重整制合成气的研究[D].太原:太原理工大学,2011.
    [137]李延兵,肖睿,金保升,等.焦炭体系下二氧化碳重整甲烷制取合成气[J].燃烧科学与技术,2009,15(3):238-242.
    [138]李延兵.炭体系下二氧化碳重整甲烷试验研究及数值模拟[D].南京:东南大学,2008.
    [1]Zhang Yongfa. A new technology of three products from coal based on a L T integrated apparatus[C]. Beijing:Proceeding of workshop on coal gasification for clean and secure energy for china,2003,235-246.
    [2]成海柱,张永发.焦炉煤气非催化部分氧化制合成气实验研究与数值模拟[J].现代化工,2009,(S1):337-341.
    [3]谢克昌.高碳能源要低碳化利用[J].山西能源与节能,2010,(4):1-4.
    [4]Fischer F., Tropsch H. The preparation of synthetic oil mixtures from carbon monoxide and hydrogen [J]. Brennst-Chem,1923,276-285.
    [5]Abbott J, Crewdson B. Gas heated reforming improves Fischer tropsch process [J]. Oil & Gas Journal,2002, (100):64-66.
    [6]Edwards J. H., Maitra A. M.. The chemistry of methane reforming with carbon dioxide and its current and potential applications [J]. Fuel Processing Technology,1995, (86)2: 269-289.
    [7]D.V. Demidov, I.V. Mishin, M.N. Mikhailov. Gibbs free energy minimization as a way to optimize the combined steam and carbon dioxide reforming of methane [J]. International Journal of Hydrogen Energy,2011,36(10):5941-5950.
    [8]yma Ozkara-Aydinoglu. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas [J]. International Journal of Hydrogen Energy,2010,35(23):12821-12828.
    [9]Osamu Takayasu, Fumihisa Sato, Kyoko Ota, et al. Separate production of hydrogen and carbon monoxide by carbon dioxide reforming reaction of methane [J]. Energy Conversion and Management,1997,38(S):S391-S396.
    [10]Huseyin Arbag, Sena Yasyerli, Nail Yasyerli, et al. Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane [J]. International Journal of hydrogen energy,2010,35(16):2296-2304.
    [11]Liu Dapeng, Raymond Lau, Armando Borgna, et al. Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts [J]. Applied Catalysis A:General, 2009,(358)2:110-118.
    [12]N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat. Synthesis gas production from dry reforming of methane over Ce0.75Zr0.25O2 supported Ru catalysts [J]. Chemical Engineering Journal,2005,112(1-3):13-22.
    [13]Huang Tao, Huang Wei, Huang Jian, et al. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts [J]. Fuel Processing Technology,2011,92(10):1868-1875.
    [14]B. Bachiller-Baeza, C. Mateos-Pedrero, M.A. Soria, et al. Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3 [J]. Applied Catalysis B:Environmental,2013,129(1):450-459.
    [15]Sun Laizhi, Tan Yisheng, Qingde Zhang, et al. Effects of Y2O3-modification to Ni/y-Al2O3 catalysts on autothermal reforming of methane with CO2 to syngas [J]. International Journal of Hydrogen Energy,2013,38(4):1892-1900.
    [16]Chen Wei, Sheng Wenqian, Cao Fahai, et al. Microfibrous entrapment of Ni/Al2O3 for dry reforming of methane:Heat/mass transfer enhancement towards carbon resistance and conversion promotion [J]. International Journal of Hydrogen Energy,2012, 37(23):18021-18030.
    [17]Shi Chuan, Zhang Anjie, Li Xiaosong, et al. Ni-modified Mo2C catalysts for methane dry reforming [J]. Applied Catalysis A:General,2012,431-432(7):164-170.
    [18]Abdulkader Albarazi, Patricia Beaunier, Patrick Da Costa. Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts:On the effect of promotion by Ce0.75Zr0.25O2 mixed oxide [J]. International Journal of Hydrogen Energy,2013,38(1):127-139.
    [19]D. San Jose-Alonso, M.J.Illan-Gomez, M.C. Roman-Martinez. Low metal content Co and Ni alumina supported catalysts for the CO2 reforming of methane [J]. International Journal of Hydrogen Energy,2013,38(5):2230-2239.
