用户名: 密码: 验证码:
大气压纳秒脉冲放电等离子体数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气压纳秒脉冲放电作为一种有效的大气压非平衡等离子体产生方式,被广泛的应用于高能脉冲CO_2与准分子气体激光器泵浦、等离子体平板显示、等离子体医疗、环境治理、纳米材料合成、流动控制、等离子体隐身等诸多民用和军事领域。而且相对于其他放电方式,它还有紫外辐射以及氧原子、臭氧产率高,等离子体密度高,低能耗等优点。本论文将分从数值模拟与实验两个方面研究大气压纳秒脉冲放电等离子体。
     数值模拟研究通过自主编程,建立了一套适用于大气压纳秒脉冲放电模拟的PIC-MCC模型。为适应大气压纳秒脉冲放电的特点,该模型在传统PIC-MCC方法的基础上采用了隐式PIC格式和基于能量的带电粒子重整化方法。并针对大气压下电子极高的碰撞频率,提出了多MCC过程的处理方法。
     使用上述PIC-MCC模型,首先对大气压下氩气典型参数纳秒脉冲放电过程进行了详细的数值模拟研究。给出了等离子体特征物理量的的时间演化与空间分布结果。这些结果,证实了本论文PIC-MCC模型的准确性。依据有效电子温度的变化规律将大气压纳秒脉冲放电过程分成七个阶段,分析了各个阶段的等离子体的演化过程及形成机理。
     在此基础上,模拟二次电子发射率、放电电压、脉冲上升时间、初始电子密度以及中性气体温度这些放电参数对等离子体演化的影响。发现二次电子发射率在数纳秒脉冲范围内对等离子体的影响可以忽略不计;放电电压决定着最终的电子密度与最大电子温度;慢上升沿的脉冲放电电子密度、电子温度的增速也会减慢;初始电子密度仅影响等离子体鞘层形成的时间;中性气体温度影响电子密度增速、最大电子温度及鞘层形成时间。
     最后比较并深入分析了氦气、氖气放电与氩气放电的异同。由于正离子荷质比和碰撞截面的与氩气的不同不同,氦气、氖气放电鞘层附近电子峰值明显,电子能量分布在鞘层形成之前近似服从麦克斯韦分布。三者的整体演化过程和鞘层形成后的电子能量分布均相似。
     实验研究工作包括纳秒脉冲放电中性粒子温度测量与阴极鞘层能量注入比例测量两方面内容。
     首先详述了利用N2分子第二正带系光谱转动结构拟合中性气体温度的方法。在此基础上,分别使用低分辨率、高分辨率光栅光谱仪测量了实验室自制放电装置的时间分辨发射光谱。将低分辨率光谱强度与放电波形对照,发现在放电击穿前就有较强的发光。由高分辨率光谱观测结果可计算出两个时间段,四条振动带(0-0、0-1、0-2、0-3)的转动温度。对于方差可接受的拟合结果,同一时刻拟合的转动温度基本一致。
     为研究阴极鞘层注入能量比例,本论文提出了一种利用纳秒脉冲放电后阴极鞘层激波波速测量阴极鞘层温度、阴极鞘层与正柱区注入能量密度比的新方法。首先利用ICCD相机采集放电后时间序列的流场干涉图。然后从图像中提取激波波前位置并拟合阴极激波波速,进而计算出不同放电电压及工作气体气压下的阴极鞘层温度、阴极鞘层与正柱区注入能量密度比。阴极鞘层温度和阴极鞘层、正柱区注入能量密度比分别由放电过程中的总的注入能量密度与脉冲放电的击穿时间决定。
     这些实验工作直接或间接的反映了纳秒脉冲放电的过程以及相应的规律,为系统的进行更小空间尺度、更短时间尺度的大气压纳秒脉冲放电实验研究提供了方法与技术手段。
As an effective method to generate atmospheric-pressure non-equilibrium plasma, atmospheric-pressure nanosecond-pulsed discharge has promising applications in pumping pulsed CO2laser and excimer laser, plasma display panel, plasma medicine, pollution control, nanofrabrication, flow control, plasma stealth, etc. Compared with other generation methods, it has higher yields of UV radiation, oxygen atom and ozone, higher plasma density and peak current, and lower energy comsuption. In this thesis, atmospheric pressure nanosecond pulsed discharge is investigated experimentally and simulatively.
