严重受污染河道水处理工艺的研究及重金属对其处理效果的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河道水的原位处理或旁路处理法,适用于受污染相对较轻的河道水。对于以深圳布吉河为代表的中国南部城市河道水,其污染严重、水量较大,而且富含氮、磷,尤其是C/N比较低,这类河道水的治理适合采用异地处理法。河道水异地处理法的处理效果完全取决于污水处理厂的工艺技术和运行状况。因此,探索适合于河道水处理的新工艺,或比较、选择合理的生物处理工艺并集成其他技术开展河道水的治理研究,是非常有探索价值和现实意义的,这也是本论文的目的之一。
     本论文探索并优化了HYBAS工艺处理河道水的工作条件。综合河道水处理效果和经济性两方面来考虑,优化后的HYBAS工艺条件为:内回流点位定在A1缺氧段,内回流比200%,外回流比75%~100%,HRT为11h, MLSS为2500~3500mg/L,通过添加甲醇调整C/N为4,首选填料为安能填料。试验结果表明解决河道水脱氮问题的关键在于提高C/N。实验过程中还考察了其它工艺(A2/O工艺、倒置A2/O工艺和A/O工艺)对河道水的处理效果,并对这些工艺的河道水处理效果进行了比较,得到这些工艺对不同污染物去除能力的排序。各反应器脱氮能力的排序为:倒置A2/O反应器>A2/O反应器>HYBAS反应器>A/O反应器;总磷去除能力的排序为:A2/O反应器>倒置A2/O反应器>HYBAS反应器>A/O反应器:COD去除能力的排序为:A/O反应器>倒置A2/O反应器>HYBAS反应器>A2/O反应器;氨氮去除能力的排序为:HYBAS反应器>倒置A2/O反应器>A/O反应器>A2/O反应器。
     本论文系统地研究了重金属对活性污泥水处理效果的影响。通过间歇试验的方式考察了部分重金属对河道水处理效果的影响,发现它们的短期抑制浓度为:60mg/L Ni2+、70mg/L Cd2+、90mg/L Cr3+、90mg/L Cu2+、80mg/L Pb2+。当重金属浓度高于短期抑制浓度时,间歇试验中的氨氮或COD或两者的去除效果受到明显抑制,短时间内的氨氮或COD浓度不会随着处理时间的延长而降低。向连续运行的HYBAS反应器一次性添加抑制浓度的重金属冲击负荷,或持续添加60mg/LNi2+,氨氮、总氮、COD的去除率初期因受到Ni2+负面影响而出现下降,但此后均能恢复。此外,实验过程中还考察了前期经过Ni2+驯化的活性污泥当再次受到Ni2+冲击时的水处理效果。
     本实验研究了部分高浓度重金属(Cd2+、Cr3+、Cu2+、Pb2+、Ni2+)作用下的EPS变化情况。在HYBAS反应器进水中添加重金属冲击负荷,活性污泥微生物细胞和填料生物膜微生物细胞分泌的EPS含量均明显升高,升高幅度和所添加的重金属毒性强弱有关,随着运行时间的延长,EPS含量逐渐下降,但是添加冲击负荷530h后仍未降至添加冲击负荷前的水平。在重金属冲击负荷试验中,开始阶段的EPSs百分含量下降较快(相应地,EPSb百分含量上升较快),随着反应时间的延长,EPSs百分含量逐渐趋于稳定;此外,重金属的毒性作用越强,EPSs百分含量下降的幅度越大(相应地,EPSb百分含量的升高幅度越大)。开始阶段的填料生物膜和活性污泥EPS的C/P均快速下降,此后,随着反应时间的延长而趋于稳定。此过程中,活性污泥EPS的C/P下降速度和下降幅度均超过填料生物膜,且重金属的毒性作用越强,这种差距越明显。
     向连续运行的HYBAS反应器持续添加60mg/L Ni2+,活性污泥微生物细胞和填料生物膜微生物细胞分泌的EPS含量出现相似的变化,二者均在添加Ni2+后短期升高,随后大幅下降,降至低于未添加Ni2+时对应的EPS含量水平,此后随着微生物细胞对Ni2+的适应,二者的EPS含量均恢复至加Ni2+前的水平;填料生物膜EPSs、EPSb受重金属的影响程度小于活性污泥,而且更易恢复。当受Ni2+影响的EPS趋于稳定时,填料生物膜EPSs和活性污泥EPSs的百分含量均较未添加Ni2+时略有下降(相应地,二者EPSb的百分含量较未添加重金属时略有上升)。分析结果还显示,HYBAS反应器好氧池活性污泥的沉降性能和EPS的组成和含量有关。
Slightly-polluted water of urban river was suitable for adopting bypass treatment or in-situ treatment. However, many urban rivers in China were severely polluted by wastewater due to the deficiencies of wastewater collection or controls of pollution sources, which were suitable for adopting interception and diversion treatment. The dissertation investigated the Buji River whose typical water quality delegated the common existed water quality of urban river in South China, which was appropriate for using interception and diversion treatment.
     The dissertation focused on the treatment of severely polluted urban river water by the process of Hybrid Actuation System (HYBAS). The process of HYBAS was investigated and improved, and the optimum process conditions were achieved. Further more, other treatment processes were also invested and compared each other in treatment efficiency.
     Effects of some heavy metals including Ni2+, Cd2+, Cr3+, Cu2+and Pb2+on the wastewater treatment of urban river were investigated via batch tests, and short-term threshold Values of these heavy metals were achieved, which were Ni2+ at 60mg/L, Cd2+ at 70mg/L, Cr3+ at 90mg/L, Cu2+at 90mg/L and Pb2+ at 80mg/L. When the dosaged of heavy metal was higher than its inhibitory concentration in the batch experiment, the removal of ammonia nitrogen and COD was obviously inhibited, and the ammonia nitrogen and COD concentrations couldn't decrease with time significantly in a short period of time. After the individual addition of shock load or continuously dosage of the inhibitory concentration of heavy metal into the continuously running reactor, the removal of TN and COD decreased at the beginning, but it could recover later. Besides, the effect of Ni2+ on the prior acclimated activated sludge to Ni2+ was also investigated, which mainly focused on its treatment performance.