    [20]Wang S B, Lu G Q. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts:state of the art [J]. Energy & Fuels,1996,10:896-904.
    [21]J.H. Bitter, W. Hally, K. Seshan, J.G. van Ommen,et al. The role of the oxide support on the deactivation of Pt catalysts during the CO2 reforming of methane [J]. Catalysis Today,1996,29(1-4):349-353.
    [22]S. Damyanova, B. Pawelec, K. Arishtirova, J.L.G. Fierro. Ni-based catalysts for reforming of methane with CO2 [J]. International Journal of Hydrogen Energy,2012, 37(21):15966-15975.
    [23]Kang Kimoon, Kim Hyowon, Shim IlWun, et al. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane [J]. Fuel Processing Technology,2011,92(6):1236-1243.
    [24]高晋生.煤的热解、炼焦和煤焦油加工[M].北京:化学工业出版社,2010.
    [25]H.H. Lowry, Martin A. Elliott., Chemistry of coal utilization [M]. New York:Wiley, 1981
    [26]张华伟,赵炜,张永发.半焦在富含甲烷气体转化制备合成气中的作用[J].煤炭转化,2005,28(1):40-43.
    [27]J.M. Bermudez, B. Fidalgo, A. Arenillas, et al. Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis [J]. Fuel,2010,89(10): 2897-2902.
    [28]J.L. Pinilla, S. de Llobet, I. Suelves, et al.Catalytic decomposition of methane and methane/CO2 mixtures to produce synthesis gas and nanostructured carbonaceous material [J],2011,90(6):2245-2253.
    [29]Zhang Guojie, Dong Yue, Feng Meirong, et al. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst [J]. Chemical Engineering Journal,2009,156(2):519-523.
    [30]李玉洁,王鹏,赵炜,等.半焦在富含甲烷气体转化制备合成气中的作用(Ⅱ):活化半焦对CO和H2反应生成CH4的作用[J].煤炭转化,2007,30(1):34-38.
    [31]尹兴良.炭材料负载金属催化剂催化CH4-CO2重整制合成气的研究[D].太原:太原理工大学,2011.
    [32]李延兵,肖睿,金保升,等.焦炭体系下二氧化碳重整甲烷制取合成气[J].燃烧科学与技术,2009,15(3):238-242.
    [33]李延兵.炭体系下二氧化碳重整甲烷试验研究及数值模拟[D].南京:东南大学,2008.
    [34]张丙模.小型高温高压反应器及加压炭催化CH4/CO2重整研究[D].太原:太原理工大学,2010.
    [35]Zhang Yongfa, Zhang Guojie, Zhang Bingmo, et al. Effects of pressure on CO2 reforming of CH4 over carbonaceous catalyst, Chemical Engineering Journal,2011, (173)2:592-597.
    [36]金保升,李延兵,肖睿,等.焦炭体系下添加剂对CO2重整CH4特性的影响[J].动力工程,2008,28(5):764-768.
    [37]张卫东,张永发,田承圣.炭催化CH4-CO2重整制合成气的研究[J].山西能源与节能,2009,(4):34-37.
    [38]Mariana de M.V.M. Souza, Lionel Clave, Vincent Dubois. Activation of supported nickel catalysts for carbon dioxide reforming of methane [J]. Applied Catalysis A:General, 2004,272(1-2):133-139.
    [39]Mohammad Haghighi, Sun Zhiqiang, Wu Jinhu, et al. On the reaction mechanism of CO2 reforming of methane over a bed of coal char [J]. Proceedings of the Combustion Institute,2007,31(2):1983-1990.
    [40]张卫东.炭催化CH4-CO2重整制合成气机理及炭化剂中灰分和官能团特性研究 [D].太原:太原理工大学,2009.
    [41]Zhang Guojie, Zhang Yongfa, Guo Fengbo, et al. CH4-CO2 Reforming to Syngas and Consumption Kinetics of Carbonaceous Catalyst [J]. Energy Procedia 2011, (11):3041-3046.