     In simulation study, a PIC-MCC modeling, which is suitable for atmospheric-pressure nanosecond-pulsed discharge, is set up. In order to adapt the characteristics of atmospheric-pressure nanosecond-pulsed discharge, the special methods, implicit PIC algorithm and renormalization algorithm based on energy, have been utilized in the modeling. In addition, multiple MCC processes method is put forward to deal with the extremely high collision frequency of the electron in atmospheric pressure.
     Firstly, using the PIC-MCC modeling, the process of atmospheric-pressure argon nanosecond-pulsed discharge with typical parameters is studies in detail. The evolutions and distrubutions of plasma characteristics are reported. These results confirm the accuracy of the PIC modeling. Based on the evolution of effective temperature, the discharge process can be divided into seven phases, and the evolution and mechanism of the plamsa in seven phases are analysed.
     On the basis of discharge process analysis, the impact of discharge parameters, such as second electron emission ratio, plateau voltage, pulse rise time, initial charged particle density, and neutral gas temperature are studied simulatively. It is found that the impact of second electron emission ratio can be ignored in several nanoseconds pulse, and the plateau voltage in the pulse waveform is a major factor controlling the final charged particle density in the plasma bulk. The growth of electron density and effective electron temperature is slowing with longer pulse rise time, and the initial charged particle density can only affect the built-up time of cathode sheath. What is more, the neutral gas temperature influences the growth speed of electron density, maximum effective electron temperature, and the built-up time of cathode sheath.
     Finally, the similarities and differences of the nanosecond-pulsed discharges in three different noble gases (helium, neon and argon) are compared and analysed. The differences of specific charge and cross section lead to the quasi-Maxwell energy distribution of electron before the cathode sheath formation, and the electron peak near the cathode sheath in helium and neon. However, the evolution processes and the electron energy distributions after the cathode sheath formation are similar in these three gases.
     The experimental study contains the measurements of neutral gas temperature and energy injection ratio between cathode sheath and plasma bulk in atmospheric-pressure nanosecond-pulse discharge.
     In order to measure gas temperature during the discharge, the method of fitting plasma emission molecular spectra is adopted. Firstly, the nitrogen second positive spectra system is analyzed. On this basis, the time-resolved emission spectra are measured with low and high resolution grates. Compareing the spectra radiation intensity with the discharge voltage waveform, it can be found that high intensity radiation has appeared before discharge breakdown. The rotational temperatures of four vibration bands (0-0,0-1,0-2and0-3) in two different times can be fitted by the high resolution spectra, which coincide with each other.
     In order to study the injection energy ratio of cathode sheath, a new method, which using cathode shock wave velocity, is put forward to measure the cathode sheath temperature and the energy injection ratio between cathode sheath and plasma bulk. Firstly, the time sequence flow field interferograms after discharge are acquisited by the ICCD camera. After that, the cathode shock wave velocities in different discharge conditions are extracted from these interferograms to calculate the cathode sheath temperature and the energy injection ratio. It is found that the cathode sheath temperature and the energy injection ratio are determined by the specific energy deposition and the breakdown delay time respectively.
     These experiment studies reflect the process and law of the nanosecond-puled discharge, and offer the methods for systematic experimental study of atmospheric-pressure nanosecond-pulsed discharge with less special and temporal scale.