     Variations of EPS content and EPS composition under the influence of some heavy metals were investigated. The investigation included shock load test and continuous dosage test. After the individual addition of shock load of some heavy metal including 60mg/L Ni2+,70mg/L Cd2+,90mg/L Cr3+,90mg/L Cu2+ and 80mg/L Pb2+, the EPS contents of both activated sludge and biofilm increased distinctly, and the more poisonous the heavy metal was, the more the EPS content increased. Then, the EPS contents gradually decreased with time, but it didn't meet the previous level without the addition of heavy metal even at the 530h after the heavy metal addition. The percentage of EPSs decreased quickly at the beginning, and it gradually stabilized with time. During this period, the more poisonous the heavy metal was, the more the percentage of EPSs decreased. Further more, the C/P of activated sludge and biofilm both decreaded queickly at the beginning, and it tended to stabilize with time. The result also indicated that the C/P of activated sludge decreased more quickly and more than that of biofilm, and it would be obvious when the heavy metal was more poisonous. After the continuous dosage of 60mg/L Ni2+ into the HYBAS reactor, the EPS contents of both activated sludge and biofilm increased at the beginning, then, they significantly decreased to a state in which the EPS contents were lower than those before the Ni2+ addition. Hereafter, both of their EPS content recovered when the bacteria gradually adapted to the influence of Ni2+. The EPSs and the EPSb of biofilm were influenced less than those of activated sludge, and were more liable to recover. When the EPSs of both biofilm and activated sludge stabilized, they both became a little smaller than those before the Ni2+ addition. The result also showed that the settleability of activated sludge was severely influenced by the EPS compositions and EPS contents.
引文
[1]邹丛阳,张维佳,李欣华,等.城市河道水质恢复技术及发展趋势[J].环境科学与技术,2007,30(8):99-102.
    [2]王志勇,彭福全,沃留杰,等.生物接触氧化技术在河道治理中的研究进展[J].市政技术,2009,27(2):171-173.
    [3]田伟君,郝芳华,王超,等.太湖典型入湖河道中氨氮去除研究[J].生态环境,2006,15(6):138-1141.
    [4]邹丛阳,张维佳,李欣华,等.城市河道水质恢复技术及发展趋势[J].环境科学与技术,2007,30(8):99-102.
    [5]刘延恺,陆苏,孟振全.河道曝气法:适合我国国情的环境污水处理工艺[J].环境污染与防治,1994,16(1):22-25.
    [6]熊万永,李玉林.人工曝气生态净化系统治理黑臭河流的原理及应用[J].四川环境,2004,23(2):34-36.
    [7]陈伟,叶舜涛,张明旭.苏州河河道曝气复氧探讨[J].上海给水排水,2001,20(5):233-234.
    [8]李开明,刘军,刘斌,等.黑臭河道生物修复中3种不同增氧方式比较研究[J].生态环境,2005,14(6):816-821.
    [9]王诚信,凌晖,史可红.污染河流的纯氧曝气复氧[J].上海环境科学,1999,18(9):411-413.
    [10]周杰,章永泰,杨贤智.人工曝气复氧治理黑臭河流[J].中国给水排水,2001,17(4):47-49.
    [11]田伟君,翟金波.生物膜技术在污染河道治理中的应用[J].环境保护,2003,8:19-21.
    [12]孙跃平,小仓宪治.城市小型河流水质直接净化的方法[J].环境导报,1999,6:37-38.
    [13]北京市水利局水环境治理考察团.日本韩国的水环境治理[J].北京水利,2003,4:30-32.
    [14]曾宇,秦松.光合细菌法在水处理中的应用[J].城市环境与城市生态,2000,13(6):29-31.
    [15]徐亚同,史家樑,袁磊.上澳塘水体生物修复试验[J].上海环境科学,2000,19(10):480-484.
    [16]黄民生,徐亚同,戚仁海.苏州河污染支流—绥宁河生物修复试验研究[J].上海环境科学,2003,22(60):384-389.
    [17]周俊,李国斌,等.引水冲污工程治理东湖磷污染[J],环境科学与技术,2002,25:27-30.
    [18]梁斌,王超,王沛芳.“引江济太”工程背景下河网稀释净污需水计算及其应用[J].河海大学学报,自然科学版,2004,32(1):32-37.
    [19]薛朝霞,汪翔,阮晓红,等.引水冲污治理苏州河的水环境.中国给水排水,2002,18(10):33-35.
    [20]Anbumozhi V., Radhakrishnan J., Yamaji E. Impact of Riparian Buffer Zones on Water Quality [J]. Ecological Engineering,2005,24(5):517-523.
    [21]金相灿主编.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [22]戴雅奇,由文辉.疏浚对苏州河底栖动物群落结构的影响.华东师范大学学报(自然科学版),2003,3:83-86.
    [23]濮培民,王国祥.底泥疏俊能控制湖泊富营养化吗?湖泊科学,2002,12(3):269-279.
    [24]李晖,周琪,安淼.营养化水体中内源确负荷的有效控制.陕西环境,2002,9(3):24-26.
    [25]傅庆红,蒋新.湖泊沉积物中磷的形态分析及其释放研究.四川环境,1994,13(4):21-24.
    [26]李勇,王超.城市浅水型湖泊底泥磷释放的环境因子影响实验研究.江苏环境科技,2002,15(4):4-6.
    [27]邹琼,张筱鹏,鲜英.净水剂在滇池蓝藻清除部分应急工程中的应用.云南环境科学,2000,19(4):37-39.
    [28]井艳文,胡秀林,许志兰,等.利用生物浮床技术进行水体修复研究与示范.北京水利,2003,6:20-22.
    [29]司友斌,包军杰,曹德菊,等.香根草对富营养化水体净化效果研究.应用生 态学报,2003,14(2):277-79.
    [30]宋海亮,吕锡武,稻森悠平.水生植物床预处理富营养化水源水中试研究.给水排水,2004,30(8):8-2.
    [31]宋祥甫,邹国燕,吴伟明,等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究.环境科学学报,1998,18(5):489-94.
    [32]马立珊,骆永明,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000,2:99-01.
    [33]Naiman R. J., Decamps H.. The Ecology of Interfaces:Riparian Zones[J]. Annual Review of Ecology and Systematics,1997,28:621-658.