    [42]Zhang Yongfa, Zhang Meng, Zhang Guojie, et al. Effect of carbon deposition over carbonaceous catalysts on CH4 decomposition and CH4-CO2 reforming [J]. Frontier of Chemical Engineering in China,2010,4 (4):481-485.
    [43]陈国玺,张月明.矿物热分析粉晶分析相变图谱手册[S].成都:四川科学技术出版社,1989.
    [44]Tatsuro Horiuchi, Kaori Sakuma, Takehisa Fukui, et al. Suppression of carbon deposition in the CO2 reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst [J]. Applied Catalysis A:General,1996,144(1):111-120.
    [45]刘水刚,李军平,赵宁,等.介孔Ni/CaO2ZrO2纳米复合物催化甲烷和二氧化碳重整[J].催化学报,2007,28(11):1019-1023.
    [1]孙会青,曲思建,王利斌.半焦的生产加工利用现状[J].洁净煤技术,2008,14(6):62-65.
    [2]朱永生,曹俊昌,郭婷.半焦的高温活化改性[J].山西化工,2011,31(1):7-9.
    [3]A. Chareonlimkun, V. Champreda, A. Shotipruk, et al. Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts [J]. Fuel,2010,89(10):2873-2880.
    [4]Pornlada Daorattanachai, Pongtanawat Khemthong, Nawin Viriya-empikul, et al. The Effect of Catalyst Types and Starting Materials on Furan Production in Hot Compressed Water [J]. Energy Procedia,2011,9:515-521.
    [5]Shen Yuan, Wu Haiyan, Pan Zhiyan. Co-liquefaction of coal and polypropylene or polystyrene in hot compressed water at 360-430℃ [J]. Fuel Processing Technology, 2012,104(12)281-286.
    [6]李春虎,高健,冯丽娟,等.一种用于低温催化氧化的半焦烟气脱硝剂的制备方法[P].中国专利:201010204883,2010-12-22.
    [7]郑仙荣,李春虎,上官炬,等.活性半焦脱除烟道气中SO2的研究[J].太原理工大学学报,2003,34(3):276-281.
    [8]Berkant Kayan, Belgin Gozmen. Degradation of Acid Red 274 using H2O2 in subcritical water:Application of response surface methodology [J]. Journal of Hazardous Materials, 2012,201-202(1):100-106.
    [9]Rattana Muangrat, Jude A. Onwudili, Paul T. Williams. Reaction products from the subcritical water gasification of food wastes and glucose with NaOH and H2O2 [J]. Bioresource Technology,2010,101(17):6812-6821.
    [10]Javier Rivas, Olga Gimeno, Ruth G. de la Calle, et al. Remediation of PAH spiked soils: Concentrated H2O2 treatment/continuous hot water extraction-oxidation [J]. Journal of Hazardous Materials,2009,168(2-3):1359-1365.
    [11]A. Kruse, E. Dinjus. Hot compressed water as reaction medium and reactant:Properties and synthesis reactions [J]. The Journal of Supercritical Fluids,2007,39(3):362-380.
    [12]A. Martin, U. Armbruster, P. Muller, et al. Oxidative conversion of alkyl naphthalenes to carboxylic acids in hot pressurised water [J]. The Journal of Supercritical Fluids, 2008,45(2):220-224.
    [13]Sun Tao, Wang Min, Lee Wing-Cheung. Surface characteristics, properties and in vitro biological assessment of a NiTi shape memory alloy after high temperature heat treatment or surface H2O2-oxidation:A comparative study [J]. Materials Chemistry and Physics,2011,130 (1-2):45-58.
    [14]田芳,张永发,李春虎.高压水热反应改性球化结构型煤半焦脱硫工艺研究[J].中国煤炭,2011,(2):77-80.
    [15]张丽.改性活性半焦吸附剂脱除汽油中硫化物的研究[D].青岛:中国海洋大学,2008.
    [16]Muniz J, Herrero JE, Fuertes AB. Treatments to enchance the SO2 capture by activated carbon fibes [J]. Applide catalysisi B:Environmental,1998,18:171-179.
    [1]Vasant R. Choudhary, Bathula Prabhakar, Amarjeet M. Rajput, et al. Oxidative conversion of methane to CO and H2 over Pt or Pd containing alkaline and rare earth oxide catalysts [J]. Fuel,1998,77(13):1477-1481.
