手性相转移催化剂设计及应用和三氟甲基酮不对称Aldol反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性相转移催化作用作为不对称催化领域的重要组成部分,可实现多种不对称转化。本论文从设计和合成新型手性相转移催化剂的角度出发,以光学纯的联二萘酚为起始原料,合成了一系列新型的链状双螺环季铵盐。
     我们以醛与2-卤代-N,N-二苯基乙酰胺的不对称Darzens反应为模板反应,研究了链状双螺环季铵盐的催化活性和选择性。以中等到当量的收率和中等到较高的对映选择性合成了一系列反式为主的手性α,β-环氧乙酰胺衍生物,反顺比最高可达13.4:1,反式产物的ee值最高可达74%。
     α-氨基膦酸作为α-氨基酸的含磷类似物,具有多种生物活性。通过C–C键的形成反应,构建手性α-氨基膦酸及其衍生物的例子并不多见。我们首次成功实现了二苯酮亚胺甲基膦酸酯与α,β-不饱和酮的不对称Michael加成反应。在新型手性链状双螺环季铵盐作用下,以最高77%的对映选择性得到手性α-氨基膦酸衍生物。
     潜手性三氟甲基砌块的催化不对称转化是合成手性含三氟甲基化合物的重要策略之一。我们以二甲基锌和手性氨基醇配体为催化剂,首次成功实现了三氟甲基酮和重氮酸酯的不对称Aldol反应,反应的最高对映选择性可达72%。
In recent years, chiral phase-transfer catalysis (PTC) has been recognized as an important part in asymmetric synthesis due to its high activity in a series of asymmetric transformations. Herein we focused on the design and synthesis of new chiral phase-transfer catalysts and their applications in asymmetric reactions. These catalysts, bearing linker-structured N-spiroammonium units, were synthesized conveniently from commercially available optically pure 1,1’-bi-2-naphthol (BINOL) in moderate yields.
     The activity and enantioselectivity of the phase-transfer catalysts was firstly evaluated in catalytic asymmetric Darzens reaction between aldehydes andα-haloamides. The desiredα,β-epoxy-amides were obtained in high yields (up to 99%) with moderate to good diastereo- and enantioselectivities (trans/cis up to 13.4/1, up to 74% ee (trans)).
     As the analogues of the correspondingα-amino acids,α-aminophosphonic acids have diverse biological properties. However, there are rare successful examples of constructingα-aminophosphonic acids and their derivatives via C–C bond forming reactions. We first developed the Michael addition of the phosphoglycine ester toα,β-unsaturated ketones by the newly designed PTC, giving moderate to good enantioselectivities with up to 77% ee.
     As we all know, it is a significant strategy to apply prochiral trifluoromethyl-containing building blocks in asymmetric transformations. We accomplished the aldol-type reaction of trifluoromethyl aryl ketones withα-diazoesters, with low to moderate enantioselectivities (up to 72% ee).
引文
[1]张生勇,郭建权,不对称催化反应:原理及在有机合成中的应用,北京,科学出版社,2002, p1–15, p420–446.
    [2] Laird, T. Chem. Ind. 1989, 336.
    [3] Stinson, S. C. Chem. Eng. News. 1994, 72, 38.
    [4]赵刚译,不对称有机催化:从生物模拟到不对称合成的应用,上海,华东理工大学出版社,2006, p13–34.
    [5] (a) Makosza, M. Two-Phase Reactions in the Chemistry of Carbanions and Halocarbenes. a Useful Tool in Organic Synthesis. Pure Appl. Chem. 1975, 43, 439–462. (b) Yang, H.-M.; Wu, H.-S. Interfacial Mechanism and Kinetics of Phase-Transfer Catalysis. Catal. Rev. 2003, 45, 463–540.
    [6] (a) Nelson, A. Asymmetric Phase-Transfer Catalysis. Angew. Chem. Int. Ed. 1999, 38, 1583–1585. (b) O’Donnell, M. J. The Preparation of Optically Activeα-Amino Acids from the Benzophenone Imines of Glycine Derivatives. Aldrichimica Acta. 2001, 34, 3–15. (c) Maruoka, K.; Ooi, T. Enantioselective Amino Acid Synthesis by Chiral Phase-Transfer Catalysis. Chem. Rev. 2003, 103, 3013–3028. (d) O’Donnell, M. J. The Enantioselective Synthesis ofα-Amino Acids by Phase-Transfer Catalysis with Achiral Schiff Base Esters. Acc. Chem. Res. 2004, 37, 506–517. (e) Lygo, B.; Andrews, B. I. Asymmetric Phase-Transfer Catalysis Utilizing Chiral Quaternary Ammonium Salts: Asymmetric Alkylation of Glycine Imines. Acc. Chem. Res. 2004, 37, 518–525. (f) Hashimoto, T.; Maruoka, K. Recent Development and Application of Chiral Phase-Transfer Catalysts. Chem. Rev. 2007, 107, 5656–5682. (g) Ooi, T.; Maruoka, K. Recent Advances in Asymmetric Phase-Transfer Catalysis. Angew. Chem. Int. Ed. 2007, 46, 4222–4266.