    [34]Wissmar R.C., Beschta R.L.. Restoration and Management of Riparian Ecosystems:a Catchment Perspective [J]. Freshwater Biology,1998,40(3):571-585.
    [35]张自杰,林荣枕.排水工程(下册)[M].北京:中国建筑工业出版社,2000.
    [36]江栋,李开明,刘军,等.黑臭河道生物修复中氧化塘应用研究[J].生态环境,2005,14(6):822-826.
    [37]Bso De Ceballos, Oliveira H., Meira C.. River Water Quality Improvement by Natural and Constructed Wetland Systems in The Tropical Semi-Arid Region of Northeastern Brazil[J]. Water Science And Technology,2001,44(11-12):599-605.
    [38]Jing S.R., Lin Y.F., Lee D.Y., et al. Nutrient Removal From Polluted River Water by Using Constructed Wetlands[J]. Bioresource Technology,2001,76(2):131-135.
    [39]Ruan X., Xue Y., Wu J., et al. Treatment of Polluted River Water Using Pilot-Scale Constructed Wetlands[J]. Bulletin of Environmental Contamination and Toxicology,2006,76:90-97.
    [40]张建,邵文生,何苗,等.人工湿地处理污染河水的持续性运行研究[J],环境科学,2006,27(9):1760-1764.
    [41]周训华.适用于河流治理的地面廊道污水处理系统的设计[J].水电站设计,2004,20(3):44-46.
    [42]张兰,汪德爟.水生植物廊道净化污水的试验研究[J].水电站设计,2005,21(4):44-46.
    [43]邵文生,张建,何苗,等.人工湿地系统处理污染河水的填料选配[J].中国给 水排水,2006,22(3):65-68.
    [44]胡亨魁主编.水污染治理技术[M].武汉:武汉理工大学出版社,2009.
    [45]肖羽堂,许建华.生物接触氧化工艺应用评析[J].净水技术,1998,63(1):31-34.
    [46]肖羽堂,许建华.生物接触氧化法净化微污染原水的机理研究[J].环境科学,1999,20:85-88.
    [47]周勇,操家顺,杨婷婷.生物填料在重污染河道治理中的应用研究[J].环境污染与防治,2007,29(4):289-292.
    [48]沈耀良,王宝贞.废水生物处理新技术:理论与应用(第2版)[M].中国环境科学出版社,2006年03月第2版.
    [49]Dijkman H., Strous M.. Process for Ammonia Removal from Wastewater[P]. Paten 1999, PCT/NL99/00446.
    [50]Strous M.. Microbiology of Anaerobic Ammonium Oxidation[Ph.D Thesis]. Department of Microbiology, TU Delft University, Delft, The Netherlands, ISBN: 90-9013621-5,2000.
    [51]Third K., Sliekers O.A., Kuenen J.G., et al. The Canon System (Completely Autotrophic Nitrogen Removal over Nitrite in One Single Reactor) under Ammonium Limitation:Interaction and Competition Between Three Groups of Bacteria [J]. Systematic and Applied Microbiology,2001,24:588-596.
    [52]Sliekers A.O., Derworth N., Gomez J. L. C., et al. Completely Autotrophic Nitrogen Removal over Nitrite in One Single Reactor[J]. Water Research,2002,36: 2475-2482.
    [53]Sliekers A.O., Third K. A., Abma W., et al. Canon and Anammox in a Gas-Lift Reactor[J]. FEMS Microbiology Letters,2003,218:339-344.
    [54]Third K.A., Paxman J., Schmid M., et al. Enrichment of Anammox From Activated Sludge and Its Application in Thee Canon Process [J]. Microbial Ecology, 2005,49:236-244.
    [55]Bernet N., Dangcong P., Delgenes J.P., et al. Nitrification at Low Oxygen Concentration in Biofilm Reactor[J]. Journal of Environmental Engineering,2001, 127(3):266-271.
    [56]Van Dongen U., Jetten M.S.M., Van Loosdrecht M.C.M.. The Sharon-Anammox Process for Treatment of Ammonium Rich Wastewater[J]. Water Science and Technology,2001,44(1):153-160.
    [57]Jetten M.S.M., Schmid M., Schmidt I., et al. Improved Nitrogen Removal by Application of New Nitrogen Cycle Bacterial [J]. Reviews in Environmental Science & Biotechnology,2002,1:51-63.
    [58]Van Loosdrecht M.C.M., Jetten M.S.M.. Microbiological Conversion in Nitrogen Removal [J]. Water Science and Technology,1998,38:1-7.
    [59]Gali A., Dosta J., Van Loosdrecht M.C.M., et al. Two Ways to Achieve An Anammox Influent from Real Reject Water Treatment at Lab-Scale:Partial SBR Nitrification and Sharon Process[J]. Process Biochemistry,2007,42(4):715-720.
    [60]Chuang H.P., Ohashi A., Imachi H., et al. Effective Partial Nitrification to Nitrite by Down-flow Hanging Sponge Reactor under Limited Oxygen Condidon [J]. Water Research,2007,41:295-302.
    [61]Furukawa K., Tokitoh H., Lieu P.K., et al. Single-stage Nitrogen Removal Using Anammox and Partial Nitritation (SNAP) for Treatment of Synthetic Landfill Leachate[J]. Japanese Journal of Water Treatment Biology,2005,41(2):103-112.
    [62]Joan E.G.. Anaerobic Ammonium Oxidation during Soil Aquifer Treatment [Ph.D Thesis]. Arizona State University,2002.
    [63]Zeqin D., Tieheng S.. A Potential New Process for Improving Nitrogen Removal in Constructed Wetlands-Promoting Coexistence of Partial-Nitrification and Anammox[J]. Ecological Engineering,2007,31:69-78.
    [64]张永明,胡一珍,严荣,等.用生物膜缺氧修复受污染的城市河道水[J].环境科学,2009,30(7):1920-1924.
    [65]何晓红,李大平,陶勇,等.硝化菌群强化修复氨氮污染河流水体研究[J].环境科学学报,2009,29(9):1944-1950.
    [66]Gupta A. B., Gupta S. K.. Simultaneous Carbon and Nitrogen Removal in a Mixed Culture Aerobic RBC Biofilm[J]. Water Research,1999,33(2):555-561.
