铜精炼阳极炉最优重油流量及其监控系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜的火法精炼是火法炼铜中的一道重要工序,通常在阳极炉中进行。阳极炉的作业呈周期性,包括加料、保温、氧化、还原和浇铸等阶段,是一个涉及化学反应、传热、传质、流体流动等众多作用的复杂过程。目前,国内的粗铜火法精炼过程普遍存在这样一个问题:保温过程和氧化过程的重油流量根据人工经验首先设定,然后进行仪表单回路的监控与手动控制。这种控制方式缺乏科学依据,不仅影响产品质量,而且还会造成能源的浪费和环境的污染,极大地限制了阳极炉生产优势的发挥,从根本上制约着企业的经济效益。因此,为了提高精炼操作的科学性,减少操作人员主观因素对生产的影响,进行重油流量优化监控研究就显得尤为重要。
     重油消耗量最优化模型和重油流量在线计量模型是本文研究的核心内容。为了使模型精确而实用,在掌握精炼机理和工艺特点的前提下,作者从能量平衡原理入手,以泛函分析为数学工具,分别建立了保温过程和氧化过程的重油消耗量最优化模型,并利用欧拉方程求得了相应的最优重油流量,为监控系统的开发提供了理论依据;同时,为了快速准确地对重油流量进行计量,本文以椭圆齿轮流量计为计量元件,采用最小二乘法求得重油温度和密度的线性回归方程,建立了带有精度修正和密度补偿的重油流量在线计量模型,提高了重油流量的计量精度;在软件开发方面,
    
    中南大学硕士学位论文 中文摘要
    本文以面向对象的可视化程序设计语言Visual Basic 6.0为开发工
    具,并结合OPC通信技术进行编程,使监控系统具有人机界面友
    好、操作简单、运行速度快等特点。
     经过一段时间的生产实践检验,该系统运行良好,能够有效
    地对重油流量进行在线控制与实时监测,对节约能源、减少污染
    以及提高阳极炉的操作水平和精炼技术指标具有重要的理论意义
    和工程应用价值。
Refining is an important working procedure for copper pyrometallurgy, which is generally performed in an anode furnace. The operation of the anode furnace is a periodical process, consisting of several phases such as pouring liquid copper, heat preservation, oxidation, reduction and casting, and involving chemical reactions, heat transfer, mass transfer, and fluid flow. At present, there exists a common problem in the process of copper refining in our country that the heavy oil flux for heat preservation and oxidation is set experientially, then monitored with single looped instruments and controlled manually. Such a control method is unreasonable, and it will not only affect the quality of product but also result in tremendous energy waste and serious pollution, which will restrict the advantages of the anode furnace and limit the benefit of the enterprise radically. Hence, it is especially crucial to study optimization control and monitoring for heavy oil flux in order to enhance the operational scientific
    ity and decrease the influence of operators' subjective factors on production.
    The optimization models of heavy oil consumption and the on-line measurement model of heavy oil flux are central contents of this paper. In order to be accurate and applicable, the optimization models of heavy oil consumption of heat preservation phase and oxidation phase are established by functional analysis based on refining mechanism and the theory of
    
    
    
    
    conversation of energy, and the corresponding optimal heavy oil fluxes are extracted by Euler Equation, which lays a solid academic foundation for the monitoring and control system. In the meanwhile, in order to measure heavy oil flux rapidly and precisely, the linear regression equation of temperature and density is obtained by Least Square Method, and the on-line measurement model of heavy oil flux with precision amendment and density compensation is established based on Oval Geared Flowmeter, which enhances the precision of measurement of heavy oil flux. The software system of this paper is developed in the visualization programming language Visual Basic 6.0, combined with the communication technology OPC, which makes the interfaces of system friendly and the operation easy and facile.
    The production practices have proven that the system runs well and can execute on-line control and real-time monitoring for heavy oil flux efficiently, which is of academic significance and application value for energy saving, pollution reducing, and increasing operational level and technical index of refining process in the anode furnace.
引文
[1] 苏彦勋,李金海.流量计量.北京:中国计量出版社,1991.4
    [2] 李玉斌.质量流量计在重油流量控制中的应用.玻璃,2000,27(6):22~24
    [3] 王艳霞,傅星,胡小唐等.一种高精度的超声波检测流量系统.压电与声光,2003,25(1):84~86
    [4] 李勇刚,桂卫华,胡燕瑜.高温液体流量检测系统及其在锌精馏中的应用.电子技术应用,2002,(8):39~41
    [5] D. Geropp, H. J. Odenthal. Flow rate measurements in turbulent pipe flows with minimal loss of pressure using a defect-law. Flow Measurement and Instrumentation, 2001,(12):1~7
    [6] J. Hemp. A technique for low cost calibration of large electromagnetic flowmeters. Flow Measurement and Instrumentation, 2001,(12): 123~134
    [7] Manus Henry. On-line compensation in a digital Coriolis Mass Flow meter. Flow Measurement and Instrumentation, 2001,(12): 147~161
    [8] M. Takamoto, H. Ishikawa, K. Shimizu, et al. New measurement method for very low liquid flow rates using ultrasound. Flow Measurement and Instrumentation, 2001,(12): 267~273
    [9] Jae-Eun Cha, Yeh-Chan Ahn, Moo-Hwan Kim. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes. Flow Measurement and Instrumentation, 2002,(12): 329~339
    [10] Andrew Godley. Flow measurement in partially closed conduits. Flow Measurement and Instrumentation, 2002,(13): 197~201
    [11] 金以慧,方崇智.过程控制.北京:清华大学出版社,1993.1
    [12] 邵裕森.过程控制及仪表.上海:上海交通大学出版社,1995.1
    [13] 康建辉,肖庆,郭毅钢等.包钢转炉计算机过程控制的软件结构.冶金自动化,1998,(3):28~30
    [14] 杨晔.宝钢热轧厂步进式加热炉计算机过程控制与优化.冶金能源,1995,14(5):33~36
    [15] 李义科,李保卫,任雁秋等.加热炉燃烧过程计算机控制的研究.冶金能源,2001,20(5):58~62
    [16] 彭惠清.铜熔炼过程计算机控制模型及程序设计.有色冶炼,1995,(2):31~38
    [17] B. A. Foss, T. A. Johansen, A. V. Sorensen. Nonlinear predictive control using local
    
