中国产志贺毒素大肠杆菌(STEC)O157:H7的单核苷酸多态性(SNP)分型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产志贺毒素大肠杆菌(Shiga toxin-producing Escherichia coli, STEC)O157:H7是一类重要的人畜共患病病原,可引起人水样腹泻、出血性肠炎以及溶血性尿毒综合征等。单核苷酸多态性(Single nucleotide polymorphisms, SNPs)分析是近年来用于揭示0157:H7群体基因组水平多样性、流行病学关系以及详细了解0157:H7演化过程的一种基因分型方法。我们对于中国0157:H7菌株之间以及中国菌株与其他国家菌株之间的遗传关系所知甚少。
     本研究采用了Manning等人以及Clawson等人建立的SNPs分型体系,共计64个SNP位点,将中国325株STECO157:H7菌株分为5个SNP基因型(SG-1~SG-5)。最常见的基因型为SG-5型(79.69%)及SG-1型(14.46%)。从患者分离的菌株集中在SG-1型及SG-5型,仅一株存在于SG-3型中。47株SG-1型菌株,通过Xuzhou21基因组特异SNPs位点可分为两个亚型(SG-1.1和SG-1.2)。SG-1.1型菌株是导致1999苏皖疫情相关菌株。1999年HUS/HC从患者分离的菌株集中在SG-1.1。
     根据MLST分型结果,136株中国STEC O157:H7菌株分为4个ST型别:ST23、ST24、 ST96和ST97。 MLST分型结果与SNP分型结果有较好的一致性且SNP分型能力较强。ST24型菌株包括SG-2及SG-3两个基因型,同时,ST23型菌株包括SG-4和SG-5基因型。ST96和ST97属于相同的基因型SG-1,SG-1.1亚型菌株为ST96型,SG-1.2亚型菌株为ST97型。
     中国STEC O157:H7菌株有5个基因型,且在Manning等人划分的Clade以及Clawson等人区分的分支中,均显示较远的遗传关系,表明这些基因型菌株在我国是平行传播的。
     我们对5个SG型别的36株菌进行重测序,做基因组间SNP分析,结果显示,36株0157:H7菌株共计有2486个SNPs,其中包括同义突变位点809个和非同义突变位点1195个,基因间的SNP位点475个,终止突变位点7个。基于全基因组SNP位点的分型结果,SG-5菌株呈分散状态。另外,SG-2、 SG-3的3株菌为ST24型菌株,呈现出较分散的3个分支,提示SG-2、 SG-3存在较大差异。可通过这些SNPs位点区分出SG-1型菌株中和1999年苏皖疫情相关的SG-1.1型菌株。
Shiga toxin-producing Escherichia coli O157:H7is a well-known zoonotic pathogen as a cause of diarrhea, hemorrhagic colitis (HC), and hemolytic uremic syndrome (HUS). Single nucleotide polymorphisms (SNPs) have been widely used to determine genetic relatedness, explore the population and evolution and epidemiological relationship of O157:H7. There are few reports of genetic diversity of Chinese O157:H7isolates and their relationships with global isolates.
     The minimum sets of32SNPs each from Manning et al. and Clawson et al. were used to type325Chinese O157:H7isolates. The total64SNPs divided the Chinese O157:H7isolates into5SNP genotypes (SG-1to SG-5). The most common SGs were SG-5(79.69%) and SG-1(14.46%). Human isolates concentrated in SG-1and SG-5, and there is only1human isolates in SG-3. The47isolates in SG-1were further divided into2subtypes (SG-1.1and SG-1.2) by an additional SNP sourced from Xuzhou21genome. Strains in SG-1.1caused the1999Xuzhou deadly outbreak.
     Of325Chinese isotates,136isolates were typed by MLST into4types:ST23, ST24, ST96and ST97. MLST results are consistent with SNP typing with the latter offering slightly higher resolution. ST24is divided into SG-2and SG-3while ST23is divided into SG-4and SG-5. However ST96and ST97belonged to the same SG (SG-1). All SG-1.1isolates are ST96while all SG-1.2isolates belong to ST97.
     Chinese isolates have been found to belong to a limited number of SNP genotypes and are represented by distantly related clades in Manning et al. and lineages in Claswon et al., suggesting parallel spread of these SNP genotypes in China.
     Thirty-six isolates representing different SGs were included for sequencing and comparative analysis. All the isolates has a total of2486SNPs, including809synonymous mutations and1195non-synonymous mutations,475inter-gene SNPs,7stop mutations.Phylogenetic tree based on SNP concatenation could separate all SG-5strains suggesting the high resolution of SNPs of Chinese O157:H7isolates to capture the genetic diversity of Chinese O157:H7isolates, In addition,3ST24isolates of SG-2and SG-3were divided into the three branches, revealing substantial genomic differences. The outbreak related strains in SG-1.lcan be separated from SG-1using these SNPs.