    [67]Hippen A., G. Baumgarten, K.H., Rosenwinkel, et al. Aerobic Deammonification-ANew Experience in the Treatment of Wastewaters[J]. Water Science and Technology, 1997,35(10):305-315.
    [68]Hippen A., Helmer C., Kunst S., et al. Six Years Practical Experience with Aerobic/Anoxic Deammonification in Biofilm Systems[J]. Water Science and Technology,2001,44:39-48.
    [69]Siegrist H., Reithaar S., Lais P.. Nitrogen Loss in a Nitrifying Rotating Contactor Treating Ammonium-Rich Leachate without Organic Carbon[J]. Water Science and Technology,1998,37(4):589-591.
    [70]Helmer C., Kuenst S.. Simultaneous Nitrification/Denitrification in an Aerobic Biofilm System [J]. Water Science and Technology,1998,37:183-187.
    [71]Gert I., Heribert I., Hngrid H., et al. Identification of Anammox Bacteria in a Full-scale Deammonification Plant Making Use of Anaerobic Ammonia Oxidation[J]. Systematic Applied Microbiology,2007,30(5):408-412.
    [72]Kalyuzhnyi S., Gladchenko M., Mulder A., et al. Deamox-New Biological Nitrogen Removal Process Based on Anaerobic Ammonia Oxidation Coupled to Sulphide-Driven Conversion of Nitrate into Nitrite[J]. Water Research,2006,40: 3637-3645.
    [73]Pathak B.K., Kazama F.. Influence of Temperature and Organic Carbon on Denammox Process. Proceedings CD, Nutrient 2007, Baltimore, March 4,2007, pp. 402-413.
    [74]Van de Graaf A.A., Bruijn P.D., Robertson L.A., et al. Autotrophic Growth of Anaerobic Ammonium Oxidizing Microorganism in a Fluidized Bed Reactor [J]. Microbiology,1996,142:2187-2196.
    [75]Pathak B.K., Kazama F., Saiki Y., et al. Presence and Activity of Anammox and Denitrification Proccess in Low Ammonium-fed Bioreactors[J]. Bioresource Technology,2007,98:2201-2206.
    [76]Schmidt I., Zart D., Bock E.. Gaseous NO2 as a Regulator for Ammonia Oxidation of Nitrosomonas Eutropha[J]. Antonie Van Leeuwenhoek,2001,79:311-318.
    [77]Schmidt I., Hermelink C., Van de pas-Schoonen, et al.Anaerobic Ammonia Oxidation in the Presence of Nitrogen Oxides (NOx) by Two Different Lithotrophs [J]. Applied and Environmental Microbiology,2002,68:5351-5357.
    [78]Schmidt I., Sliekers O., Schmid M., et al. New Concceopts of Microbial Treatment Processes for the Nitrogen Removal in Wastewater [J]. FEMS Microbiology Reviews,2003,27:481-492.
    [79]Kuba T., Van Loosdrech M.C.M., Heijnen J .J.. Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Denitrifying Dephosphatation and Nitrification in A Two-Sludge System[J]. Water Research,1996,30(7):1702-1710.
    [80]Jorgensen K S, Pauli A S L. Polyphosphate Accumulation Among Denitrifying Bacteria in Activated Sludge [J]. Anaerobe,1995,1(3):161-168.
    [81]Barker P S, Dold P L. Denitrification Behaviour in Biological Excess Phosphorus Removal Activated Sludge Systems [J]. Water Research,1996,30 (4):769-750.
    [82]Kuba T., Van Loosdrecht M.C.M.. Phosphorus Removal from Wastewater by Anaerobic-Anoxic Sequencing Batch Reactor [J]. Waster Science and Technology, 1993,27(5-6):241-252.
    [83]Kerrn-Jespersen J. P., Henze M.. Biological Phosphorus Uptake under Anoxic and Aerobic Conditions [J]. Water Research,1993,27(4):617-624.
    [84]Mino T., Liu W. T., Kurisu F., et al. Modelling Glycogen Storage and Denitrification Capability of Microorganisms in Enhanced Biological Phosphate Removal Processes [J]. Water Science and Technology,1995,31(2):25-34.
    [85]Wachtmeister A., Kuba T., Van Loosdrecht M.C.M., et al. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphorus Removing Sludge[J]. Water Researceh,1997,31(3):471-78.
    [86]Hu J. Y., Ong S. L., Ng W. J., et al. A New Method for Charaeterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Type of Electron Acceptors [J]. Water Research,2003,37:3463-3471.
    [87]Kuba T., Van Loosdrecht M.C.M.. Biological Dephosphatation by Activated Sludge under Denitrifying Conditions:pH Influence and Occurrence of Denitrifying Dephosphatation in a Full-Scale Wastewater Treatment Plant [J]. Water Science and Technology,1999,36(12):75-82.
    [88]Sorm R., Bortone G., Saltarelli R., et al. Phosphate Uptake under Anoxic Conditions and Fixed-Film Nitrification in Nutrient Removal Activated Sludge System [J]. Water Research,1996,7(30):1573-1584.
    [89]贾晓燕.废水除磷技术的研究进展[J].重庆环境科学,25(12)(2003)191-192.
    [90]沈耀良,杨铃大.新型废水处理技术-人工湿地[J].污染防治技术,1996,9(1):1-8.
    [91]Korner, S., Vermaat, J.E. The Relative Importance of Lemna gibba L., Bacteria and Algae for the Nitrogen and Phosphorus Removal in Duckweed-Covered Domestic Wastewater[J]. Water Research,1998,32(12):3651-3661.
    [92]Hippen A., Helmer C., Kunst S., et al. Six Years Practical Experience with Aerobic/Anoxic Deammonification in Biofilm Systems[J]. Water Science and Technology,2001,44:39-48.
    [93]Siegrist H., Reithaar S., Lais P.. Nitrogen Loss in a Nitrifying Rotating Contactor Treating Ammonium-rich Leachate without Organic Carbon[J]. Water Science and Technology,1998,37(4):589-591.
    [94]Helmer C., Kuenst S.. Simultaneous Nitrification/Denitrification in an Aerobic Biofilm System [J]. Water Science and Technology,1998,37:183-187.
    [95]Pathak B.K., Kazama F.. Influence of Temperature and Organic Carbon on Denammox Process. Proceedings CD, Nutrient 2007, Baltimore, March 4,2007, pp. 402-413.
