泵站水流运动特性及水力性能数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泵站作为耗能大户,提高其运行水力性能具有重要现实意义。本文研究以南水北调东线工程泵站建设和大型泵站更新改造为背景,运用三维紊流模拟技术辅依实验等研究手段,基于大型计算流体力学软件Fluent为平台,对涉及影响泵站水力性能的过流结构进行全面系统的研究,揭示泵站内部流动特性、预测水力性能,提出设计目标。
     基于紊流数值模拟,全面系统地研究了泵站进水池、进水流道、出水流道及整体泵装置内部流动规律和水力性能。通过与已有实验成果比较表明计算结果是可信的,今后采用本文研究方法与实验研究相结合,可充实补充实验数据,甚至减少实验工作量。
     提出了从外特性和内特性两方面进行泵站进水池优化的目标函数。采用重整化群紊流模型对泵站进水池进行数值模拟研究,获得了三维基本流态,分析了泵站进水池设计参数对水力性能及流态的影响,在分析吸水管内断面流速分布基础上,推荐了水泵名义高度的取值。
     建立在对立式泵装置喇叭管进水流道流场进行数值分析的基础上,提出了喇叭管进水流道演化理论。数值分析了肘形进水流道三维流动,提出叶轮名义高度控制参数。
     依据泵站出水流道的水力设计基本要求,建立了出水流道水力性能优化目标数学模型。依据优化目标,进行双向泵站出水室优选和出水流道内部流动特性分析,结合泵站改造,提出了双向泵装置的出水流道设计控制参数。
     采用多参考系模型,通过对三种不同形式的整体泵装置的计算,获得了内部三维流动特性,预测了水力性能,分析了特征工况与内流场的联系。泵装置计算结果与实验结果吻合较好,表明本文的三维流场计算和性能预测达到了工程应用研究的精度。在分析已有水力损失方法的基础上,提出了新的低扬程轴流泵装置水力损失计算方法。
It is important to improve the running performance of pump stations, which is consuming large energy. Based on the background for construction of the East Route Project of the South-to-North Water Transfers, this paper systemically studied on passage which influents the hydraulic performance, adopting three-turbulence numerical simulation technique and experimentation. The research work indicates the characteristic of flow, property predication for pumping system and design principle.An optimize function is put forward based on outer and inner characteristics. The RNG k-ε turbulent model is applied to simulate the turbulent flow of typical opening pump sump Thecomputation flow field of the sump was obtained. The design parameters of pump sump areanalyzed to how to influent the hydrulic performance and flow pattern. The recommendedmeasurements of nominal height for the pump sump are presented.Based on the basic rule of suction box, a mathematics method of optimize performance is brought forward. Numerical computation of the turbulence flow is applied to analyze the flow field of different kinds of suction box. Evolvement theory for suction box of pumping system is the suction boxes are derived from the opening pump sump. The different kinds of suction box can be united if they have same controlled essence parameters. The named height of elbow tube of pumping system is put forward.Based on the basic rule of outlet passage, a mathematics method of optimize performance is brought forward. By use of the turbulent model simulation, numerical solutions of the outlet diffusion and passage flows for the two-ways pumping system are obtained. The control parameters of outlet passage are suggested and the numerical loss of head was given. The result will be used to reconstruction of pumping system.According to analyzing some models of hydraulic loss, a loss computed method for axial-pump system is put forward base on new loss model. Based on viscous numeration of whole pumping system, a predication model of hydraulic performance has been set up. Then, an idea of hydraulic design is brought forward, which is based on part and whole perfection. Using multiple reference frames, three types of pumping system were computed. The three flows characteristic was achieved and hydraulic performances were predicated. A good agreement was achieved between prediction data with experience data. The precision of computation and prediction adapts engineering applied research.