    [7] (a) Bakó, P.; Kiss,; T?ke, L. Chiral Azacrown Ethers Derived from D-Glucose as Catalysts for Enantioselective Michael Addition. Tetrahedron Lett. 1997, 38, 7259–7262. (b) Bakó, P.; Novák, T.; Ludányi, K.; et al. D-Glucose-Based Azacrown Ethers with a Phosphonoalkyl Side Chain: Application as Enantioselective Phase Transfer Catalysts. Tetrahedron: Asymmetry 1999, 10, 2373–2380. (c) Novák, T.; Tatai, J.; Bakó, P.; et al. Asymmetric Michael Addition Catalyzed by D-Glucose-Based Azacrown Ethers. Synlett 2001, 424–426. (d) Bakó, T.; Bakó, P.; Sz?ll?sy,á.; et al. Enantioselective Michael Reaction of 2-Nitropropane with Substituted Chalcones Catalysed by Chiral Azacrown Ethers Derived fromα-D-Glucose. Tetrahedron: Asymmetry 2002, 13, 203–209.
    [8] (a) Ando, N.; Yamamoto, Y.; Oda, J. Facile Synthesis of Chiral 18-Crown-6 Derivatives from L-Tartaric Acid. Synthesis 1978, 688–689. (b) Aoki, S.; Sasaki, S.; Koga, K. Simple Chiral Crown Ethers Complexed with Potassiumtert-Butoxide as Efficient Catalysts for Asymmetric Michael Additions. Tetrahedron Lett. 1989, 30, 7229–7230.
    [9] Cram, D. J.; Sogah, G. D. Y. Chiral Crown Complexes Catalyse Michael Addition Reactions to Give Adducts in High Optical Yields. J. Chem. Soc., Chem.Commun. 1981, 625–628.
    [10] (a) Shioiri, T.; Ando, A.; Masui, M.; et al. Phase Transfer Catalysis: Mechanism and Syntheses, ACS Symposium Series, Vol. 659, (Ed.: Halpern, M. E.), American Chemical Society, Washington DC, 1997, p 136–147. (b) Wernera, T. Phosphonium Salt Organocatalysis. Adv. Synth. Catal. 2009, 351, 1469–1481.
    [11] (a) Manabe, K. Asymmetric Phase-Transfer Alkylation Catalyzed by A Chiral Quaternary Phosphonium Salt with a Multiple Hydrogen-Bonding Site. Tetrahedron Lett. 1998, 39, 5807–5810. (b) Manabe, K. Synthesis of Novel Chiral Quaternary Phosphonium Salts with a Multiple Hydrogen-Bonding Site, and Their Application to Asymmetric Phase-Transfer Alkylation. Tetrahedron 1998, 54, 14465–14476.
    [12] (a) Uraguchi, D.; Sakaki, S.; Ooi, T. Chiral Tetraaminophosphonium Salt-Mediated Asymmetric Direct Henry Reaction. J. Am. Chem. Soc. 2007, 129, 12392–12393. (b) Uraguchi, D.; Ueki, Y.; Ooi, T. Chiral Tetraaminophosphonium Carboxylate-Catalyzed Direct Mannich-Type Reaction. J. Am. Chem. Soc. 2008, 130, 14088–14089. (c) Uraguchi, D.; Asai, Y.; Ooi, T. Site-Directed Asymmetric Quaternization of a Peptide Backbone at a C-Terminal Azlactone. Angew. Chem. Int. Ed. 2009, 48, 733–737. (d) Uraguchi, D.; Ito, T.; Ooi. T. Generation of Chiral Phosphonium Dialkyl Phosphite as a Highly Reactive P-Nucleophile: Application to Asymmetric Hydrophosphonylation of Aldehydes. J. Am. Chem. Soc. 2009, 131, 3836–3837. (e) Uraguchi, D.; Ito, T.; Nakamura, S.; Sakaki, S.; Ooi, T. Diastereo- and Enantioselective Direct Henry Reaction of Pyruvates Mediated by Chiral P-Spiro Tetraaminophosphonium Salts. Chem. Lett. 2009, 38, 1052–1053. (f) Uraguchi, D.; Nakashima, D.; Ooi, T. Chiral Arylaminophosphonium Barfates as a New Class of Charged Br?nsted Acid for the Enantioselective Activation of Nonionic Lewis Bases. J. Am. Chem. Soc. 2009, 131, 7242–7243.
    [13] (a) He, R.-J.; Wang, X.-S.; Hashimoto, T.; Maruoka, K. Binaphthyl-Modified Quaternary Phosphonium Salts as Chiral Phase-Transfer Catalysts: Asymmetric Amination ofβ-Keto Esters. Angew. Chem. Int. Ed. 2008, 47, 9466–9468. (b) He, R.-J.; Ding, C.-H.; Maruoka, K. Phosphonium Salts as Chiral Phase-Transfer Catalysts: Asymmetric Michael and Mannich Reactions of 3-Aryloxindoles. Angew. Chem. Int. Ed. 2009, 48, 4559–4561. (c) He, R.-J.; Maruoka, K. Binaphthyl-Modified Quaternary Phosphonium Salts as Chiral Phase Transfer Catalysts: Application to Asymmetric Amination ofβ-Keto Esters Synthesis-Stuttgart. 2009, 2289–2292.
    [14] (a) Dolling, U. H.; Davis, P.; Grabowski, E. J. J. Efficient Catalytic Asymmetric Alkylations. 1. Enantioselective Synthesis of (+)-Indacrinone via ChiralPhase-Transfer Catalysis. J. Am. Chem. Soc. 1984, 106, 446–447. (b) Hughes, D. L.; Dolling, U. H.; Ryan, K. M.; Schoenewaldt, E. F.; Grabowski, E. J. J. Efficient Catalytic Asymmetric Alkylations. 3.1 A Kinetic and Mechanistic Study of the Enantioselective Phase-Transfer Methylation of 6,7-Dichloro-5-methoxy-2-phenyl -1-indanone. J. Org. Chem. 1987, 52, 4745–4752.