    [96]Pathak B.K., Kazama F., Saiki Y., et al. Presence and Activity of Anammox and Denitrification Proccess in Low Ammonium-fed Bioreactors[J]. Bioresource Technology,2007,98:2201-2206.
    [97]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [98]Hanaki K.. Nitrification at Low Levels of Dissolved Oxygen with and without Organic Loading in Suspended-Growth Reactor[J]. Water Research,1990,24(3): 297-301.
    [99]孙英杰,张隽超,胡跃城.亚硝酸型硝化的控制途径[J].中国给水排水,2002,18(6):29-31.
    [100]张小玲,王志盈,彭党聪,等.低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水,2003,19(7):1-4.
    [101]王少坡,彭永臻,等.CAST工艺处理低C/N废水中DO对NO2-积累的影响[J].哈尔滨工业大学学报,2005,37(3):344-347.
    [102]高大文,彭永臻,等.SBR法短程硝化反硝化生物脱氮工艺的研究[J].环境污染治理技术与设备,2003,4(6):1-4.
    [103]高大文,彭永臻,等.SBR工艺中短程硝化反硝化的过程控制[J].中国给水排水,2002,18(11):13-18.
    [104]马勇,彭永臻,等.A/O生物脱氮工艺处理生活污水中试(二)系统性能和SND现象的研究[J].环境科学学报,2006,26(5):710-715.
    [105]魏琛,罗固源,等.FA和pH值对低C/N污水生物亚硝化的影响[J].重庆大学学报(自然科学版),2006,29(3):124-127.
    [106]高廷耀,顾国维.水污染控制工程(下册)(第二版)[M].北京:高等教育出版社,2001.
    [107]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J].上海环境科学,1999,18(1):16-18.
    [108]郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系[J].环境污染治理技术与设备,2000,1(1):8-13.
    [109]徐亚同.废水反硝化除氮[J].上海环境科学,1994,13(10):8-12.
    [110]贾晓燕.废水除磷技术的研究进展[J].重庆环境科学,25(12)(2003)191-192.
    [111]施永生.亚硝酸型生物脱氮技术[J].给水排水,2000,26(11):21-23.
    [112]支霞辉,王红武,丁峰.常温条件下短程硝化反硝化生物脱氮研究[J].环境科学研究,2006,19(1):26~29.
    [113]陈际达,曲中堂,刘峥,等.亚硝酸盐反硝化脱氮.2002,25(3):81-83.
    [114]郭海娟,马放,沈耀良.DO和pH值在短程硝化中的作用[J].环境污染治理技术与设备,2006,7(1):37-39.
    [115]高大文,彭永臻,王淑莹.交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制[J].环境科学学报,2004,24(5):761-768.
    [116]Sumacz-Gorska J., Cichon A., Miksch K.. Nitrogen Removal from Wastewater with High Ammonia Nitrogen Concentration via Shorter Nitrification and Denitrification [J]. Water Science and Technology,1997,36(10):73-78.
    [117]Hellinga C., Schellen A.A.J.C., Mulder J.W., et al. The Sharon Process:an Innovative Method for Nitrogen Removal from Ammonium Rich Wastewater [J]. Water Science and Technology,1998,37(9):135-142.
    [118]Van Kempen R., Mulder J.W., Uijterlinde C.A., et al. Overview:Full Scale Experience of the Sharon Process for Treatment of Rejection Water of Digested Sludge Dewatering [J]. Water Science and Technology,2001,44(1):145-152.
    [119]宋学起,王淑莹,彭永臻,等.以氯化和时间控制实现亚硝化型硝化反硝化[J].高技术通讯,2004,1:95-99.
    [120]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [121]章非娟.生物脱氮技术[M].北京:中国环境科学出版社,1992.
    [122]罗志腾.污染控制工程微生物学[M].北京:北京科学技术出版社,1988.
    [123]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,1999.
    [124]Zheng G., Fenlin Y., Furudawa K., et al. Feasibility of a Membrane-Aerated Biofilm Reactor to Achieve Single-Stage Autotrophic Nitrogen Removal Based on Anammox[j]. Chemosphere,2007,69(5):776-784.
    [125]Joan E.G.. Anaerobic Ammonium Oxidation during Soil Aquifer Treatment [Ph.D Thesis]. Arizona State University,2002.
    [126]Kuai L., Verstrate W.. Ammonium Removal by the Oxygen Limited Autotrophic Nitrification-Denitrification System[J]. Applied and Environmental Microbiology, 1998,64:4500-4506.
    [127]Phillips S., Wyffels S., Sprengers R., et al. Oxygen-limited Autotrophic Nitrification/Denitrification by Ammonia Oxidizers Enables Upward Motion towards More Favorable Conditions[J]. Applied Microbiology and Biotechnology,2002,59: 4-5.
    [128]Rosenwinkel K.H., Cornelius A.. Deammonification in the Moving-bed Process for the Treatment of Wastewater with High Ammonia Content [J]. Chemical Engineering & Technology,2005,28:49-52.
    [129]Pynaert K., Smets B.F., Behedt D., et al. Start-up of Autotrophic Nitrogen Removal Reactors via Sequential Biocatalyst Addition [J]. Environmental Science & Technology,2004,38:1228-1235.
    [130]李军,杨秀山,彭永臻.微生物与水处理工程[M].化学工业出版社,2002:378-405.
    [131]Patureau D., Bernet N., Bouchez T., et al. Biological Nitrogen Removal in a Single Aerobic Reactor by Association of a Nitrifying Ecosystem to an Aerobic Denitrifier, Microviergula aerodenitrificant [J]. J. Mol. Catalysis B:Enzymatic,1998, 5(1-4):435-439.
    [132]Wrage N., Velthof G.L., Van Beusichem M.L., et al. Role of Nitrifier Denitrification in the Production of Nitrous Oxide[J]. Soil Biology & Biochemistry, 2001,33(12-13):1723-1732.
    [133]Zhang T.C., Lampe D.G... Sulfur: Limestone Autotrophic Denitrification Processes for Treatment of Nitrate Contaminated Water:Batch Experiments [J]. Water Research,1999,33(3):599-608.