引文
1.刘超.水泵及水泵站.北京:科技文献出版社,2003
    2.刘超.泵站经济运行.北京:水利电力出版社.1995
    3.田家山,徐辉.给排水泵站进水流态紊乱的危害与对策.河海大学学报,1988,(2):11~19
    4.严忠民,侧向进水前池特性的试验研究.河海大学学报,1991,(5):49~54
    5. Ansar M. Experimental and theoretical studies of pump-approach flow distributions at water intakes, Ph.D. Thesis, The University of Iowa. 1997
    6. J. paul Tullis, Modeling in design of pumping pits. J. of Hydranlic Division, 1979, 105(9):1053~1062
    7. Japan Association of Agricultaral Engineering Enterprises, Pumping station engineering handbook, Tokyo, 1991:127~138
    8.蔡付林等.双向水流侧式进出水口分流墩研究.河海大学学报,2000,(2):74~77
    9.周济人,汤方平,刘超.底坎在泵站前池流态改善中的应用.江苏农学院学报(水利专刊),1995:37~40
    10.扬州大学.郑集泵站整体模型试验研究报告.扬州:江苏机电排灌工程研究所,1994
    11.田家山.排涝泵站前池流态及其改善措施的研究.华东水利学院学报,1983,(2):38~50
    12.周济人,刘超,袁家博.改善王山泵站前池水流流态的模型试验研究.排灌机械,1995,(5):12~17
    13.周济人,刘超,汤方平.大型泵站前池水流流态模拟.水利水电技术,1996(9):41~43
    14.冯旭松.泵站前池底坎整流及坎后流动分析:[硕士学位论文].扬州:扬州大学,1996.
    15.何耘,刘成.污水泵站前池设置压水板的改进措施研究.水泵技术,2000,(2):21~24
    16. Deeny, D. F. An experimental study of air-entraining vortices at pump sumps. Proceedings of the institution of mechanical engingeers, London, England, 1956, 170(2): 106~116
    17. Y. R. Reddy, J.A.Pickford. Vortices at intakes in conventional sumps, Water Power, 1972:108~109
    18. Tagomori, M., Gotoh, M. Flow patterns and vortices in pump sumps. Proc., Int. Symp. on Large Hydr. Machinery, China press, 1989:13~22
    19. Akalank K.Jain, Kittur G.Ranga Raju, Ramachandra J. Garde. Vortices Formation at Vertical pipe intakes. J. of Hydraulic Division, 1978, 104(10): 1429~1445
    20. Anwar. H.O. Prevention of vortices at intake. Water power, 1968(10): 112~120
    21. Charles E. Sween, Rex A. Elder, Duncan Hay. Pump sump design experience, J. of Hydraulic Division, 1982, 108(3):361~377
    22. H.W.Iversen, Berkeley, Calif. Studies of submergence requirements of high-specific-speed pumps. The American Society, 1953(75): 635~641
    23. W. H. Fraser, Harrison.N.J. Hydraulic problems encountered in intake structures of vertical wet-pit pumps and methods leading to their solution, The American Society, 1953(75):645~652
    24. Matahel Ansar, Tatsuaki Nakato. Ansar, Experimental Study of 3D Pump-Intake Flows with and without Cross Flow. Journal of Hydranlic Engineering, 2001, 127(10):825~834
    25. I.S.Paterson. The design of pump intakes. Pumps, 1971(55):172~176
    26. U.S. Army Corps of Engineers. Hydraulic design guidance for rectangular sumps of small pumping stations with vertical pumps and ponded approaches. Engrg. Tech. Letter No. 1110-2-313, Washington,D.C. 1988
    27. Xian-ang Pan, Cun-zen Chen. Research and testing of sumps on low head pumping stations to determine optimum size. Proceedings of International Conference on Irrigation System Evaluation and Water Management, 1988:896~907
    28.钱义达,严登峰.泵站开敞式进水流道试验研究.江苏农学院学报,1989,10(2):47~52