    [15] (a) O’Donnell, M. J.; Bennett, W. D.; Wu, S. The Stereoselective Synthesis ofα-Amino Acids by Phase-Transfer Catalysis. J. Am. Chem. Soc. 1989, 111, 2353–2355. (b) Lipkowitz, K. B.; Cavanaugh, M. W.; Baker, B.; O’Donnell, M. J. Theoretical Studies in Molecular Recognition: Asymmetric Induction of Benzophenone Imine Ester Enolates by the Benzylcinchoninium Ion. J. Org. Chem. 1991, 56, 5181–5192.
    [16] (a) O’Donnell, M. J.; Wu, S.; Huffman, J. C. A New Active Catalyst Species for Enantioselective Alkylation by Phase-Transfer Catalysis. Tetrahedron 1994, 50, 4507–4518. (b) O’Donnell, M. J.; Bennett, W. D.; Bruder, W. A.; et al. Acidities of Glycine Schiff Bases and Alkylation of Their Conjugate Bases. J. Am. Chem. Soc. 1988, 110, 8520–8525.
    [17] (a) Lygo, B.; Wainwright, P. G. A New Class of Asymmetric Phase-Transfer Catalysts Derived From Cinchona Alkaloids–Application in the Enantioselective Synthesis ofα-Amino Acids. Tetrahedron Lett. 1997, 38, 8595–8598. (b) Lygo, B.; Crosby, J.; Lowdon, T. R.; Wainwright, P. G. Structure–Selectivity Studies on Catalysts for the Phase-Transfer Catalysed Asymmetric Alkylation of Glycine Imine Esters. Tetrahedron 2001, 57, 2391–2402. (c) Lygo, B.; Crosby, J.; Lowdon, T. R.; Peterson, G. A.; Wainwright, P. G. Studies on the Enantioselective Synthesis ofα-Amino Acids via Asymmetric Phase-Transfer Catalysis. Tetrahedron 2001, 57, 2403–2409. (d) Lygo, B.; Andrews, B. I.; Crosby, J.; Peterson, J. A. Asymmetric Alkylation of Glycine Imines Using in situ Generated Phase-Transfer Catalysts. Tetrahedron Lett. 2002, 43, 8015–8018.
    [18] Corey, E. J.; Xu, F.; Noe, M. C. A Rational Approach to Catalytic Enantioselective Enolate Alkylation Using a Structurally Rigidified and Defined Chiral Quaternary Ammonium Salt under Phase Transfer Conditions. J. Am. Chem. Soc. 1997, 119, 12414–12415.
    [19] Jew, S.-s.; Yoo, M.-S.; Jeong, B.-S.; et al. An Unusual Electronic Effect of an Aromatic-F in Phase-Transfer Catalysts Derived from Cinchona-Alkaloid. Org. Lett. 2002, 4, 4245–4248.
    [20] Yoo, M.-S.; Jeong, B.-S.; Lee, J.-H.; et al. Evidence of the Electronic Factor for the Highly Enantioselective Catalytic Efficiency of Cinchona-Derived Phase-Transfer Catalysts. Org. Lett. 2005, 7, 1129–1131.
    [21] (a) Jew, S.-s.; Jeong, B.-S.; Yoo, M.-S.; et al. Synthesis and Application of Dimeric Cinchona Alkaloid Phase-Transfer Catalysts:α,α′-bis[O(9)-allylcinchoni -dinium]-o, m, or p-xylene Dibromide. Chem. Commun. 2001, 1244–1245. (b) Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.; et al. Trimeric Cinchona AlkaloidPhase-Transfer Catalyst:α,α′,α′′-tris[O(9)-allylcinchonidinium]mesitylene Tribromide. Tetrahedron Lett. 2001, 42, 4645–4648. (c) Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.; et al. Highly Enantioselective and Practical Cinchona-Derived Phase-Transfer Catalysts for the Synthesis ofα-Amino Acids. Angew. Chem. Int. Ed. 2002, 41, 3036–3038. (d) Chinchilla, R.; Mazón, P.; Nájera, C. New Dimeric Anthracenyl-Derived Cinchona Quaternary Ammonium Salts as Phase-Transfer Catalysts for the Asymmetric Synthesis ofα-Amino Acids. Tetrahedron: Asymmetry 2002, 13, 927–931. (e) Park, H.-g.; Jeong, B.-S.; Yoo, M.-S.; et al. Highly Efficient ortho-Fluoro-Dimeric Cinchona-Derived Phase-Transfer Catalysts. Tetrahedron Lett. 2003, 44, 3497–3500. (f) Chinchilla, R.; Mazón, P.; Nájera, C.; et al. The Counterion Effect in the Phase-Transfer Catalyzed Asymmetric Synthesis ofα-Amino Acids Promoted by Anthryl-Derived Dimeric Cinchona Ammonium Salts. Tetrahedron: Asymmetry 2004, 15, 2603–2607.