    [2]Eli Ruckenstein, Hu Yunhang. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts [J]. Applied Catalysis A:General,1995, 133(1):149-161.
    [3]郭芳,储伟,黄丽琼,等.载体酸碱性对CO2/CH4重整反应用镍基催化剂的影响[J].合成化学,2008,16(5):495-498.
    [4]Tae Hyun Kim, Y.Y. Lee. Fractionation of corn stover by hot-water and aqueous ammonia treatment [J]. Bioresource Technology,2006,97(2):224-232.
    [5]Jaclyn Donald, Chunbao (Charles) Xu, Hiroyuki Hashimoto, et al. Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere [J]. Applied Catalysis A:General,2010,375(1):124-133.
    [6]J.M. Jones, M. Pourkashanian, A. Williams, et al. The selective oxidation of ammonia over alumina supported catalysts-experiments and modelling [J]. Applied Catalysis B: Environmental, Volume,1 September 2005,60(1-2):139-146.
    [7]王萍.改性活性半焦脱除烟气中NOx的研究[D].青岛:中国海洋大学,2010.
    [8]O. Grasset, J. Pargamin. The ammonia-water system at high pressures:Implications for the methane of Titan [J]. Planetary and Space Science,2005,53(4):371-384.
    [9]潘红艳,李忠,夏启斌,等.氨水改性活性炭纤维吸附苯乙烯的性能[J].功能材料,2008,39(2):324-427.
    [10]曹秀华,王炼石.碱活化改性高龄土/NR复合材料的结构和性能研究[J].橡胶工业,2007,54(7):394-397.
    [11]王林学.改性活性半焦选择性吸附汽油脱硫的研究[D].青岛:中国海洋大学,2009.
    [12]卜亿峰,卢星河,王亚权.氨水改性催化环己酮肟Beckmann重排反应的研究[J].河北工程大学学报,2008,25(4):95-99.
    [13]Guo Jianjun, Lou Hui, Zheng Xiaoming. The deposition of coke from methane on a Ni/MgAl2O4 catalyst [J]. Carbon,2007,45(6):1314-1321.
    [14]Supaporn Therdthianwong, Chairut Siangchin, Apichai Therdthianwong. Improvement of coke resistance of M/Al2O3 catalystin CH4/CO2 reforming by ZrO2 addition [J]. Fuel Processing Technology,2008,89(2):160-168.
    [15]Li Xiancai, Wu Min, Yang Yafang, et al. Studies on coke formation and coke species of nickel based catalysts in CO2 reforming of CH4 [J]. Catalysis Letters,2007,118(1-2): 59-63.
    [16]郭瑞莉.活性半焦用于烟气脱硫脱硝的研究[D].青岛:中国海洋大学,2009.
    [17]乔文明,查庆芳,刘朗.KOH活化动力学及活化机理初探[J].炭素技术,1994,(4):8-10.
    [18]肖仁贵,廖霞.KOH为化学活化剂的活化过程探讨[J].贵州化工,2003,28(5):26-27.
    [1]朱炳辰.化学反应工程(第三版)[M].北京:化学工业出版社,2001.
    [2]宋世谟,王正烈,李文斌.物理化学(第三版)[M].北京:高等教育出版社,1999.
    [3]Yongfa Zhang. A new technology of three products from coal based on a L T integrated apparatus[C]. Beijing:Proceeding of workshop on coal gasification for clean and secure energy for china,2003,235-246.
    [4]陈吉祥,王日杰,张继炎.压力对CH4/CO2重整制取合成气反应性能的影响[J].化学反应工程与工艺,2005,21(4):365-369.
    [5]张丙模.小型高温高压反应器及加压炭催化CH4/CO2重整研究[D].太原:太原理工大学,2010.
    [6]Zhang Yongfa, Zhang Guojie, Zhang Bingmo, Effects of pressure on CO2 reforming of CH4 over carbonaceous catalyst, Chemical Engineering Journal,2011, (173)2: 592-597.