    29. Padmanabhan, M., Hecker, G. E. Scale effects in pump sump models. J. Hydr. Engrg., ASCE,1984,110(11): 1540~1556
    30.赵毅山,吕大明.大型泵站高位井平面流态模拟.水动力学研究与进展(A辑),1998,(4):441~446
    31.赵毅山,韦鹊平.大型泵站前池非定常平面流态模拟.同济大学学报,1998,(4):401~404
    32.高秋生等.应用κ-ε紊流模型计算水泵站前池流场.见:第四届泵站工程学术讨论会论文集,山东廊坊,1992
    33.成立,刘超,周济人等.联合运行泵站前池优化数值模拟研究.灌溉排水,2002(3):68~70
    34.成立,刘超,周济人等.泵站前池底坎整流数值模拟研究.河海大学学报,2001(3):42~45
    35.张贤明,吉庆丰.泵站前池流态的数值模拟.灌溉排水,2001(1):35~42
    36. Jose Matos Silva, Songheng Li. Numerical simulation of flow in practical water-pump intakes", Proceedings of the ⅩⅩⅪ IAHR Congress, Beijing, CHINA, 2001
    37. Songheng Li., Lai, Y. G, Patel, V. C., etl. Water-intake pump bays: three-dimensional flow modeling, validation, and application. Proceedings of the 4th International Conference on Hydro informatics, Cedar Rapids, USA, 2000
    38. Lai, Y. G. Computational method of second-moment turbulence closures in complex geometries. AIAA JOURNAL, 1995, 33(8)
    39. Lai, Y. G. Unstructured grid Arbitrarily shaped element method for fluid flow simulation. AIAA JOURNAL, 2000,38(9)
    40. Nakato, Tatsuaki, Jong, D. D., and Brosow, Volker 1999 Hydraulic model study of red hills generating facility circulating water pumps, IIHR Technical Report No. 408, The University of Iowa, USA, September.
    41. Hwang, Young-Kyu; Heo, Joong-Sik; Choi, Wook-Jin Numerical and experimental investigations of channel flows in a disk-type drag pump. AIP Conference Proceedings, 2001, 585(1):903~911
    42. Constantinescu S.G, Patel V. C. Numerical model for simulation of pump-intake flow and vortices. Journal of Hydraulic Engineering, 1998, 125(2): 123~134
    43. Sotiropoulos, F., Patel V.C. Turbulence anisotropy and near-wall modeling in predicting three-dimensional shear-flows. AIAA J., 1995,33(3):504~514
    44. Rajendran, V. P, Constantinescu S. G, Patel V. C., Experimental Validation of Numerical Model of Flow in Pump-Intake Bays, Journal of Hydraulic Engineering, 1999,125(11): 1119~1125
    45. Rajendran V. P. and Patel V. C. Measurment of vortices in model pump-intake bay by PIV. Journal of Hydraulic Engineering, 2000,126(5): 322~334
    46.张波涛,袁辉靖.应用PIV技术测量封闭式水泵吸水池内部流场.水泵技术,2001(6):7~10
    47.李大亮.开敞式进水池内部流动的PIV三维测量[硕士学位论文].扬州:扬州大学,2004
    48.王业明,石斯聪.大泵肘形进水流道过水断面的分析与应用 江苏农学院学报.1994,15(1):75~80
    49. Lu Lingguang et al. Optimum hydraulic design for inlet passage of a large pumping station. Proceeding of international conference on pumps and systems, Beijing: 1992:572~581
    50.陆林广,周济人.泵站进水流道三维紊流数值模拟及水力优化设计.水利学报,1995(12):67~75
    51.刘超.低扬程水泵及其装置的研究与进展.江苏农学院学报(水利专辑),1998:5~8
    52.王业明.大泵出水流道计算机辅助设计.中国农村水利水电,1995(9):30~33
    53.王业明,魏海.泵站进水流道三维造型系统的研究.扬州大学学报(自然科学版),2000,3(1):58~61
    54.郭娟,杨敬江,关醒凡.面向对象技术在轴流泵CAD中的应用.排灌机械,2000,18(6):17~19
    55.北村升.泵吸水管的问题.泵工学,1972(9)
    56. Krishna, H.C.R. Return flow on the suction side of an axial flow impeller. TranS IAHR Symp 5th,1970