引文
[1]Chen F F. Introduction to plasma physics and controlled fusion, volume 1:plasma physics. New York:Springer,1984.1-3
    [2]Lieberman M, Lichtenberg A. Principles of plasma discharges and materials processing. Hoboken:John Wiley & Sons,2005.8-10
    [3]Tendero C, Tixier C, Tristant P, et al. Atmospheric pressure plasmas:a review. Spectrochim. Acta B,2006,61(1):2-30
    [4]Kogelschatz U. Atmospheric-pressure plasma technology. Plasma Phys. Control. Fusion,2004,46(12B):B63-B75
    [5]卢新培,严萍,任春生等.大气压脉冲放电等离子体的研究现状与展望.中国科学:物理学力学天文学,2011,41(7):801~815
    [6]李适民.激光器件原理与设计.北京:国防工业出版社,1998.86-120
    [7]Basting D, Marowsky G. Excimer laser technology. New York:Springer,2005. 41-64
    [8]丁可.等离子体应用技术的数值模拟研究:[博士学位论文].上海:复旦大学,2006
    [9]Boeuf J P. Plasma display panels:physies, recent developments and key issues. J. Phys. D:Appl. Phys.,2003,36(6):R53-79
    [10]Kong M G, Kroesen G, Morfill G, et al. Plasma medicine:an introductory review. New J. Phys.,2009,11(1):115012
    [11]Morfill G E, Kong M G, Zimmermann J L. Focus on plasma medicine. New J. Phys.,2009,11(11):115011
    [12]Park G Y, Park S J, Choi M Y, et al. Atmospheric-pressure plasma sources for biomedical applications. Plasma Sources Sci. Technol.,2012,21(4):043001
    [13]Weltmann K D, Kindel E, Von Woedtke T, et al. Atmospheric-pressure plasma sources:prospective tools for plasma medicine. Pure Appl. Chem.,2010,82(6): 1223-1237
    [14]Laroussi M. Non-thermal decontamination of biological media by atmospheric pressure plasmas:review, analysis and prospects. IEEE Trans. Plasma Sci.,2002, 30(4):1409-1415
    [15]Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine. Plasma Process. Polym.,2008,5(6):503-533
    [16]Chang J S. Physics and chemistry of plasma pollution control technology. Plasma Sources Sci. Technol.,2008,17(4):045004-1-6
    [17]聂勇.脉冲放电等离子体治理有机废气放大试验研究.[博士学位论文].杭州:浙江大学,2004
    [18]Kim H H. Nonthermal plasma processing for air-pollution control:a historical review, current issues, and future prospects. Plasma Proc. Polym.,2004,1(2):91-110
    [19]Chang J S. Recent development of plasma pollution control technology:a critical review. Sci. Technol. Adv. Mat.,2001,2(3):571-576
    [20]Locke B R, Republic C. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Ind. Eng. Chem. Res.,2006,45:882-905
    [21]Mariotti D, Sankaran R M. Microplasmas for nanometerials synthesis. J. Phys. D: Appl. Phys.,2010,43(32):323001
    [22]Ostrikov K K, Cvelbar U, Murphy A B. Plasma nanoscience:setting directions, tackling grand challenges. J. Phys. D:Appl. Phys.,2011,44(17):174001
    [23]Mariotti D, Sankaran R M. Perspectives on atmospheric-pressure plasmas for nanofabrication. J. Phys. D:Appl. Phys.,2011,44(17):174023
    [24]Chiang W H, Sankaran R M. In-flight dimensional tuning of metal nanoparticles by microplasma synthesis for selective production of diameter-controlled carbon nanorubes. J. Phys. Chem. C,2008,112:17920-17925
    [25]Roth J R. Aerodynamic flow acceleration using paraelectric and peristaltic electrohydro-dynamic effects of a one atmosphere uniform glow discharge plasma. Phys. Plasmas,2003,10(5):2117-2126
    [26]Shang J S, Surzhikov S T, Kimmel R, et al. Mechanisms of plasma actuators for hypersonic flow control. Progress in Aerospace Sciences,2005,41(8):642-668
    [27]Suzen Y B, Huang P G, Jacob J D, et al. Numerical simulations of plasma based flow control applications. AIAA,2005.4633
    [28]Corke T C, Mertz B. Plasma flow control optimized airfoil. AIAA,2006.1208
    [29]Huang X, Zhang X, Li Y. Broadband flow-induced sound control using plasma actuators, J. Sound Vibration,2010,329(13):2477-2489
    [30]Samimy M, Kim J H, Kastner J, et al. Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech.,2007,578:305-330
    [31]Raizer Y P. Gas discharge physics. Berlin:Springer-Verlag,1991.45-51