    [22] (a) Ooi, T.; Kameda, M.; Maruoka, K. Molecular Design of a C2-Symmetric Chiral Phase-Transfer Catalyst for Practical Asymmetric Synthesis ofα-Amino Acids. J. Am. Chem. Soc. 1999, 121, 6519–6520. (b) Maruoka, K. Design of New, Chiral Phase-Transfer Catalysts for Practical, Catalytic Asymmetric Synthesis. J. Fluorine Chem. 2001, 112, 95–99. (c) Ooi, T.; Uematsu, Y.; Maruoka, K. Evaluation of the Efficiency of the Chiral Quaternary Ammonium Salt β-Np-NAS-Br in the Organic-Aqueous Phase-Transfer Alkylation of a Protected Glycine Derivative. Adv. Synth. Catal. 2002, 344, 288–291. (d) Ooi, T.; Uematsu, Y.; Maruoka, K. New, Improved Procedure for the Synthesis of Structurally Diverse N-Spiro C2-Symmetric Chiral Quaternary Ammonium Bromides. J. Org. Chem. 2003, 68, 4576–4578. (e) Ooi, T.; Kameda, M.; Maruoka, K. Design of N-Spiro C2-Symmetric Chiral Quaternary Ammonium Bromides as Novel Chiral Phase-Transfer Catalysts: Synthesis and Application to Practical Asymmetric Synthesis ofα-Amino Acids. J. Am. Chem. Soc. 2003, 125, 5139–5151. (f) Ooi, T.; Uematsu, Y.; Maruoka, K. Highly Enantioselective Alkylation of Glycine Methyl and Ethyl Ester Derivatives under Phase-Transfer Conditions: its Synthetic Advantage. Tetrahedron Lett. 2004, 45, 1675–1678.
    [23] Hashimoto, T.; Maruoka, K. Substituent Effect of Binaphthyl-Modified Spiro-Type Chiral Phase-Transfer Catalysts. Tetrahedron Lett. 2003, 44, 3313–3316.
    [24] Ooi, T.; Uematsu, Y.; Kameda, M.; Maruoka, K. Conformationally Flexible, Chiral Quaternary Ammonium Bromides for Asymmetric Phase-Transfer Catalysis. Angew. Chem. Int. Ed. 2002, 41, 1551–1554.
    [25] (a) Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K. Design of New Chiral Phase-Transfer Catalysts with Dual Functions for Highly Enantioselective Epoxidation ofα,β-Unsaturated Ketones. J. Am. Chem. Soc. 2004, 126, 6844–6845. (b) Ooi, T.; Ohara, D.; Fukumoto, K.; Maruoka, K. Importance of Chiral Phase-Transfer Catalysts with Dual Functions in Obtaining HighEnantioselectivity in the Michael Reaction of Malonates and Chalcone Derivatives. Org. Lett. 2005, 7, 3195–3197.
    [26] (a) Kitamura, M.; Shirakawa, S.; Maruoka, K. Powerful Chiral Phase-Transfer Catalysts for the Asymmetric Synthesis ofα-Alkyl- andα,α-Dialkyl-α-Amino Acids. Angew. Chem. Int. Ed. 2005, 44, 1549–1551. (b) Han, Z.; Yamaguchi, Y.; Kitamura, M.; Maruoka, K. Convenient Preparation of Highly Active Phase-Transfer Catalyst for Catalytic Asymmetric Synthesis ofα-Alkyl- andα,α-Dialkyl-α-Amino Acids: Application to the Short Asymmetric Synthesis of BIRT-377. Tetrahedron Lett. 2005, 46, 8555–8558.
    [27] (a) Shibuguchi, T.; Fukuta, Y.; Akachi, Y.; et al. Development of New Asymmetric Two-Center Catalysts in Phase-Transfer Reactions. Tetrahedron Lett. 2002, 43, 9539–9543. (b) Ohshima, T.; Shibuguchi, T.; Fukuta, Y.; et al. Catalytic Asymmetric Phase-Transfer Reactions Using Tartrate-Derived Asymmetric Two-Center Organocatalysts. Tetrahedron 2004, 60, 7743–7754.
    [28] (a) Kowtoniuk, W. E.; MacFarland, D. K.; Grover, G. N. Combining Chiral Elements: a Novel Approach to Asymmetric Phase-Transfer Catalyst Design. Tetrahedron Lett. 2005, 46, 5703–5705. (b) Rueffer, M. E.; Fort, L. K.; MacFarland, D. K. Synthesis and Competency of a Tartrate-Derived Dicationic Solid–Liquid Phase-Transfer Catalyst. Tetrahedron: Asymmetry 2004, 15, 3297–3300.
    [29] (a) Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; et al. Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation. Chem. Rev. 2005, 105, 1603–1662. (b) McGarrigle, E. M.; Myers, E.L.; Illa, O.; et al. Chalcogenides as Organocatalysts. Chem. Rev. 2007, 107, 5841–5883. (c) Wong, O. A.; Shi, Y.-A. Organocatalytic Oxidation. Asymmetric Epoxidation of Olefins Catalyzed by Chiral Ketones and Iminium Salts. Chem. Rev. 2008, 108, 3958–3987.
    [30] Hanson, R. M.; Sharpless, K. B. Procedure for the Catalytic Asymmetric Epoxidation of Allylic Alcohols in the Presence of Molecular Sieves. J. Org. Chem. 1986, 51, 1922–1925.
    [31] Rosen, T. in Comprehensive Organic Synthesis, Vol. 2 (Eds.: Trost, B. M. Fleming, I.; Heathcock, C. H.), Pergamon, Oxford, 1991, pp. 409–439.
    [32] Bakó, P.; Sz?ll?sy,á.; Bombicz, P.; T?ke, L. Asymmetric C–C Bond Forming Reactions by Chiral Crown Catalysts: Darzens Condensation and Nitroalkane Addition to the Double Bond. Synlett 1997, 291–292.