    57.吴君安.离心泵吸入管中流动的探讨.水泵技术,1980(2)
    58.姚志民.混流式可逆水泵水轮机流速场的量测及初步分析.清华大学科学报告,QH80019(68)
    59.刘超.水泵进水流道内部流态的研究.[硕士学位论文].南京:华东水利学院,1981
    60. Tang fangping、Liuchao, PIV for propeller pumps applications, The second international symposium of fluid machinery and fluid engineering, 2000:128~134
    61.皮积瑞等.大型立式轴流泵站进、出水流道型式的试验研究.水泵技术,1982(3)
    62.施卫东.浙江盐官下河泵站轴流泵装置模型的研究.农业工程学报,1999,15(2):85~89
    63.张庆范,吴桐林,靳子清.贯流泵装置的试验研究.农业机械学报,1985,38~47
    64.陈毓陵,梅瑞松.泵站双向进水室的涡带及整流措施.安徽水利科技,1999(2):14~16
    65.刘超,周济人,汤方平,等.低扬程双向流道泵装置研究.农业机械学报,2001,32(1):49~51
    66.周济人,刘超,袁家博,等.大型泵站箱涵式双向进水流道试验研究.扬州大学学报(自然科学版),1999,2(4):79~82
    67.汤方平,袁家博,周济人.轴流泵站进出水流道水力损失的试验研究.排灌机械,1995,13(3)13~14
    68.汤方平,周济人.低扬程泵装置性能的决定因素.排灌机械,1997,15(1):12~13
    69.阎超.大型贯流站进水流道的流体动力学数值分析理论.武汉水利电力学院学报,1986(3)
    70.陈红勋,张仁田.一种计算大型泵站进水流道内部流场的方法.排灌机械,1993,11(4):19~22
    71. Lu Lingguang. R Booij. Numerical determination of hydraulic optimized suction box of a larger pumping station. Proceeding of ⅩⅦ IAHR Symposium, Beijing, 1994.
    72.成立,刘超,谢伟东,等.大型泵站肘形弯管进水流道数值优化研究.排灌机械,2002,20(6):19~22
    73. Igor Karassik et al. Pump handbook. Magraw-Hill Book Company. USA, 1986
    74. Stepanoff, A. J. Centrifugal and Axial Flow Pumps. Wiley. New York, USA,1948
    75. Stepanoff, A. J. Turboblowers, Theory, Design, and Application of Centrifugal, and Axial Flow Compressors and Fans. Wiley, New York, 1955
    76. Shepherd, D. G. Principles of Turbomachincry. Macmillan, New York, 1956
    77. Wislicenus, G.F. Fluid Mechanics of Turbomachincry. Vols. 1 and 2, 1947, Dover, Expanded 1965
    78.赵锦屏.轴流泵设计中环量分布规律的分析.华中工学院学报,1982(2)
    79.金平仲.轴流泵的变环量设计方法.水泵技术,1985(2)
    80.汤方平.轴流泵CAD/CAM.江苏农学院学报,1998,19(1):2~5
    81.李芬花,刘永前.水力机械内部流动计算的一种新奇点法.华北水利水电学院学报,1997,18(4):28~33
    82.林汝长.水力机械流动理论.北京:机械工业出版社,1995
    83. Wu C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, radial and mixed flow types. NACA TN-2604,1952
    84. Jenions I K, Stow P. A Quasi-Three-Dimensional Turbomachinery Blade Design System:Part Computerized System. ASME Journal of Engineering for Gas Turbines and Power, 1 984,107(2):308~316
    85.彭国义.轴流式水轮机转轮的准三维有旋流动设计.水利学报,1996(10):10~17
    86.罗兴琦.混流式转轮的准三维设计.水利学报,1996(10):18~21
    87.彭国义.轴流式水轮机转轮全三维有旋流动反问题计算.水利学报,1996(10):61~67
    88.罗兴琦,陈乃样.有旋流动的全三元反问题计算在混流式转轮设计中的应用.水利学报,1996(10):27~31
    89.金树德,陈次昌.现代水泵设计方法.北京:兵器工业出版社,1993:263~316
    90.罗兴琦.混流式转轮的全三元反问题计算与优化.[博士学位论文],北京:清华大学,1995
    91.赖喜德.混流式转轮片优化设计的理论探讨.东方电机,1994(2):1~6
    92.赖喜德.基于性能预测的水轮机水力优化设计.水动力学研究与进展(A辑),2002,17(6):656~664
    93.聂锦凰.轴流泵和导叶混流泵水力模型通过科研鉴定.水泵技术,1981(3)
    94.刘超,汤方平,周济人.高性能低扬程轴流泵水力模型开发与应用.水泵技术,2001(3):3~6
    95.关醒凡.已开发的系列轴流泵水力模型研究介绍.水泵技术,2002(4):20~22
    96.汤方平.“S”翼型叶片双向轴流泵设计.水泵技术,2002(5):11~13
    97. Tang fangping, Liuchao. The Reversible Axial pump and Pumpins system. The second international symposium of fluid machinery and fluid engineering, 2000:518~521
    98.陈新方.轴流泵和离心泵的可逆性能.水泵技术,1982(1)