    [7]张丙模,张永发.高压CH4-CO2重整制合成气研究进展[J].山西能源与节能,2009,(5):37-40.
    [8]王玉和,徐柏庆.加压下Ni/MgO催化剂催化C02重整CH4反应的特性[J].催化学报,2005,26(4):277-283.
    [9]郑津洋,董其伍,桑芝富.过程设备设计[M].北京:化学工业出版社,2001.
    [10]邰学林.等压内冷式高温高压化学反应器[P].中国专利:200510117667,2007-12-19.
    [11]董跃,张丙模,王丽萍,等.一种固定床反应器[P].中国专利:CN101537327,2009-04-29.
    [12]张国杰.碳材料催化二氧化碳重整甲烷制合成气[D].太原:太原理工大学,2012.
    [13]Zhang Guojie, Dong Yue, Feng Meirong, et al. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst [J]. Chemical Engineering Journal,2009,156(2):519-523.
    [14]张卫东,张永发,田承圣.炭催化CH4-CO2重整制合成气的研究[J].山西能源与节能,2009,(4):34-37.
    [15]Zhang Guojie, Zhang Yongfa, Guo Fengbo, et al. CH4-CO2 Reforming to Syngas and Consumption Kinetics of Carbonaceous Catalyst [J]. Energy Procedia 2011, (11):3041-3046.
    [16]Zhang Yongfa, Zhang Meng, Zhang Guojie, et al. Effect of carbon deposition over carbonaceous catalysts on CH4 decomposition and CH4-CO2 reforming [J]. Frontier of Chemical Engineering in China,2010,4 (4):481-485.
    [17]A.T.Ashcrosft, A.K.Cheethma, M.L.HGrene, et al. Partial oxidation of methane to synthesis gas using carbon dioxide [J]. Nature,1991,352:225-226.
    [18]姜洪涛,李会泉,张懿Ni/Al2O3催化剂上CH4三重整反应催化剂床层温度分布[J].燃料化学基础,2007,35(1):72-78.
    [19]张华伟,赵炜,张永发.半焦在富含甲烷气体转化制备合成气中的作用[J].煤炭转化,2005,28(1):40-42.
    [20]Guo Fengbo, Zhang Yongfa, Zhang Guojie, et al. Syngas production by Carbon dioxide reforming of methane over different semi-cokes [J]. Journal of Power Sources,2013, 231(11):82-90.
    [21]Arun S.K. Raju, Chan S. Park, et al. Synthesis gas production using steam hydro gasification and steam reforming [J]. Fuel Processing Technology,2009, 90(2):330-336.
    [22]Wei Ling, Tan Yisheng, Han Yizhuo, et al. Hydrogen production by methane cracking over different coal chars [J]. Fuel,2011,90 (11):3473-3479.
    [1]Brandford M C J, Nannice M A. CO2 reforming of CH4 [J]. Catalysis Reviews Science and Engineering,1999,41:1-42.
    [2]牛春艳,徐占林.CH4与C02催化重整制合成气研究进展[J].贵州化工,2006,31(5):14-21.
    [3]李穗玲,李白滔.甲烷二氧化碳催化重整制合成气的催化剂研究新进展[J].石油与天然气化工,2008,37(4):285-290.
    [4]Voget E T C, Geus J W. Prevention of growth of filamentary carbon in supported iron and nickel catalysts [J]. Studies in Surface Science and Catalysis,1987,34:221-223.
    [5]Eli Ruckenstein, Yun Hang Hu. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts [J]. Applied Catalysis A:General,1995, 133(1):149-161.
    [6]于丽华,黄伟,谢克昌.甲烷活化机理研究进展[J].天然气化工,2003,26(1):43-45.
    [7]Huang Wei, Huang Tao, Huang Jian, et al. Methane reforming reaction with carbon dioxide over SBA-15 supported Ni-Mo bimetallic catalysts [J]. Fuel Processing Technology.2011.92(10):1868-1875.
    [8]Mun-Sing Fan, Ahmad Zuhairi Abdullah, Subhash Bhatia. Hydrogen production from carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2 catalyst:Process optimization [J]. International Journal of Hydrogen Energy,2011,36(8):4875-4886.