    [33] (a) Bakó, P.; Czinege, E.; Bakó, T.; et al. Asymmetric C–C Bond Forming Reactions with Chiral Crown Catalysts Derived from D-Glucose and D-Galactose. Tetrahedron: Asymmetry 1999, 10, 4539–4551. (b) Bakó, P.; Makó, A.; Keglevich, G.; et al. Synthesis of D-mannose-Based Azacrown Ethers and their Application in Enantioselective Reactions. Tetrahedron: Asymmetry 2005, 16, 1861–1871.
    [34] (a) Bakó, P.; Vizvárdi, K. Synthesis, Extraction Ability and Application in Asymmetric Synthesis of Azacrown Ethers Derived from D-Glucose. Tetrahedron1998, 54, 14975–14988. (b) Bakó, P.; Vizvárdi, K. Bajor, Z. Synthesis and Application in Asymmetric Synthesis of Azacrown Ethers Derived from D-Glucose. Chem. Commun. 1998, 1193–1194.
    [35] (a) Arai, S.; Shioiri, T. Catalytic Asymmetric Darzens Condensation Under Phase-Transfer-Catalyzed Conditions. Tetrahedron Lett. 1998, 39, 2145–2148. (b) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Phase-Transfer-Catalyzed Asymmetric Darzens Reaction. Tetrahedron 1999, 55, 6375–6386. (c) Arai, S.; Shirai, Y.; Ishida, T.; Shioiri, T. Phase-Transfer Catalyzed Asymmetric Darzens Reaction of Cyclicα-Chloro Ketones. Chem. Commun. 1999, 49–50.
    [36] (a) Arai, S.; Ishida, T.; Shioiri, T. Asymmetric Synthesis ofα,β-Epoxysulfones Under Phase-Transfer Catalyzed Darzens Reaction. Tetrahedron Lett. 1998, 39, 8299–8302. (b) Arai, S.; Shioiri, T. Asymmetric Darzens Reaction Utilizing Chloromethyl Phenyl Sulfone under Phase-Transfer Catalyzed Conditions. Tetrahedron 2002, 58, 1407–1413.
    [37] Ku, J.-M.; Yoo, M.-S.; Park, H.-g.; et al. Asymmetric Synthesis ofα,β-Epoxysulfones via Phase-Transfer Catalytic Darzens Reaction. Tetrahedron 2007, 63, 8099–8103.
    [38] Arai, S.; Tokumaru, K.; Aoyama, T. Phase-Transfer-Catalyzed Asymmetric Darzens Reaction Using a New Chiral Ammonium Salt. Tetrahedron Lett. 2004, 45, 1845–1848.
    [39] Achard, T. J. R.; Belokon, Y. N.; Ilyin, M.; et al. Enantio- and Diastereoselective Darzens Condensations. Tetrahedron Lett. 2007, 48, 2965–2969.
    [40] Liu, W.-J.; Lv, B.-D.; Gong, L.-Z. An Asymmetric Catalytic Darzens Reaction between Diazoacetamides and Aldehydes Generates cis-Glycidic Amides with High Enantiomeric Purity. Angew. Chem. Int. Ed. 2009, 48, 6503–6506.
    [41]张剑锋,崔占伟,苗志伟,陈茹玉,α-氨基膦酸(酯)不对称合成研究进展,有机化学,2008, 28, 946–953.
    [42] Ma, J.-A. Catalytic Asymmetric Synthesis ofα- andβ-Amino Phosphonic Acid Derivatives. Chem. Soc. Rev. 2006, 35, 630–636.
    [43] Sch?llkopf, U.; Hoppe, I.; Thiele, A. Asymmetric Synthesis ofα-Amino- Phosphonic Acids, I Enantioselective Synthesis of L-(1-Aminoethyl)phosphonic Acid by Asymmetric Catalytic Hydrogenation of N-[1-(Dimethoxyphosphoryl)- ethenyl]formamide. Liebigs Ann. Chem. 1985, 555–559.
    [44] Schmidt, U.; Oehme, G.; Krause, H. Catalytic Stereoselective Synthesis ofα-Amino Phosphonic Acid Derivatives by Asymmetric Hydrogenation. Synth. Commun. 1996, 26, 777–781.
    [45] Sasai, H.; Arai, S.; Tahara, Y.; Shibasaki, M. Catalytic Asymmetric Synthesis ofα-Amino Phosphonates Using Lanthanoid-Potassium-BINOL Complexes. J. Org. Chem. 1995, 60, 6656–6657.
    [46] Joly, G. D.; Jacobsen, E. N. Thiourea-Catalyzed Enantioselective Hydrophosphonylation of Imines: Practical Access to Enantiomerically Enrichedα-Amino Phosphonic Acids. J. Am. Chem. Soc. 2004, 126, 4102–4103.
    [47] Bernardi, L.; Zhuang, W.; J?rgensen, K. A. An Easy Approach to Optically Activeα-Amino Phosphonic Acid Derivatives by Chiral Zn(II)-Catalyzed Enantioselective Amination of Phosphonates. J. Am. Chem. Soc. 2005, 127, 5772–5773.
    [48] Kim, S. M.; Kim, H. R.; Kim, D. Y. Catalytic Enantioselective Fluorination and Amination ofβ-Keto Phosphonates Catalyzed by Chiral Palladium Complexes. Org. Lett. 2005, 7, 2309–2311.