    [32]庄钊文,袁乃昌,刘少斌等.等离子体隐身技术.北京:科学技术出版社,2006.44~52
    [33]Iza F, Kim G J, Lee S M, et al. Microplasmas:sources, particle kinetics, and biomedical applications. Plasma Proc. and Polym.,2008,5(4):322-344
    [34]Beckerl K H, Schoenbach K H, Eden J G. Microplasmas and applications. J. Phys. D:Appl. Phys.,2006,39(3):R55
    [35]Foest R, Schmidt M, Becker K. Microplasmas, an emerging field of low-temperature plasma science and technology. Int. J. Mass Spectrom.,2006,248(3): 87-102
    [36]张芝涛.大气压窄间隙DBD等离子体源与应用基础研究:[博士学位论文].沈阳:东北大学,2003
    [37]Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J. Appl. Phys.,1998,83(6):2950-2957
    [38]Walsh J L, Iza F, Kong M G. Characterisation of a 3 nanosecond pulsed atmospheric pressure argon microplasma. Eur. Phys. J. D,2010,60(3):523-530
    [39]Martens T, Bogaerts A, Dijk J. Pulse shape influence on the atmospheric barrier discharge. Appl. Phys. Lett.,2010,96(13):131503
    [40]Mildren R, Carman R. Enhanced performance of a dielectric barrier discharge lamp using short-pulsed excitation. J. Phys. D:Appl. Phys.,2001,34(1):L1-L6
    [41]Anderson J D. Computational Fluid Dynamics. New York:McGraw-Hill,1995.4-6
    [42]邵福球.等离子体粒子模拟.北京:科学出版社,2002.8-10
    [43]Fletcher R C. Impulse breakdown in the 10-9 sec. range of air at atmospheric pressure. Phys. Rev.,1949,76(10):1501-1511
    [44]Felsenthal P, Proud J M. Nanosecond-pulse breakdown in gases. Phys. Rev.,1965, 139(6A):1796-1804
    [45]Mesyats G A, Bychkov Y I, Kremnev V V. Pulsed nanosecond electric discharges in gas. Sov. Phys. Usp.,1972,15(3):282-296
    [46]Kunhardt E E, Byszewski W W. Development of overvoltage breakdown at high gas pressure. Phys. Rev. A,1980,21(6):2069-2076
    [47]Palmer A J. A physical model on the initiation of atmospheric-pressure glow discharges. Appl. Phys. Lett.,1974,25(3):138-140
    [48]Kline L E, Denes L J. Investigations of glow discharge formation with volume preionization. J. Appl. Phys.,1975,46(4):1567-1574
    [49]Levatter J I, Lin S C. Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures. J. Appl. Phys.,1980,51(1):210-222
    [50]Bretagne J, Louvet Y. Theoretical analysis of the x-ray initiation of a high-pressure argon discharge for laser applications. J. Appl. Phys.,1987,61(3):827-832
    [51]Taylor R S. Preionization and discharge stability study of long optical pulse duration UV-preionized XeC1 lasers. Appl. Phys. B,1986,41(1):1-24
    [52]Dreiskemper R, Schroder G, Botticher W. Light emission during cathode sheath formation in preionized high-pressure glow discharges. IEEE Trans. Plasma Sci., 1995,23(2):180-187
    [53]Schroder G, Haferkamp J, Botticher W. Energy deposition in the cathode layer of transient high pressure glows derived from interferograms of the emanating pressure wave. J. Appl. Phys.,1995,78(8):4859-4866
    [54]Belasri A, Boeuf J P, Pitchford L C. Cathode sheath formation in a discharge-sustained XeCl laser. J. Appl. Phys.,1993,74(3):1553-1567
    [55]Cernak M, Bessieres D, Paillol J. Positive streamer formation in cathode region of pulsed high-pressure discharges for transversely excited atmosphere laser applications. J. Appl. Phys.,2011,110(5):053303-053311
    [56]Xiong Z M, Kushner M J. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers. J. Appl. Phys.,2011,11(8): 083304
    [57]Mathew D, Bastiaens H M J, Boller K J, et al. Peters. Effect of preionization, fluorine concentration, and current density on the discharge uniformity in F2 excimer laser gas mixtures. J. Appl. Phys.,2007,102(3):033305
    [58]Pai D Z, Lacoste D A, Laux C O. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—he spark regime. Plasma Sources Sci. Technol.,2010, 19(6):065015
    [59]Pai D Z, Stancu G D, Lacoste D A, et al. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—he glow regime. Plasma Sources Sci. Technol., 2009,18(4):045030