    models-applied to a batch fermentation process. Control Engineering Practice, 1995,(3):389~396
    [18] R. Tenno, P. Uronen. Stochastic control for wastewater treatment process. Control Engineering Practice, 1996,(5): 601~614
    [19] D. Lee, J. S. Lee, T. Kang. Adaptive fuzzy control of the molten steel level in a strip—casting process. Control Engineering Practice, 1996,(11): 1511~1520
    [20] Q. Wang, G. Chalaye, G. Thomas, et al. Predictive control of a glass process. Control Engineering Practice, 1997,(2): 167~173
    [21] S. Sette, L. Boullart, L. Van Langenhove. Using genetic algorithms to design a control strategy of an industrial process. Control Engineering Practice, 1998,(6): 523~527
    [22] J. G. Bekker, I. K. Craig, P. C. Pistorius. Model predictive control of an electric arc furnace off-gas process. Control Engineering Practice, 2000,(8): 445~455
    [23] L. G. Bergh, S. L. Jamsa Jounela, D. Hodouin. State of the art in copper hydrometallurgic processes control. Control Engineering Practice, 2001,(9): 1007~1012
    [24] F. G. Shinskey. PID-deadtime control of distributed processes. Control Engineering Practice, 2001,(9): 1177~1183
    [25] Philippe Manon, Claire Valentin Roubinet, Gerard Gilles. Optimal control of hybrid dynamical systems:application in process engineering. Control Engineering Practice, 2002,(10): 133~149
    [26] M. Santos, A. L. Dexter. Control of a cryogenic process using a fuzzy PID scheduler. Control Engineering Practice, 2002,(10): 1147~1152
    [27] W. Birk, I. Arvanitidis, A. Medvedev, et al. Foam level control in a water model of the LD converter process. Control Engineering Practice, 2003,(11): 49~56
    [28] Xun Wang, Uwe Kruger, Barry Lennox. Recursive partial least squares algorithms for monitoring complex industrial process. Control Engineering Practice, 2003,(11): 613~632
    [29] S. H. Yang, X. Chen, J. L. Alty. Design issues and implementation of internet-based process control systems. Control Engineering Practice, 2003,(11): 709~720
    [30] S. Gruner, K. D. Mohl, A. Kienle, et al. Nonlinear control of a reactive distillation column. Control EngineeringPractice, 2003,(11): 915~925
    [31] Didier Theilliol, Jean-Christophe Ponsart, Jerome Harmand, et al. On-line estimation of unmeasured inputs for anaerobic wastewater treatment process. Control Engineering Practice, 2003,(11): 1007~1019
    [32] Wei Wang, Hanxiong Li, Jingtao Zhang. A hybrid approach for supervisory control of furnace temperature. Control Engineering Practice, 2003,(11): 1325~1334
    [33] 肖葆武.数学模型浅谈.天津城建学院学报,1994,(1):33
    