    [49] (a) Togni, A.; Pastor, S. D. Enantioselective Synthesis ofβ-Hydroxy-α-amino- phosphonic Acid Precursors. Tetrahedron Lett. 1989, 30, 1071–1072. (b) Sawamura, M.; Ito, Y.; Hayashi, T. Asymmetric Synthesis of (1-Aminoalkyl)- phosphonic Acids via Asymmetric Aldol Reaction of (Isocyanomethyl)- phosphonates Catalyzed by a Chiral Ferrocenylphosphine-Gold(I) Complex. Tetrahedron Lett. 1989, 30, 2247–2250.
    [50] Baldwin, I. C.; Williams, J. M. J.; Beckett, R. P.α-Aminophosphonate Derivatives as Nucleophiles in Diastereoselective and Enantioselective Palladium Catalysed Allylic Substitution Reactions. Tetrahedron: Asymmetry 1995, 6, 679–682.
    [51] Jászay, Z.M.; Németh, G.; Pham, T. S.; et al. Catalytic Enantioselective Michael Addition in the Synthesis ofα-Aminophosphonates. Tetrahedron: Asymmetry 2005, 16, 3837–3840.
    [52] Jászay, Z.M.; Németh, G.; Pham, T. S.; et al. Asymmetric Synthesis of Substitutedα-Amino Phosphonates with Chiral Crown Ethers as Catalysts. Synlett 2009, 1429–1432.
    [53] Momo, R. D.; Fini, F.; Bernardi, L.; Ricci, A. Asymmetric Synthesis ofα,β-Diaminophosphonic Acid Derivatives with a Catalytic Enantioselective Mannich Reaction. Adv. Synth. Catal. 2009, 351, 2283–2287.
    [54] (a) Frohn, H.-J.; Franke, H.; Fritzen, P.; Bardin, V. V. (Fluoroorgano)- fluoroboranes and -fluoroborates I: Synthesis and Spectroscopic Characterization of Potassium Fluoroaryltrifluoroborates and Fluoroaryldifluoroboranes. J. Organomet. Chem. 2000, 598, 127–135. (b) Frohna, H.-J.; Adonin, N. Y.; Bardin, V. V.; Starichenko, V. F. The Palladium-Catalysed Cross-Coupling Reaction of Lithium Polyfluorophenyltrimethoxyborates with 4-Fluoroiodobenzene. J. Fluorine Chem. 2003, 122, 195–199.
    [55] Rehm, J. D. D.; Ziemer, B.; Szeimies, G. A Facile Route to Bridgehead Disubstituted Bicyclo[1.1.1]pentanes Involving Palladium-Catalyzed Cross-Coupling Reactions. Eur. J. Org. Chem. 1999, 2079–2085.
    [56] Gong, L.-Z.; Hu, Q.-S.; Pu, L. Optically Active Dendrimers with a Binaphthyl Core and Phenylene Dendrons: Light Harvesting and Enantioselective Fluorescent Sensing. J. Org. Chem. 2001, 66, 2358–2367.
    [57] Kano, T.; Lan, Q.; Wang, X.-S.; Maruoka, K. Effects of Aromatic Substituents onBinaphthyl-Based Chiral Spiro-Type Ammonium Salts in Asymmetric Phase-Transfer Reactions. Adv. Synth. Catal. 2007, 349, 556–560.
    [58] Hennessy, E. J.; Buchwald, S. L. Synthesis of Substituted Oxindoles fromα-Chloroacetanilides via Palladium-Catalyzed C–H Functionalization. J. Am. Chem. Soc. 2003, 125, 12084–12085.
    [59] Achard, T. J. R.; Belokon, Y. N.; Hunt, J.; et al. Diastereoselective Darzens Condensations. Tetrahedron Lett. 2007, 48, 2961–2964.
    [60] Fergus, S.; Eustace, S. J.; Hegarty, A. F. Nitrile Ylide Dimerization: Investigation of the Carbene Reactivity of Nitrile Ylides. J. Org. Chem. 2004, 69, 4663–4669.
    [61] Dejaegher, Y.; Mangelinckx, S.; Kimpe, N. D. Synthesis of Substituted Benzhydrylamine. Synlett 2002, 113–115.
    [62] Steere, J. A.; Sampson, P. B.; Honek, J. F. Synthesis of anα-Aminophosphonate Nucleoside as an Inhibitor of S-Adenosyl-L-Homocysteine Hydrolase. Bioorg. Med. Chem. Lett. 2002, 12, 457–460.
    [63] Sampson, P. B.; Honek, J. F. Oxidative Deprotection of Diphenylmethylamines. Org. Lett. 1999, 1, 1395–1397.
    [64] (a) Ma, J.-A.; Cahard, D. Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev. 2004, 104, 6119–6146. (b) Ma, J.-A.; Cahard, D. Strategies for Nucleophilic, Electrophilic, and Radical Trifluoromethylations. J. Fluorine Chem. 2007, 128, 975–996. (c) Shibata, N.; Mizuta, S.; Kawai, H. Recent Advances in Enantioselective Trifluoromethylation Reactions. Tetrahedron: Asymmetry 2008, 19, 2633–2644. (d) Ma, J.-A.; Cahard, D. Update 1 of: Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions. Chem. Rev. 2008, 108, PR1–PR43.
    [65] Ruppert, I.; Schlich, K.; Volbach, W. Die Ersten CF3-Substituierten Organyl(chlor)silane. Tetrahedron Lett. 1984, 25, 2195–2198.
    [66] (a) Prakash, G. K. S.; Krishnamurti, R.; Olah, G. A. Fluoride-Induced Trifluoromethylation of Carbonyl Compounds with Trifluoromethyl- trimethylsilane (TMS-CF3). A Trifluoromethide Equivalent1. J. Am. Chem. Soc. 1989, 111, 393–395. (b) Prakash, G. K. S.; Yudin, A. K. Perfluoroalkylation with Organosilicon Reagents. Chem. Rev. 1997, 97, 757–786.