    [134]Pijuan M., Guisasola A., Baeza J. A., et al. Aerobic Phosphorus Release Linked to Acetate Uptake:Influence of PAO Intraeellular Storage Compounds[J]. Biochemieal Engineering Journal,2005,26(2-3):184-190.
    [135]Tsuneda S., Ohno T., Soejima K., et al. Simultaneous Nitrogen and Phosphorus Removal Using Denitrifying Phosphate-Accumulating Organisms in a Sequencing Batch Reactor [J]. Biochemical Engineering Journal,2006,27(3):191-196.
    [136]Lemos P.C., Viana C., Salgueiro E.N., et al. Effect of Carbon Source on the Formation of Polyhydroxy Alkanoates (PHA) by a Phosphate-Accumulating Mixed Culture [J]. Enzyme and Microbial Technology,1998,22(8):662.
    [137]郝晓地,汪慧贞,钱易,等.欧洲城市污水处理技术新概念-可持续生物除磷脱氮工艺(上)[J].给水排水,2002,28(6):6-11.
    [138]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理,2003,23(5):18-20.
    [139]Johnson, T.L., Shaw, A.R., McQuarrie, J.P.. "Integrated Fixed-Film Activated Sludge (IFAS):The New Choice for Nitrogen Removal Upgrades in the United Sates". Proceedings, WEFTEC, New Orleans, LA, USA,2004
    [140]张建安,姜文清,刘杰.深圳市水污染防治的战略地位及对策措施[J].重庆 环境科学,2003,25(9):1-3.
    [141]You S. J., Tsai Y. P., Huang R. Y.. Effects of Heavy Metals on the Specific Ammonia and Nitrate Uptake Rates in Activated Sludge, Environmental Engineering Science.2009, 26:1207-1215.
    [142]Gikas. Kinetic Responses of Activated Sludge to Individual and Joint Nickel (Ni(Ⅱ))and Cobalt (Co(Ⅱ)):An Isobolographic Approach, Journal of Hazardous Materials, 2007,143:246-256.
    [143]You J., Tsai Y. P., Huang R. Y, Effect of Heavy Metals on Nitrification Performance in Different Activated Sludge Processes, Journal of Hazardous Materials,2009,165: 987-994.
    [144]Mowat A.. Measurement of Metal Toxicity by Biochemical Oxygen Demand[J], Journal of the Water Pollution Control Federation,1976,48(5):853-866.
    [145]Wong K.Y., Zhang M.W., Li X.M., et al, A Luminescence-Based Scanning Respirometer for Heavy Metal Toxicity Monitoring[J], Biosensors and Bioelectronics, 1997,12:125-133.
    [146]Hu Z., Chandran K., Grasso D., et al. Efect of Nickel and Cadmium Speciation on Nitrification Inhibition, Environmental Science & Technology,2002,36:3074-3078.
    [147]Kelly C.J., Tumsaroj N., Lajoie C.A.. Assessing Wastewater Metal Toxicity with Bacterial Bioluminescence in a Bench-Scale Wastewater Treatment System, Water Research,2004,38:423-431.
    [148]Lombrana J.I., Varona F., Mijangos F.. Biokinetic Behavior and Settling Characteristics in an Activated Sludge under the Effect of Toxic Ni(Ⅱ) Influents. Water, Air and Soil Pollution,1993,69:57-68.
    [149]Gokcay C. F., Yetis U.. Effect of Nickel (Ⅱ) on the Biomass Yield of the Activated Sludge[J], Water Science and Technology,1996,34:163-171.
    [150]Ong S., Toorisaka E., Hirata M., et al. Effects of Nickel(II) Addition on The Activity of Activated Sludge Microorganisms and Activated Sludge Process[J], Journal of Hazardous Materials.2004,113:111-121.
    [151]Benetti A. D.. Composition, Fate and Transformation of Extracellular Polymers in Wasterwater and Sludge Treatment Process, A Dissertaion Presented to the Faculty of the Graduate School of Connell University for the Degree of Doctor of Philosphy,2000.
    [152]Pirog T. P., Grinberg T. A., Malashenko Y.. Protective Functions of Exopolysacharides Produced by an Zcinetobacter[J], Microbiology.1997,66:279-283.
    [153]田伟军,翟金波.生物膜技术在污染河道治理中的应用[J].环境保护,2003,8:19-21.
    [154]邢海,曹蓉.强化生物膜技术处理城市河道污染水体研究[J].河北工程大学学报(自然科学版),2008,25(1):54-57.
    [155]李璐,温东辉,张辉,等.分段进水生物接触氧化工艺处理河道污水的试验研究[J].环境科学,2008,29(8):2227-2234.
    [156]彭福全,熊正为,虢清伟,等.生物接触氧化工艺处理河道原水实验研究[J].南华大学学报(自然科学版),2010,24(1):87-91.
    [157]Lombrana J.I., Varona F., Mijangos F.. Biokinetic Behavior and Settling Characteristics in an Activated Sludge under the Effect of Toxic Ni(II) Influents. Water, Air and Soil Pollution,1993,69:57-68.
    [158]Jenkins D., Richard M.G., Daigger G., et al. Manual on the Causes and Control of Activated Sludge Bulking and Foaming,2nd ed., Lewis Publishers, Boca Raton, London, Tokyo,1993:11-13.
    [159]Sponza D.T.. Investigation of Extracellular Polymer Substances (EPS) and Physicochemical Properties of Different Activated Sludge Flocs under Steady-State Conditions[J], Enzyme and Microbial Technology,2003,32:375-385.
    [160]HA (American Public Health Association), Standard Methods for the Examination of Water and Wastewater,19th ed.,Washington, DC,1995.
    [161]Wilen B.M., Jin B., Lant P.. The Influence of Key Chemical Constituents in Activated Sludge on Surface and Flocculating Properties[J], Water Research,2003, 37:2127-2139.
    [162]Sheng G.P., Yu H.Q., Yue Z.B.. Production of Extracellular Polymeric Substances from Rhodopseudomonas Acidophila in the Presence of Toxic Substances[J], Applied Microbiology and Biotechnology,2005,69:216-222.
    [163]Liao B.Q., Allen D.G., Droppo I.G., et al. Surface Properties of Sludge And Their Role In Bioflocculation and Settleability[J]. Water Research,2001,35(2):339-350.