    [60]Pai D Z, Lacoste D A, Laux C O. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure. J. Appl. Phys.,2010.107(9):093303
    [61]Lu X P, Laroussi M. Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer. Appl. Phys. Lett., 2008,92(5):051501
    [62]Xiong Q, Nikiforov A Y, Lu X P, et al. High-speed dispersed photographing of an open-air argon plasma plume by a grating ICCD camera system. J. Phys. D:Appl. Phys.,2010,43(41):415201
    [63]Xiong Q, Lu X, Liu J, et al. Temporal and spatial resolved optical emission behaviors of a cold atmospheric pressure plasma jet. J. Appl. Phys.,2009,106(8): 083302
    [64]Urabe K, Sakai O, Tachibana K. Combined spectroscopic methods for electron-density diagnostics inside atmospheric-pressure glow discharge using He/N2 gas mixture. J. Phys. D:Appl. Phys.,2011,44(11):115203
    [65]Stark R H, Schoenbach K H. Electron heating in atmospheric pressure glow discharges. J. Appl. Phys.,2001,89(7):3568-3572
    [66]Macheret S O, Shneider M N, Miles R B. Modeling of air plasma generation by repetitive high-voltage nanosecond pulses. IEEE Trans. Plasma Sci.,2002,30(3): 1301-1314
    [67]Macheret S O, Shneider M N, Murray R C. Ionization in strong electric fields and dynamics of nanosecond-pulse plasmas. Phys. Plasmas,2006,13(2):023502
    [68]Macheret S O, Ionikh Y Z, Chernysheva N V, et al. Shock wave propagation and dispersion in glow discharge plasmas. Phys. Fluids,2001,13(9):2693-2705
    [69]Poggie J, Adamovich I, Bisek N, et al. Numerical simulation of nanosecond-pulse electrical discharges. Plasma Sources Sci. Technol.,2013,22(1):015001
    [70]Poggie J, Bisek N, Adamovich I V, et al. Numerical simulation of a nanosecond pulse discharge in Mach 5 flow. AIAA,2013.0458
    [71]Shi F, Wang D, Ren C. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases. Phys. Plasmas,2008,15(6):063503
    [72]Sang C, Sun J, Wang D. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period:a PIC simulation. J. Phys. D:Appl. Phys.,2010,43(4):045202
    [73]Iza F, Walsh J L, Kong M G. From submicrosecond-to nanosecond-pulsed atmospheric-pressure plasma. IEEE Trans. Plasma Sci.,2009,37(7):1289-1296
    [74]Buneman O. Dissipation of currents in ionized media. Phys. Rev.,1959,115(3):503-517
    [75]Buneman O, Dunn D. Computer experiments in plasma physics. Science J.,1966,2: 34-43
    [76]Dawson J M. Thermal relaxation in a one-species, one-dimensional plasma. Phys. Fluids,1964,7(3):419-425
    [77]Dawson J M. One-dimensional plasma model. Phys. Fluids,1962,5(4):445-459
    [78]Malmberg J H, Wharton C B. Collisonless Damping of Electrostatic Plasma Waves. Phys. Rev. Lett.,1964,13(6):184-186
    [79]Lawson W S. Particle simulation of bounded ID plasma systems. J. Comput. Phys., 1989,80(6):253-276
    [80]Verboncoeur J P, Alves M V, Vahedi V, et al. Simultaneous Potential and Circuit Solution for 1d bounded Plasma Particle Simulation Codes. J. Comp. Phys.,1993, 104(2):321-328
    [81]Vahedi V, Birdsall C K, Lieberman M A, et al. Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations. Phys. Fluids B,1993,5(7):2719-2729
    [82]Verboncoeur J P, Langdon A B, Gladd N T. An object-oriented electromagnetic PIC code. Comp. Phys. Comm.,1995,87(2):199-211
    [83]Birdsall C K. Particle-in-Cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Trans. Plasma Sci.,1991,19(2):65-85
    [84]Vahedi V. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comp. Phys. Comm.,1995,87(2): 179-198
    [85]Vahedi V. Modeling and simulation of RF discharges used for plasma processing: [Ph.D. Thesis]. Berkeley:UC Berkeley,1993
    [86]Villasenor J, Buneman O. Regorous charge conservation for local electromagnetic field solvers. Comp. Phys. Comm.,1992,69(3):306-316
    [87]Dawson J M. Particle simulation of plasmas. Rev. Mod. Phys.,1983,55(2):403-447
    [88]Langdon A B. On enforcing Gauss'law in electromagnetic particle-in-cell codes. Comp. Phys. Comm.,1992,70(3):447-450