    [67] Caron, S.; Do, N. M.; Arpin, P.; Larivée, A. Enantioselective Addition of a Trifluoromethyl Anion to Aryl Ketones and Aldehydes. Synthesis 2003, 11, 1693–1698.
    [68] Yagupol'skii, L. M.; Kondratenko, N. V.; Timofeeva, G. N. J. Org. Chem. USSR, 1984, 20, 103.
    [69] (a) Umemoto, T.; Ishihara, S. Power-Variable Electrophilic Trifluoromethylating Agents. S-, Se-, and Te-(Trifluoromethy1)dibenzothio-, -seleno-, and -tellurophenium Salt System. J. Am. Chem. Soc. 1993, 115, 2156–2164. (b) Umemoto, T.; Adachi, K. New Method for Trifluoromethylation of Enolate Anions and Applications to Regio-, Diastereo- and Enantioselective Trifluoromethylation.J. Org. Chem. 1994, 59, 5692–5699. (c) Umemoto, T. Electrophilic Perfluoroalkylating Agents. Chem. Rev. 1996, 96, 1757–1777.
    [70] (a) B?r?k, T.; Abid, M.; London, G.; et al. Highly Enantioselective Organocatalytic Hydroxyalkylation of Indoles with Ethyl Trifluoropyruvate. Angew. Chem. Int. Ed. 2005, 44, 3086–3089. (b) Mikami, K.; Kakuno, H.; Aikawa, K. Enantiodiscrimination and Enantiocontrol of Neutral and Cationic PtII Complexes Bearing the Tropos Biphep Ligand: Application to Asymmetric Lewis Acid Catalysis. Angew. Chem. Int. Ed. 2005, 44, 7257–7260.
    [71] Zhuang, W.; Gathergood, N.; Hazell, R. G.; J?rgensen, K. A. Catalytic, Highly Enantioselective Friedel-Crafts Reactions of Aromatic and Heteroaromatic Compounds to Trifluoropyruvate. A Simple Approach for the Formation of Optically Active Aromatic and Heteroaromatic Hydroxy Trifluoromethyl Esters. J. Org. Chem. 2001, 66, 1009–1013.
    [72] Lyle, M. P. A.; Draper, N. D.; Wilson, P. D. Enantioselective Friedel-Crafts Alkylation Reactions Catalyzed by a Chiral Nonracemic C2-Symmetric 2,2′-Bipyridyl Copper(II) Complex. Org. Lett. 2005, 7, 901–904.
    [73] Ogawa, S.; Shibata, N.; Inagaki, J.; et al. Cinchona-Alkaloid-Catalyzed Enantioselective Direct Aldol-Type Reaction of Oxindoles with Ethyl Trifluoropyruvate. Angew. Chem. Int. Ed. 2007, 46, 8666–8669.
    [74] (a) von Arx, M.; Mallat, T.; Baiker, A. First Enantioselective Hydrogenation of a Trifluoro-β-ketoester with Cinchona-Modified Platinum. J. Catal. 2000, 193, 161–164. (b) von Arx, M.; Mallat, T.; Baiker, A. Inversion of Enantioselectivity during the Platinum-Catalyzed Hydrogenation of an Activated Ketone. Angew. Chem. Int. Ed. 2001, 40, 2302–2305.
    [75] Nie, J.; Zhang, G.-W.; Wang, L.; et al. Chiral Br?nsted-Acid-Catalyzed Enantioselective Arylation of Ethyl Trifluoroacetoacetate and Ethyl Trifluoropyruvate. Eur. J. Org. Chem. 2009, 3145–3149.
    [76] Mikami, K.; Yajima, T.; Takasaki, T.; et al. Asymmetric Catalysis of CarbonyI-Ene and Aldol Reactions with Fluoral by Chiral Binaphthol-Derived Titanium Complex. Tetrahedron 1996, 52, 85–98.
    [77] (a) Milkami, K.; Yajima, T.; Terada, M. Uchimaru, T. Asymmetric Catalysis of Ene-type Reaction with Fluoral by Chiral Titanium Complex: A Semi-empirical and Ab-initio Analysis of Ene Reactivity. Tetrahedron Lett. 1993, 34, 7591–7594. (b) Milkami, K.; Yajima, T.; Terada, M.; et al. Diastereoselective and Enantioselective Catalysis of the Carbonyl-Ene Reaction with Fluoral. Tetrahedron: Asymmetry 1994, 5, 1087–1090.
    [78] Ishii, A.; Soloshonok, V. A.; Mikami, K. Asymmetric Catalysis of the Friedel-Crafts Reaction with Fluoral by Chiral Binaphthol-Derived Titanium Catalysts through Asymmetric Activation. J. Org. Chem. 2000, 65, 1597–1599.
    [79] Corey, E. J.; Cheng, X.-M.; Climprich, K. A. Sarshar, S. Remarkably Effective and Simple Synthesis of Enantiomerically Pure Secondary Carbinols from AchiralKetones. Tetrahedron Lett. 1991, 32, 6835–6838.
    [80] Ohkuma, T.; Koizumi, M.; Doucet, H.; et al. Asymmetric Hydrogenation of Alkenyl, Cyclopropyl, and Aryl Ketones. RuCl(xylbinap)(1,2-diamine) as a Precatalyst Exhibiting a Wide Scope. J. Am. Chem. Soc. 1998, 120, 13529–13530.