    
    [34] 李伟,贺友多.转炉底吹气体过程中的三维数学模型.包头钢铁学院学报,1994,13(1):45~48
    [35] 潘玉华,马萍.复吹转炉底吹气流数学模型研究.钢铁,1994,29(5):17~21
    [36] 苍大强,阎敏,张慧芳.高炉氧煤枪枪体温度场数学模型.冶金能源,1994,13(3):22~25
    [37] 王根启,徐广尧,宋建成.高炉富氧喷煤优化数学模型.包钢科技,1994,(2):76~81
    [38] 李保卫,贺友多.顶吹转炉内流动、燃烧及传热的一个数学模型.包头钢铁学院学报,1994,13(4):30~40
    [39] 邱夏陶,韩小良.回转窑传热数学模型及其优化.钢铁,1994,29(6):66~70
    [40] 丁丽萍,李成之,赫冀成.循环流化床的燃烧数学模型.冶金能源,1994,13(5):29~34
    [41] 陈义华.数学模型.重庆:重庆大学出版社,1995.13
    [42] 杨旗.转炉提钒静态模型研究:[硕士学位论文].重庆:重庆大学,2002
    [43] 王知人,侯培国.求解线性规划问题的神经网络模型.燕山大学学报,1999,23(3):249
    [44] 陈伟,李允,段永刚等.遗传演化建模方法研究.西南石油学院学报,2000,22(4):73~75
    [45] 陈义华.数学建模的层次分析法.甘肃工业大学学报,1997,23(3):92
    [46] 秦虎,汪旭光.爆破效果综合评价的模糊数学模型.工程爆破,1997,3(3):6
    [47] 贺建勋.系统建模与数学模型.福州:福建科学技术出版社,1995.92
    [48] 潘亚林.应用灰色系统模型提高仪器测量精度.电子工艺技术,2002,23(3):126
    [49] 韩崇昭,胡保生.泛函分析及其在自动控制中的应用.西安:西安交通大学出版社,1991.1~3
    [50] 田彦.回归分析法在实验数据处理中的应用.内蒙古工业大学学报,1995,14(3):57~59
    [51] 张小蒂.应用回归分析.杭州:浙江大学出版社,1991.22~277
    [52] 《重有色金属冶炼设计手册》编委会.重有色金属冶炼设计手册(铜镍卷).北京:冶金工业出版社,1996.1~276
    [53] E.G.West铜和铜合金,陈北盈,涂远军,孙孝华等译.长沙:中南工业大学出版社,1987.2
    [54] Raymond F. Mikesell. The Global Copper Industry: Problems and prospect. New York: Croom Helm, 1988. 1
    [55] 贵溪冶炼厂岗位培训办公室.熔炼车间岗位培训教材(闪速炉部分).贵溪:贵溪冶炼厂,1997.1
    
    
    [56] 《有色金属提取冶金手册》编委会.有色金属提取冶金手册(铜镍).北京:冶金工业出版社,2000.1
    [57] 王中奎.中国铜的生产与消费.世界有色金属,1997,(1):49~54
    [58] 张忠义,王士爱.我国铜工业的现状与发展分析.云南冶金,1998,27(1):8~15
    [59] 张凤奎.中国铜铝产品生产现状和发展趋势.世界有色金属,1998,(7):27~31
    [60] 唐绍铧,李峰.火法冶金中氧的测定和控制.闪速熔炼,1992,(4):37
    [61] 陈莉.我国铜冶炼生产状况与发展趋势.有色冶炼,1998,(8):31~34
    [62] 罗晓玲.发展我国铜工业的对策和政策建议.世界有色金属,2000,(7):17~19
    [63] 赵天从.重金属冶金学.北京:冶金工业出版社,1981.112
    [64] 龚晓虹,李衡.铜火法精炼炉评述.有色冶金设计与研究,1995,16(4):34
    [65] 陆志方.阳极炉烟气余热利用设计与生产实践.有色冶金节能,2002,19(4):10~12
    [66] 张妍.300t回转式铜精炼炉的结构特点.有色冶金设计与研究,1998,19(3):57
    [67] 叶昌,夏清,张世英等.燃重油陶瓷窑炉黑烟的治理研究.陶瓷工程,2001,(4):32
    [68] 李娟.改善重油燃烧的途径.山东建材,2002,22(1):43
    [69] 曾力丁.阳极炉还原LPG掺氮试验及生产实践.闪速炼铜,1992,(4):1
    [70] 刘纪福,白荣春,山本格[日].实用余热回收和利用技术.北京:机械工业出版社,1993.301~302
    [71] D. Villarroel. Process for Refining Copper in Solid State. Minerals Engineering, 1999, 12(4): 406
    [72] D. Villarroel. Design a Furnace for Refining Copper prior to Fusion. Minerals Engineering, 2000, 13(1): 96
    [73] Masayuki Yasuda, Toshihiro Yuki, Masanori Kato, et al. Recent Flash Smelting Operations at the Saganoseki Smelter. In: David B. George, John C. Taylor, eds. Proceedings of the 111th AIME Annual Meeting. Dallas: 1982. 251~262
    [74] 杨慧振,吴扣根,郭森魁等.铜转炉富氧吹炼节能模型研究.昆明理工大学学报,1998,23(3):132~135
    [75] 杨汉光.100t回转式铜精炼炉及余热利用装置研制.有色冶金设计与研究,1995,17(2):27~31
    [76] 汪金才.新阳极炉驱动装置气动系统的改进.铜业工程,2002,(2):46~48
    [77] 易善宇.阳极炉燃烧及供风系统的改造.节能技术,1990,(4):42~43
    [78] 易善宇.铜阳极精炼炉燃烧供风系统的改进.云南冶金,1990,19(6):43~48
    [79] 王庆轮.阳极炉烧火系统的改进设计.有色金属(冶炼部分),2001,(6):19~20
    