    99. Adrian, R.J.,Particle-imaging techniques for experimental fluid dynamics. Ann.Rev. Fluid Mech.1991, 261(23)
    100. Grant, I. Particle imaging velocimetry: a Review, Proc.Instn Mech Engrs. 1997(211):55~76
    101. Tisserant, D., Breugelmans, F.A.E., Rotor Blade-to-Blade Measurements Using Particle Image Velocmetry. ASME J.of Turbo-machinaery, 1997(119): 176~181
    102. Post M E, Goss L P, Brainard L F. Two—color particle imanging velocimetry in turbine cascade. Proceedings of the AIAA Aerospace Sciences Mtg, AIAA 91—0274, Reno NV, 1991
    103. Shepherd, I.C., La Fontaine,R.F.,welch,L.W., Dowine, R,J., Velocity measurement in fan rotors using particle imaging velocimetry, ASME Conference on laser Anemometry-1994:Advances and Applications, 1994(191): 179~183
    104. Rothlubbers, C., Scheffler, T., Orglmeister, R., Siekmann, H., Particle tracking velocimetry measurements in a radial pump with particle pair detection using the hough transform. Eighth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon. Portugal, 1996:861~866.
    105. Oldenburg M, Pap E. Velocity measurement in the impeller and in the volute of centrifugal pump by particle image displacement velocimetry, Eighth International Symposium on Applications of Laser Techniques to Fluid Mechanic. Lisbon, Portugal, 1996:821~825
    106. Paone, N.,Riethmuller, M.L.,Van den Braembussche, R.A., Application of particle image displacement velocimetry to a centrifugal pump, Fourth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 1988
    107. Mark P. wernet, PIV for turbo-machinery applications, NASA Technical Memorandum 107525,1997
    108.刘宝杰,王光华.翼型近尾迹流动的PIV研究.工程热物理学报,1999,20(4):431~435
    109.刘超,R.Deotte,K.Rashid.离心泵叶轮内旋转流场的激光测量研究.江苏农学院学报,1994,15(4):64~71
    110. Yi-Chih Chow, Oguz Uzol, Joseph Katz, etc. An investigation of axial turbomachinery flows using PIV in an optically-unobstructed facility. The 9th of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii, February 10-14, 2002
    111. G. Wuibaut, G. Bois, P. Dupont, etc. PIV measurements in the impeller and the vaneless diffuser of a radial flow pump in design and off-design operating conditions. ASME J. Fluids Eng., 2002,124:791~797
    112. Yang hua, Liu chao. The study on the flow fields in the centrifugal pump by PIV, The 4th international conference on pumps and fans, 2002
    113.杨昌明.轴流泵间隙流动数值模拟与试验研究.[博士学位论文].成都:西南交通大学,2003
    114. Schilling, R., RiedellN., Ritsinger, S.A. Critical review of numerical models predicting the flow through hydraulic machinery, Proc. 17th HAR Symposium, Beijing,1994
    115. Goede, E., Sebestyen, A. and Schachenmann, A. Navier-Stokes flow analysis for a pump impeller. Proc. of the 16th IAAR Symp, 1992:513~523.
    116. Shiyi Chen. Direct numerical simulations of the Navier-Stokes alpha model, Physica D: Nonlinear Phenomena, Volume 133, Issues 1-4,10 1999:66~83.