    [81] Yearick, K.; Wolf, C. Catalytic Enantioselective Addition of Diethylzinc to Trifluoromethyl Ketones. Org. Lett. 2008, 10, 3915–3918.
    [82] Tur, F.; Saá, J. M. Direct Catalytic Enantioselective Nitroaldol (Henry) Reaction of Trifluoromethyl Ketones: An Asymmetric Entry toα-Trifluoromethyl- Substituted Quaternary Carbons. Org. Lett. 2007, 9, 5079–5082.
    [83] Bandini, M.; Sinisi, R.; Ronchi, A. U. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones. Chem. Commun. 2008, 4360–4362.
    [84] Blay, G.; Fernández, I.; Monleón, A.; Pedro, J. R.; Vila, C. Enantioselective Zirconium-Catalyzed Friedel-Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones. Org. Lett. 2009, 11, 441–444.
    [85] Nie, J.; Zhang, G.-W.; Wang, L.; Fu, A.-P.; Zheng, Y.; Ma, J.-A. A Perfect Double Role of CF3 Groups in Activating Substrates and Stabilizing Adducts: the Chiral Br?sted Acid-Catalyzed Direct Arylation of Trifluoromethyl Ketones. Chem. Commun. 2009, 2356–2358.
    [86] (a) Zhao, Y.-H.; Wang, J.-B. Nucleophilic Addition to C=O and C=N Bonds by Nucleophiles Containing a Diazo Group. Synlett 2005, 2886–2892. (b) Fulton, J. R.; Aggarwal, V. K.; Vicente, J, de. The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. Eur. J. Org. Chem. 2005, 1479–1492. (c) Caballero, A.; Prieto, A.; Díaz-Requejo, M. M.; Pérez, P. J. Metal-Catalyzed Olefin Cyclopropanation with Ethyl Diazoacetate: Control of the Diastereoselectivity. Eur. J. Inorg. Chem. 2009, 1137–1144. (d) Maas, G. New Syntheses of Diazo Compounds. Angew. Chem. Int. Ed. 2009, 48, 8186–8195. (e) Uraguchi, D.; Sorimachi, K.; Terada, M. Organocatalytic Asymmetric Direct Alkylation ofα-Diazoester via C-H Bond Cleavage. J. Am. Chem. Soc. 2005, 127, 9360–9361. (f) Hashimoto, T.; Maruoka, K. Design of Axially Chiral Dicarboxylic Acid for Asymmetric Mannich Reaction of Arylaldehyde N-Boc Imines and Diazo Compounds. J. Am. Chem. Soc. 2007, 129, 10054–10055. (g) Arai, S.; Hasegawa, K.; Nishida, A. One-pot Synthesis ofα-Diazo-β-Hydroxyesters under Phase-Transfer Catalysis and Application to the Catalytic Asymmetric Aldol Reaction. Tetrahedron Lett. 2004, 45, 1023–1026. (h) Hasegawa, K.; Arai, S.; Nishida, A. Synthesis ofα-Diazo-β-Hydroxyesters through a One-pot Protocol by Phase-Transfer Catalysis: Application to Enantioselective Aldol-Type Reaction and Diastereoselective Synthesis ofα-Amino-β-Hydroxyester Derivatives. Tetrahedron 2006, 62, 1390–1401. (i) Yao, W.-G.; Wang, J.-B. Direct Catalytic Asymmetric Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate. Org. Lett. 2003, 5, 1527–1530. (j) Trost, B. M.; Malhotra, S.; Fried, B. A. Magnesium-Catalyzed Asymmetric Direct AldolAddition of Ethyl Diazoacetate to Aromatic, Aliphatic, andα,β-Unsaturated Aldehydes. J. Am. Chem. Soc. 2009, 131, 1674–1675. (k) Wang, F.; Liu, X.-H.; Zhang, Y.-L.; Lin, L.-L.; Feng, X.-M. Highly Enantioselective Synthesis of Tertiary Alcohols: C2-Symmetric N,N′-Dioxide-Sc(III) Complex Promoted Direct Aldol Reaction ofα-Ketoesters and Diazoacetate Esters. Chem. Commun. 2009, 7297–7299. (l) Benfatti, F.; Yilmaz, S.; Cozzia, P. G. The First Catalytic Enantioselective Aldol-Type Reaction of Ethyl Diazoacetate to Ketones. Adv. Synth. Catal. 2009, 351, 1763–1767.
    [87] (a) Corey, E. J.; Shibata, S.; Bakshi. R. K. An Efficient and Catalytically Enantioselective Route to (S)-(-)-Phenyloxirane. J. Org. Chem. 1988, 53, 2861–2863. (b) Li, K.-Y.; Zhou, Z.-H.; Wang, L. X.; et al. Asymmetric Carbonyl Reduction with Borane Catalyzed by Chiral Phosphinamides Derived from L-Amino Acid. Tetrahedron: Asymmetry 2003, 14, 95–100.
    [88] Luo, R.-S.; Weng, J.; Ai, H.-B.; et al. Highly Efficient Asymmetric Michael Reaction of Aldehydes to Nitroalkenes with Diphenylperhydroindolinol Silyl Ethers as Organocatalysts. Adv. Synth. Catal. 2009, 351, 2449–2459.
    [89] Creary, X. Reaction of Organometallic Reagents with Ethyl Trifluoroacetate and Diethyl Oxalate. Formation of Trifluoromethyl Ketones andα-Keto Esters via Stable Tetrahedral Adducts. J. Org. Chem. 1987, 52, 5026–5030.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700