    
    [80] 黄文华.回转式阳极精炼炉耐火材料的选定及设计.有色冶金节能,2002,19(1):5~7
    [81] 高永学,魏风华.N_2在回转式阳极炉还原期的应用探讨.有色冶炼,2000,29(6):47~49
    [82] 杨汉光.对我国铜火法精炼技术改造的建议.有色金属(冶炼部分),1990,(6):22~26
    [83] 陆辉.杂铜的火法精炼.上海有色金属,2001,22(1):19~22
    [84] 徐光清.金隆工程火法精炼与浇铸。有色冶金设计与研究,1998,19(3):15~21
    [85] 徐光清.回转式阳极炉烟气处理与节能及环保.有色冶金设计与研究,1998,19(1): 15~20
    [86] 周松林.用喷氮法取代阳极炉氧化还原法探讨.有色科技,1990,(4):53~58
    [87] 刘日新,刘广林,饶文涛.燃重油连续加热炉最优燃烧控制的改进.工业加热,2001,(5):37~38
    [88] 周以琳,戚淑芬,隋树林.实现玻璃窑炉燃烧系统优化控制的研究.青岛大学学报,2000,15(2):4~6
    [89] 谭希宙.热媒炉的燃烧控制系统.石油化工自动化,1999,(6):30~33
    [90] 茹德武,邢玉庆,白生虎.热媒炉热效率在线自寻最优控制系统.能源研究与利用,1999,(6):47-48
    [91] 朱伯煊.助燃风流量与重油流量比值调节自动控制系统的实践.玻璃,1999,26(4): 24~26
    [92] 姚素平.这几年我国铜冶炼技术的进步和展望.有色冶金设计与研究,2002,23(3): 1
    [93] 鄂加强,张全,梅炽等.锌精馏铅塔燃烧室内烟气传热特性研究.有色金属(季刊),2002,(2):58~87
    [94] 张明达.最优控制工程.长沙:中南工业大学出版社,1989.46~48
    [95] 王永初.最佳控制系统设计基础.北京:科学出版社,1980.273~275
    [96] 曹王剑.重油流量测量问题的改进与发展.株冶科技,1995,23(1):56~59
    [97] 王诱.一种新颖的椭圆齿轮流量计精确度修正方法.化工自动化及仪表,1994,21(5):35~40
    [98] 李志平,程宝忠,盛瑗.椭圆齿轮流量计的误差调整方法.工厂计量与测试,1997,(3):18~19
    [99] 吕玉莲,刘美.椭圆齿轮流量计误差校正.广东石油化工高等专科学校学报,1997,7(1):29~33
    [100] 林志伟.重油流量计示值误差在线检定装置.计量技术,1996,(8):25~26
    [101] 刘艾琼,曹王剑.重油流量计问题的探讨及改进.株冶科技,1995,27(2):32~34
    
    
    [102] 李晓峰.质量流量计流量误差分析.微电子学,1997,27(2):102~105
    [103] 叶伟云.重油计量准确性探讨.玻璃,2000,27(1):20
    [104] 朱德祥,张廷柱,朱福茂.流量仪表原理和应用.上海:华东化工学院出版社,1992.43
    [105] 梁敬松.LCB-9800S/P椭圆齿轮流量计的开发研究.机械开发,1995,(2):48~50
    [106] 卢秋红,张国伟,颜国正.动态数据交换在工业自动控制组态系统中的应用.工业仪表与自动化装置,2001,(6):17~19
    [107] 李胜涛,石冰心,刘启文.动态数据交换(DDE)协议及应用.电脑学习,1994,(8): 1~3
    [108] 许宝祥,邵之江,钱积新等.过程控制系统中的OPC技术.冶金自动化,1999,(6): 20
    [109] 蔡翔云,郑小虎,姜麟.OPC规范及开发应用.昆明理工大学学报,2002,27(3):1~3
    [110] 张智杰,张燕燕.OPC技术与应用.信息技术,2002,(3):30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700