    [89]Pukhov A, Meyer-ter-Vehn J. Relativistic magnetic self-channeling of light in near-critical plasma:Three-dimensional particle-in-cell simulation. Phys. Rev. Lett., 1996,76(21):3975-3978
    [90]Esirkepov T Z. Modeling and simulation of RF discharges used for plasma processing. Comp. Phys. Comm.,2001,135:144-153
    [91]Pukhov A. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys.,1999,61:425-433
    [92]Eastwood J W, Arter W, Brealey N J, et al. Body-fitted electromagnetic PIC software for use on parallel computers. Comp. Phys. Comm.,1995,87(2):155-178
    [93]Gudmundsson J T, Lieberman M A. Ar+and Xe+velocities near the presheath-sheath boundary in an Ar/Xe discharge. Phys. Rev. Lett.,2011,107(4):045002
    [94]Park G, You S, Iza F, et al. Abnormal heating of low-energy electrons in low-pressure capacitively coupled discharges. Phys. Rev. Lett.,2007,98(8):085003
    [95]Iza F, Lee J, Kong M. Electron kinetics in radio-frequency atmospheric-pressure microplasmas. Phys. Rev. Lett.,2007,99(7):075004
    [96]Honda M, Meyer-ter-Vehn J, Pukhov A. Two-dimensional particle-in-cell simulation for magnetized transport of ultra-high relativistic currents in plasma. Phys. Plasmas,2000,7(4):1302-1308
    [97]Welch D R, Rose D V, Oliver B V, et al. Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber. Phys. Plasmas,2002,9(5): 2344-2353
    [98]Nakashima H. Particle-In-Cell Simulations of laser-produced plasma experiments to study thrust conversion processes in a laser fusion rocket. AIP Conf. Proc,2003, 669:508-511
    [99]Silva L O, Marti M, Davies J R, et al. Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett.,2004,92(1):015002
    [100]Nishihara K, Sunahara A, Sasaki A, et al. Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography an extreme ultraviolet light source for lithography. Phys. Plasma,2008,15(5):056708
    [101]Yordanov V, Ivanova-Stanik I, Blagoev A. PIC-MCC method with finite element solver for poisson equation used in simulation of the breakdown phase in dense plasma focus devices. J. Phys.:Conf. Ser.,2008,112(4):042061
    [102]Chanrion O, Neubert T. A PIC-MCC code for simulation of streamer propagation in air. J. Comp. Phys.,2008,227(15):7222-7245
    [103]Verboncoeur J P. Symmetric spline weighting for charge and current density in particle simulation. J. Comp. Phys.,2001,174(1):421-427
    [104]Christlieb A J, Krasny R, Verboncoeur J P. A grid-free treecode field solver for plasma simulations with application to a confined electron column in a penning-malmberg trap. Comp. Phys. Comm.2004,164:306-310
    [105]Gopinath V P, Verboncoeur J P, Birdsall C K. Multipactor electron discharge physics using an improved secondary emission model. Phys. Plasmas,1998,5(5): 1535-1540
    [106]Lee H J, Kim H C, Yang S S, et al. Two-dimensional self-consistent radiation transport model for plasma display panels. Phys. Plasmas,2002,9(6):2822-1-9
    [107]Lee H J, Verboncoeur J P. A radiation transport coupled particle-in-cell simulation: part I. description of the model. Phys. Plasmas,2001,8(6):3077-1-12
    [108]Lu Q M, Cai D S. Implementation of parallel plasma particle-in-cell codes on PC cluster. Comp. Phys. Comm,2001135(1):93-104
    [109]Plimpton S J, Seidel D B, Pasik M F, et al. A load-balancing algorithm for a parallel electromagnetic particle-in-cell code. Comp. Phys. Comm.,2003152(3):227-241
    [110]Decyk V K, Singh T V. Adaptable particle-in-cell algorithms for graphical processing units. Comp. Phys. Comm.,2011,182(3):641-648
    [111]Burau H, Widera R, Honig W, et al. PIConGPU:A fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci.,2010,38(8):2831-2839
    [112]刘海成,王闽.等离子体粒子模拟的静电波谱响应特性.计算物理,1984,1(2):200~211
    [113]邵福球,常文蔚,张立夫.自由电子激光的粒子模拟.国防科技大学学报,1989,11(2):70~78
    [114]张家泰,许林宝,常铁强等.激光等离子体二维相对论电磁粒子模拟.计算物理,1998,15(2):139~146