    [164]Sheng G.P., Yu H.Q", Li X.Y.. Stability of Sludge Flocs under Shear Conditions: Roles of Extracellular Polymeric Substances (EPS) [J]. Biotechnology and Bioengineering,2006,93(6):1095-1102.
    [165]Viadero R.C., Wei X., Buzby K.M.. Characterization and Dewatering Evaluation of Acid Mine Drainage Sludge from Ammonia Neutralization, Environmental Engineering Science,2006,23(4):734-743.
    [166]Djedidia Z., Boudaa M., Souissia M.A., et al. Metals Removal from Soil, Fly ash and Sewage Sludge Leachates by Pre-cipitation and Dewatering Properties of the Generated Sludge [J], Journal of Hazardous Materials,2009,172:1372-1382.
    [167]Ras M., Girbal-Neuhauser E., Paul E., et al. Protein Extraction from Activated Sludge:An Analytical Approach, Water Research.2008,42:1867-1878.
    [168]Daniel L., Hanson R.S., Phillips J.A.. Chemical Analysis, In:Methods for General and Molecular Bacteriology, Edited by Gerhardt P, Murray R G E, Wood WA et al., Washington D C, USA, American Society for Microbilology.1994:518-519.
    [169]Arican B., Yetis U.. Nickel Sorption by Acclimatized Activated Sludge Culture, Water Research,2003,37:3508-3516.
    [170]Gikas P.. Single and Combined Effects of Nickel (Ni(Ⅱ)and Cobalt (Co(Ⅱ)) Ions on Activated Sludge and on other Aerobic Microorganisms:A Review, Journal of Hazardous Materials,2008,159:187-203.
    [171]谢冰.重金属对活性污泥微生物的影响[J],上海化工,2004,2:13-16.
    [172]Groeneweg J., Sellner B., Tappe W.. Ammonia Oxidation in Nitrosomonas at NH3 Concentrations Near km:Effects of pH and Temperature. Water Research,1994, 28(12):2561-2566.
    [173]Dangcong P., Bernet N., Delgenes J., et al. Effects of Oxygen Supply Methods on the Performance of a Sequencing Batch Reactor for High Ammonium Nitrification. Water Environment Research,2000,72(2):195-200.
    [174]Beg S.A., Hassan M.M., Chaudhry M.A.S. Chromium (VI) Inhibition in Multisubstrate Carbon Oxidation and Nitrification Process in an Upflow Packed Bed Biofilm Reactor[J]. Biochemical Engineering Journal,1998,1(2):143-152
    [175]Juliastuti S.R., Baeyens J., Creemers C. Inhibition of Nitrification by Heavy Metals and Organic Compounds:The ISO9509 Test. Environmental Engineering Science,2003,20(2):79-90.
    [176]Madoni P., Davoli D., Guglielm I.L.. Response of SOUR and AUR to Heavy metal Contamination in Activated Sludge. Water Research,1999,33(10):2459-2464.
    [177]Kelly R.T., Henriques I.D.S.,Love N.G. Chemical Inhibition of Nitrification in Activated Sludge. Biotechnol Bioeng.,2004,85(6):683-694.
    [178]魏翔,任洪强等.混合重金属对硝化颗粒污泥毒性作用的析因实验研究.环境工程学报,2007,5:101-104.
    [179]Thompson G, Forster C.. Bulking in Activated Sludge Plants Treating Paper Mill Wastewaters, Water Research,2003,37:2636-2644.
    [180]Simpson J.R., List E., Dunbar J.M.. Bulking Theory:a Theory and Successful Case Histories, Water Environmental Management.1991,5:302-311.
    [181]Wingender J., Neu T. R., Flemming H.C.. What Are Bacterial Extracellular Polymeric Substances In:Microbaial Extracellular Substances [M]. Springer-Verlag Berlin Heidelberg,1999:1-19.
    [182]Harris R.H., Mitchell R. Inhibition of the Flocculation of Bacteria by Biopolymers [J]. Microbiology,1973,27:27-50.
    [183]Higgins M.J., Novak J.T.. Characterization of Extracellular Protein and its Role in Bioflocculation[J]. Journal of Environmental Engineering,1997,123:479-485.
    [184]Raszkaa A., Chorvatovab M., Wannerb J.R.. The Role and Significance of Extracellular Polymers in Activated Sludge[J]. Acta Hydrochimica et Hydrobiologica, 2006,34:411-424.
    [185]Niesen P.H., Jahn A., Palmgren R.. Conceptual Model for Production and Composition of Exopolymers in Biofilms[J]. Water Science and Technology,1997,36: 11-19.
    [186]Debeer D., O'Flaharty V., Thanveesri J., et al. Distribution of Extracellular polysaccharides and flotation of anaerobic sludge[J]. Applied Microbiology and Biotechnology,1996,60:1364-1366.
    [187]Nielsen P.H., Jahn A.. Extraction of EPS. In:Microbial Extracellular Polymeric Substances:Characterization, Structure and Function[M]. Springer-Verlag Berlin Heidelberg,1999:50-65.
    [188]Urbain V., Block J.C., Manem J.. Bioflocculation in Activated Sludge: Analytical Approach[J]. Water Research,1993,27(5):829-838.
    [189]Dignac M.F., Urbain V., Rybacki D., et al. Chemical Description of Extracellular Polymers:Implication on Activated Sludge Flocs Structure[J]. Water Science and Technology,1998,38(8-9):45-53.
    [190]Comte S., Guibaud G, Baudu M.. Biosorption Properties of Extracellular Polymeric Substances (EPS) Resulting from Activated Sludge According to Their Type:Soluble or Bound[J]. Process Biochemistry,2006,41:815-823.
    [191]Jang A., Kim S.M., Kim S.Y., et al. Effect of Heavy Metals (Cu, Pb, and Ni) on the Compositions of EPS in Biofilms[J]. Water Science and Technology,2001,43(6): 41-48.
    [192]Li D.H., Ganczarzyk J.J.. Structure of Activated Sludge Flocs[J], Biotechnology and Bioengineering,1990,35:57-65.
    [193]Goodwin J.A.S., Forster C.F.. A Further Examination into the Composition of Activated Sludge Surfaces in Relation to Their Settling Characteristics[J], Water Research,1985,19:527-533.