    [9]陈甘棠.化学反应工程(第二版)[M].北京:化学工业出版社,1990.
    [10]Mark M F, Maier W F. CO2 Reforming of methane on supported Rh and Ir catalysts [J]. Journal of Catalysis,1996,164(1):122-130.
    [11]A. Erdohelyi, J. Cserenyi, F. Solymosi. Activation of CH4 and its Reaction with CO2 over Supported Rh Catalysts [J]. Journal of Catalysis,1993,141(1):287-299.
    [12]史克英,商永臣,魏树权,等.天然气二氧化碳转化制合成气的研究-Ⅸ反应机理[J].哈尔滨师范大学自然科学学报,1998,14(1):51-55.
    [13]M. C. J. Bradford, M. A. Vannice. CO2 reforming of CH4 over supported Pt catalysts [J]. Journal of Catalysis.1998.173(1):157-171.
    [14]A. Nandini, K.K. Pant, S.C. Dhingra. Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst [J]. 2006.308(10).119-127.
    [15]Rostrupnielsen J. R, Hansen J. H. B. CO2 Reforming of methane over transition metals [J]. Journal of Catalysis,1993,144(1):38-49.
    [16]钱林平.铑基催化剂上甲烷二氧化碳重整反应的研究[D].上海:复旦大学,2011.
    [17]Mohammad Haghighi, Sun Zhiqiang, Wu Jinhu, et al. On the reaction mechanism of CO2 reforming of methane over a bed of coal char [J]. Proceedings of the Combustion Institute,2007,31(2):1983-1990.
    [18]黄仲涛,耿建铭.工业催化(第二版)[M].北京:化学工业出版社,2006.
    [19]宋世谟,王正烈,李文斌.物理化学(第二版)[M].北京:高等教育出版社,1999.
    [20]朱炳辰.化学反应工程(第三版)[M].北京:化学工业出版社,2001.
    [21]M. C. J. Bradford, M. A. Vannice. Catalytic reforming of methane with carbon dioxide over nickel catalysts Ⅱ:Reaction kinetics [J]. Applied Catalysis A:General,1996,142 (1):97-122.
    [22]Guo Fengbo, Zhang Yongfa. Kinetic Study of the CO2 Reforming of CH4 to Synthesis Gas over Carbonaceous Catalyst [J]. Asian Journal of Chemistry,2012,24(2):787-791.
    [23]Cui Yuehua, Zhang Huidong, Xu Hengyong, et al. The CO2 reforming of CH4 over Ni/La2O3/α-Al2O3 catalysts:The effect of La2O3 contents on the kinetic performance [J]. Applied Catalysis A:General,2007,311(16):60-69.
    [24]Wei Junmei, Enrique Iglesia. Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts [J]. Journal of Catalysis,2004,224 (1):370-383.
    [25]Wang Shengguang, Liao Xiaoyuan, Hu Jia. Kinetic aspect of CO2 reforming of CH4 on Ni (111):A density functional theory calculation [J]. Surface Science,2007,601 (2): 1271-1284.
    [26]J.T. Richardson, M. Garrait, J.-K. Hung. Carbon dioxide reforming with Rh and Pt-Re catalysts dispersed on ceramic foam supports [J]. Applied Catalysis A:General,2003, 255(1):69-82.
    [27]孙志强,吴晋沪,王洋.煤与甲烷共转化过程中煤焦二氧化碳气化动力学研究[J].燃料化学学报,2009,37(4):410-415.
    [28]Akpan E, Sun Y, Kumar P, Ibrahim H, et al. Kinetics, experimental and reactor modeling studies of the carbon dioxide reforming of methane over a new Ni/CeO2-ZrO2 catalyst in a packed bed tubular reactor [J]. Chemical Engineering Science,2007,62(15): 4012-4024.
    [29]李联豹RSER制氢过程复合催化剂反应特性及动力学研究[D].杭州:浙江大学,2008.
    [30]张国杰,张永发,张猛,等.炭催化剂甲烷分解及其动力学特性[J].现代化工,2009,29(S 1):29-32.
    [31]王金刚.催化剂上甲烷水蒸气重整本征动力学研究[D].北京:北京化工大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700