    [115]Chen M, Sheng Z M, Ma Y Y, et al. Electron injection and trapping in a laser wake field by field ionization to high-charge states of gases. J. Appl. Phys.,2006,99(5): 056109
    [116]Li F Y, Sheng Z M, Liu Y, et al. Dense attosecond electron sheets from laser wakefields using an up-ramp density transition. Phys. Rev. Lett.,2013,110(13): 135002
    [117]Wang J G, Zhang D H, Liu C L, et al. UNIPIC code for simulations of high power microwave devices. Phys. Plasma,2009,16(3):033108
    [118]Zhou J, Liu D G, Liao C, et al. CHIPIC:an efficient code for electromagnetic pic modeling and simulation. IEEE Trans. Plasma Sci.,2009,37(10):2002-2011
    [119]Sun J Z, Sang C F, Stirner T, et al. Characteristics of plasma immersion ion implantation with a nanosecond rise-time pulse:particle-in-cell simulations. J. Phys. D:Appl. Phys.,2010,43(27):275201-275208
    [120]Wang H Y, Jiang W, Wang Y N. Implicit and electrostatic particle-in-cell/Monte Carlo model in two-dimensional and axisymmetric geometry:I. Analysis of numerical techniques. Plasma Sources Sci. Technol.,2010,19(4):045023-045033
    [121]Sang C F, Sun J Z, Wang D Z. Large amplitude of electrostatic waves associated with magnetic field in divertor plasmas. Plasma Phys. Control. Fusion,2010,52(4): 042001
    [122]Lu Q M, Wang D Y, Wang S. Generation mechanism of electrostatic solitary structures in the Earth's auroral region. J. Geophys. Res.,2005,110(A3):A03223
    [123]Birdsall C K, Langdon A B. Plasma Physics via Computer Simulation. New York: McGraw-Hill,1985.7-27
    [124]Cohen B I, Langdon A B, Hewett D W. Performance and optimization of direct implicit particle simulation. J. Comp. Phys.,1989,81(1):151-168
    [125]Langdon A B, Cohen B I, Friedman A. Direct implicit large time-step particle simulation of plasmas. J. Comp. Phys.,1983,51(1):107-138
    [126]Cohen B I, Langdon A B, Friedman A. Implicit time integration for plasma simulation. J. Comp. Phys.,1982,46(1):15-38
    [127]Kunhardt E E, Tzeng Y. Monte Carlo technique for simulating the evolution of an assembly of particles increasing in number. J. Comp. Phys.,1986,67(2):279-289
    [128]Surendra M, Gaves D B, Jellum G M. Self-consistent model of a direct-current glow discharge:treatment of fast electrons. Phys. Rev. A.1990,41(2):1112-1125
    [129]Cramer W H. Elastic and inelastic scattering of low-velocity ions:Ne+in Ar, Ar+in Ne, and Ar+in Ar. J. Chem. Phys.,1959,30(3):641-642
    [130]Piel A. Plasma physics:an introduction to laboratory space and fusion plasmas. New York:Springer,2010.73-77
    [131]高树香.气体导电(上册).南京:南京工学院出版社,1988.185-205
    [132]Biloiu C, Sun X, Harvey Z, et al. An alternative method for gas temperature determination in nitrogen plasmas:fits of the bands of the first positive system (B3Ⅱg→A3Σn+). J. Appl. Phys.,2007,101(7):073303
    [133]赫兹堡G著.分子光谱与分子结构,第一卷,双原子分子光谱.王鼎昌译.北京:科学出版社,1983.110-219
    [134]Sakamoto T, Matsuura H, Akatsuka H. Spectroscopic study on the vibrational populations of N2 C3Ⅱu and B3Ⅱg states in a microwave nitrogen discharge. J. Appl. Phys.,2007,101(2):023307
    [135]Roux F, Michaud F. High-resolution Fourier spectrometry of 14N2:analysis of the (0-0), (0-1), (0-2), (0-3) bands of the C3Ⅱu-B3Ⅱg system. Can. J. Phys.,1989,67(2): 143-147
    [136]Bodo A. Uber die Tripplett-Bandentermformel fur den allgemeinen intermediaren Fall und Anwendung derselben auf die B3Ⅱ-, C3Ⅱterme des N2molekuls. Z Physics.,1937,105:73-79
    [137]Kovas I. Rotational Structure in the Spectra of Diatomic Molecules. New York: Elsevier,1969.131-139
    [138]Anderson J D. Fundamentals of Aerodynamics. New York:McGraw-Hill,2001. 465-502
    [139]Liick H, Loffhagen D. Experimental verification of a zero-dimensional model of the ionization kinetics of XeCl discharges. Appl. Phys. B,1994,58(2):123-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700