    [194]Murthy S. N., Novak J. T.. Factors Affecting Floc Properties during Aerobic Digestion: Implications for Dewatering [J], Water Environment Research,1999,71:197-202.
    [195]Liu Y., Fang H.P.. Influences of Extracellular Polymeric Substances (EPS) on Flocculation, Settling and Dewatering of Activated Sludge, Crit. Rev. Environmental Science & Technology,2003,33:237-273.
    [196]Tian Y., Zheng L., Sun D.Z.. Functions and Behavior s of Activated Sludge Extracellular Polymeric Substances (EPS):A Promising Environmental Interest [J]. Journal of Environmental Sciences,2006,18(3):420-427.
    [197]鹿雯,胞外聚合物EPS对污泥理化性质影响研究[J],环境科学与管理,2007,32(5):27-30.
    [198]Wingender J., Neu T.R., Flemming H.C.. Microbial Extracellular Polymeric Substances:Characterisation, Structure and Function, Springer, Berlin,1999, pp.123.
    [199]Tourneya J., Ngwenyaa B., Mosselmansb J.W.F., et al. Physical and Chemical Effects of Extracellular Polymers (EPS) on Zn Adsorption to Bacillus Licheniformis S-86[J]. Journal of Colloid and Interface Science,2009,337:381-389.
    [200]Lei Z., Yu T., Ding A.Z., et al. Adsorption of Cd(II), Zn(II) by Extracellular Polymeric Substances Extracted from Waste.Activated Sludge, Water Science and Technology,2008,58:195-200.
    [201]Comte S., Guibaud G., Baudua M.. Biosorption Properties of Extracellular Polymeric Substances (EPS) towards Cd, Cu and Pb for Different pH Values[J], Journal of Hazardous Materials,2008,151:185-193.
    [202]Guibaud G., Van Hullebusch E., Bordas F.. Lead and Cadmium Biosorption by Extracellular Polymeric Substances (EPS) Extracted Fromactivated Sludges: pH-Sorption Edge Tests and Mathematical Equilibrium Modeling[J]. Chemosphere, 2006,64:1955-1962.
    [203]Guibaud G., Comte S., Bordas F., et al. Comparison of the Complexation Potential of Extracellular Polymeric Substances (EPS), Extracted from Activated Sludges and Produced by Pure Bacteria Strains, for Cadmium, Lead and Nickel, Chemosphere 2005,59:629-638.
    [204]Hu Z., Chandran K., Grasso D., et al. Comparison of Nitrification Inhibition by Metals in Batch and Continuous Flow Reactors, Water Research,2004,38: 3949-3959.
    [205]Kazyl S.K., Sar P., Singh S.P., et al. Extracellular Polysaccharides of a Copper-Sensitive and a Copper-Resistant Pseudomonas Aeruginosa Strain:Synthesis, Chemical Nature and Copper Binding, World Journal of Microbiology and Biotechnology,2002,18:583-588.
    [206]胡洪营,何苗,朱铭捷,等.污染河流水质净化与生态修复技术及其集成化策略[J].城市给水排水,2005,31:1-9.
    [207]胡振宇.珠江三角洲重金属排放及空间分布规律研究.广州:中国科学院研究生院广州地球化学研究所,2004.
    [208]蔡立梅,马瑾,周永章,等.东莞市农业土壤重金属的空间分布特征及来源解析[J].环境科学,2008,29(12):3496-3502.
    [209]黄奕龙,王仰麟,岳隽.深圳市河流沉积物重金属污染特征及评价[J].环境污染与防治,2005,27(9):711-715.
    [210]胡朝晖,李平,徐维海,等.深圳蛇口渔港沉积物重金属分布及潜在生态风险评价[J].生态环境,2008,17(6):2145-2149.
    [211]Wang L., Liu Y., Li J., et al. Effects of Ni2+ on the Characteristics of Bulking Activated Sludge[J]. Journal of Hazardous Materials,2010,181:46-67.
    [212]Song W.J., Mu G..J. Zhang D.Y., et al. Interaction of Acetamiprid with Extracellular Polymeric Substances (EPS) from Activated Sludge:A Fluorescence Study[J]. African Journal of Biotechnology,2010,9(45):7667-7673.
    [213]Adav S.S., Lee D.J., Lai J.Y.. Aerobic Granules with Inhibitory Strains and Role of Extracellular Polymeric Substances[J]. Journal of Hazardous Materials,2010, 174(1-3):424-428.
    [214]Avella A.C., Essendoubi M., Louvet J.N., et al. Activated Sludge Behaviour in a Batch Reactor in the Presence of Antibiotics:Study of Extracellular Polymeric Substances[J]. Water Science & Technology,2010,61(12):3147-3155.
    [215]国家环境保护局,国家技术监督局.中华人民共和国国家标准-污水综合排放标准(GB8978-1996)[S].1997.
    [216]刘永伟,毛小苓,孙莉英,等.深圳市工业污染源重金属排放特征分析[J].北京大学学报(自然科学版),2010,46(2):279-285.
    [217]王学江,夏四清,张全兴,等.悬浮填料移动床处理苏州河支流河水试验研究[J].环境污染治理技术与设备,2002,3(1):27-29.
    [218]王荣昌,文湘华,景永强,等.悬浮载体生物膜反应器修复受污染河水试验研究[J].环境科学,2004,25(sup):67-69
    [219]M.S.M. Jetten, S.J. Horn, Van Loosdrecht M.C.M.. Towards a More Sustainable Municipal Wastewater Treatment System[J]. Water Science and Technology,1997, 35(9):171-180
    [220]Zhu L., Liu J.X.. Landfill Leachate Treatment with a Novel Process:Anaerobic Ammonium Oxidation (Anammox) Combined with Soil Infiltration System [J]. Journal of Hazardous Materials,2008,151(1):202-212.
    [221]Szatkowska B., Cema G, Plaza E., et al. One-Stage Systenn with Partial Nitritation and and Anammox Processes in Moving-Bed Biofilm Reactor. In: Proceedings of the International conference on biofilm systems VI [C]. Amsterdam, 2006:49-58.
    [222]杜兵,孙艳玲,刘寅,等.新型亚硝化工艺开发研究[J].给水排水,2006,32(9):17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700