    117.张兆顺.湍流.北京:国防工业出版社,2002
    118. Markatos N C, The mathematical modeling of turbulence flows. Appl Math Modeling, 1986:190~220
    119. Orszag S A. Numerical simulation of turblence flows. In:Frost W, Moulden TH, eds. Handbook of turbulence. New York:Plenum Press, 1977. 281~313
    120. B. E. Launder, G.J.Reece, W.Rodi. Progress in the development of a Reynolds-stress turbulence closure. J. of Fluid Mech. 1975, 68(3):537~566
    121. Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 1974(3):269~289
    122. Smagorinsky J. General circulatio experiments with the primitive equations. Part 1; the basic experiment. Mon Weather Rev. 1963:99~165
    123. Diaguji H. Numerical analysis of three-dimensional potential flow in axial flow turbomachinery. Bulletin of JSME.1983, 2 6(215):763~769
    124.袁晓辉,权先璋,张勇传等.混流式转轮内三维势流边界元计算.大电机技术,2001(1):33~35
    125.林汝长.水泵水轮机转轮流动准三元计算.水力发电学报,1982(1):8~15
    126. Graf E. Analysis of centrifugal impeller BEEP and recirculating flows:Comparison of Q3D and Navier-Stokes solutions. ASME FED-1993, 1993(154):81~95
    127. Abdallah S, Smith C F. Three- dimensional solutions for inviscid incompressible flow in turbo- machines. J of Turbo- machinery, 1990, 112:391~398
    128.曹智鹏,陈乃祥,樊红刚等.三峡转轮内部流动的全三维欧拉解.清华大学学报(自然科学版),1999,39(11):38~34
    129. Yasutoshi Senoo, Yoshiyuki Nakase. An analysis of flow through a mixed flow impeller. Journal of Engineering for Power, 1972(1)
    130. Yasutoshi Senoo, Yoshiyuki Nakase, A blade theory of impeller with an arbitrary surface of revolution, Journal of Engineering for Power, 1971 (10)
    131. Krimmerman Y, Adler D. The three-dimensional flow field in turbo impellers. Journal of Mechanical Engineering Science, 1978(20):56~61
    132. Martelli F, Michelassi V. Using viscous calculations in pump design. Journal of Fluid Engineering, 1991(9):315~350
    133.曹树良,吴玉林,杨辅政.混流式水轮机转轮内部三维紊流的数值分析.水力发电学报,1997,59(4):52~60
    134.曹树良,杨辅政,吴玉林.用代数应力紊流模型预估水轮机转轮内部三维流场.清华大学学报(自然科学版),1998,38(4):113~116
    135.任静,吴玉林,杨建明,等.水力机械转轮内的CFD分析及优化设计.工程热物理学报,2000,21(3):316~320
    136.徐宇,吴玉林,任静.泵-水轮机转轮内部泵工况含沙紊流分析及磨蚀预测.水泵技术,1996(6):3~6
    137.杨宁.叶轮机械内部流动不同湍流模型的比较.[硕士学位论文].上海:上海理工大学,2005
    138.周凌九.水轮机转轮流场计算及性能预测.[博士学位论文].北京:中国农业大学,2000
    139.张昌兵,杨永全,鞠小明等.混流式转轮中流场的大涡模拟.水科学进展,2002,13(6):675~681
    140.汤方平,王国强,刘超,等.高比转数轴流泵水力模型设计与紊流数值分析.机械工程学报,2005,41(1):119~123
    141. Tang Hongfen, Zhang Liang, Wu Yulin. Three Dimensional Numerical Simulation of Flow Field inside a Two-Stage Axial Flow Pump. The 4th International Conference on Pumps and Fans, 2002 Tsinghua University, Beijing
    142.王德军.对旋轴流泵的设计理论与试验研究.工程力学,2004,21(3):150~154
    143. Steven M. Miner. Evaluation of blade passage analysis using coarse grids. ASME J. Fluids Eng., 2000,122:345~352
    144. Yumin Xiao Numerical simulations on flow and heat transfer in turbine cascade and tip clearance over shrouded blades Ph.D 2001 The University of Wisconsin-Milwaukee, USA
    145. M.Sell, M.Treiber, C.Casciaro, etc. Tip-clearance-affected flow fields in a turbine blade row. IMechE 1999:465~476
    146.李巍,王国强.具有叶顶间隙轴流叶栅流动数值模拟.上海交通大学学报,2000,34(12):1709~1712
    147. J P Vandoormaal G D Raithby Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer heat transfer, 1984(7): 147~163
    148. M. Sedlar, M. Vlach, J. Soukal. Numerical and experimental investigation of flow in axial flow hydraulic machinery. IMechE 1999
    149. Felix A. Muggli, Peter Holbein, Philippe Dupont. CFD calculation of a mixed flow pump characteristic from shutoff to maximum Flow. ASME J. Fluids Eng., 2002, 124:798~802
    150. Warn-Gyu Park, Jin-Ho Jang. Numerical simulation of flowfield of ducted marine propeller with guide vane. The 4th International Conference on Pumps and Fans, Tsinghua University, Beijing, 2002:307~314
    151.成立,刘超,汤方平,等.对称翼型转轮双向泵装置紊流数值模拟与性能预测.农业机械学报,2004,35(5)74~77
    152.M.萨拉贝热尔.在改造工程中加速混流式水轮机转轮设计的方法(上、下).水利水电快报,2001,22(18):10~11
    153.Brekk,H.混流式水轮机水力设计方法.水利水电快报,1996,17(21):13~18
    154. Akira Goto, Motohiko Nohmi, etc. Hydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design method. ASME J. Fluids Eng., 2002, 124:329~335
    155.华绍曾,杨学宁.实用流体阻力手册.北京:国防工业出版社,1985
    156. Schlichting H. Boundary layer theory. New York:Me Graw-Hill Book Company, 1979. 112~130
    157.施克闯等.轴流泵水力模型性能预测.水泵技术,1993(3):25~30
    158.盛秩.可调式混流泵、轴流泵任意叶片安放角度的性能预测.水泵技术,1988(4):4~7
    159. Nagano Y, Tagawa M. An improved κ-ε model for boundary layer flows. ASME Journal of Fluid Engineering, 1990(112):33~39
    160. Karimipanah. M T, Olsson E. Calculation of three-dimensional boundary layers on rotor blades using integral method. ASME Journal of Turbomachinery, 1993(115): 342~353
    161. Lakshminarayana B, Popovski P. Three-dimensional boundary layeron a compressor rotor blade atpeakpressure rise coefficient. ASEM Journal of Turbomachinery, 1987(109):91~98
    162.彭国义,罗兴琦,郭齐胜.水轮机转轮三维边界层计算及性能预估.水利学报,1996(10):80~87
    163. Amone A. Viscous analysis of three-dimensional rotor flow using a multigrid method. ASME paper, 93-GT-19, 1993
    164. VuTC, Shyy W. Performace prediction by viscous flow analysis for Francis turbine runner. J. of fluid engineering, transaction of the ASME, 1994, 116
    165. Lakshminarayana B. An assessment of computational fluid dynamic techniques in the analysis and design of turbomachinery. ASME Journal of Fluid Engineering, 1991, 113(2):71~86
    166. Tsukamoto, H Off-design performance prediction for diffuser pumps. Proceedings of the Institution of Mechanical Engineers—Part A—Power & Energy, 2001,215(2):191~201
    167. Yakhot V, Orszag S A. Renormalization group analysis of turblence: basic theory. J Scient Comput. 1986(1):3~11
    168. Baliga B R, Patankar S V. A new finite-element formulation for convection diffusion problems. Numer Heat Transfer, 1980(3):393~409
    169.刘超,大型泵站钟形进水流道流速场的试验研究.江苏农学院学报,1985.6(2):41~47
    170.刘超,双向钟形进水流道的试验研究.江苏农学院学报,1985.6(4):9~12
    171.金忠青.N-S方程的数值解法和紊流模型,南京:河海大学出版社,1989
    172.江苏省水利动力工程重点实验室.江都三站更新改造泵装置模型试验研究总报告.扬州:扬州大学,2001:B-19
    173.江苏机电排灌研究所.淮河入海水道近期工程穿堤泵站贯流泵装置模型试验研究报告.扬州:扬州大学,1999:95
    174.江苏省水利动力工程重点实验室.秦淮新河抽水站技术改造双向泵装置模型试验研究总报告.扬州:扬州大学,2002:A-18,A-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700