引文
1. Wachsmuth, I.K., P.M. Griffin, and J.G. Wells, Escherichia coli O157:H7, a cause of hemorrhagic colitis and hemolytic uremic syndrome. Acta Paediatr Jpn,1991.33(5):p.603-12.
    2. Nataro, J.P. and J.B. Kaper, Diarrheagenic Escherichia coli. Clin Microbiol Rev,1998.11(1):p.142-201.
    3. Bell, B.P., et al., A multistate outbreak of Escherichia coli O157:H7 associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA,1994.272(17):p.1349-53.
    4. Xu, J.G., B.K. Cheng, and H.Q. Jing, Escherichia coli O157:H7 and Shiga-like-toxin-producing Escherichia coli in China. World J Gastroenterol, 1999.5(3):p.191-194.
    5. Xiong, Y, et al., A Novel Escherichia coli O157:H7 Clone Causing a Major Hemolytic Uremic Syndrome Outbreak in China. PLoS One,2012.7(4):p. e36144.
    6. Michino, H., et al., Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol,1999.150(8):p.787-96.
    7. Centers for-Disease, C. and Prevention, Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach-United States, September 2006. MMWR Morb Mortal Wkly Rep,2006.55(38):p.1045-6.
    8. Jian-Guo., X., The prevalence and prevention of shiga-like-toxin producing E.coli in China.. Natl Med J China,1998.78:p.325-326.
    9. Hongwei., et al., Serological investigations on patients with hemolytic uremic syndromes due to enterohemorrhagic Escherichia coli 0157:H7 infection. Zhonghua Liu Xing Bing Xue Za Zhi,2002.23:p.114-118.
    10. Noller, A.C., et al., Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates. J Clin Microbiol,2003.41(12):p.5389-97.
    11. Laing, C.R., et al., In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence. BMC Genomics,2009.10:p.287.
    12. Yang, Z., et al., Identification of common subpopulations of non sorbitol fermenting, beta glucuronidase negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ Microbiol,2004.70(11):p.6846-54.
    13. Bohm, H. and H. Karch, DNA fingerprinting of Escherichia coli O157:H7 strains by pulsed-field gel electrophoresis. J Clin Microbiol,1992.30(8):p. 2169-72.
    14. Gerner-Smidt, P., et al., PulseNet USA:a five-year update. Foodborne Pathog Dis,2006.3(1):p.9-19.
    15. Feng, P., et al., Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis,1998.177(6):p.1750-3.
    16. Monday, S.R., T.S. Whittam, and P.C. Feng, Genetic and evolutionary analysis of mutations in the gusA gene that cause the absence of beta-glucuronidase activity in Escherichia coli O157:H7. J Infect Dis,2001.184(7):p.918-21.
    17. Monday, S.R., S.A. Minnich, and P.C. Feng, A 12-base-pair deletion in the flagellar master control gene fliC causes nonmotility of the pathogenic German sorbitol-fermenting Escherichia coli O157:H-strains. J Bacteriol, 2004.186(8):p.2319-27.
    18. Hayes, P.S., et al., Isolation and characterization of a beta D glucuronidase producing strain of Escherichia coli serotype O157:H7 in the United States. J Clin Microbiol,1995.33(12):p.3347-8.
    19. Zhang, W., et al., Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res,2006.16(6):p. 757-67.
    20. Louise, C.B. and T.G. Obrig, Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin Ⅱ with human renal endothelial cells. J Infect Dis,1995.172(5):p.1397-401.
    21. Law, D., Virulence factors of Escherichia coli 0157 and other Shiga toxin-producing E. coli. J Appl Microbiol,2000.88(5):p.729-45.
    22. Manning, S.D., et al., Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci USA,2008. 105(12):p.4868-73.
    23. Abu-Ali, G.S., et al, Increased adherence and expression of virulence genes in a lineage of Escherichia coli O157:H7 commonly associated with human infections. PLoS One,2010.5(4):p. e10167.
    24. Neupane, M., et al., Shiga toxin 2 overexpression in Escherichia coli 0157:H7 strains associated with severe human disease. Microb Pathog,2011.51(6):p. 466-70.
    25. Whitworth, J., et al., Diverse genetic markers concordantly identify bovine origin Escherichia coli O157 genotypes underrepresented in human disease. Appl Environ Microbiol,2010.76(1):p.361-5.
    26. Bono, J.L., et al., Association of Escherichia coli O157:H7 tir polymorphisms with human infection. BMC Infect Dis,2007.7:p.98.
    27. Clawson, M.L., et al., Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms. Genome Biol,2009.10(5):p. R56.
    28. Bono, J.L., et al., Phylogeny of Shiga toxin-producing Escherichia coli O157 isolated from cattle and clinically ill humans. Mol Biol Evol,2012.29(8):p. 2047-62.
    29. Eppinger, M., et al., Genomic anatomy of Escherichia coli 0157.H7 outbreaks. Proc Natl Acad Sci USA,2011.108(50):p.20142-7.
    30. Kudva, I.T., et al., Strains of Escherichia coli O157:H7 differ primarily by insertions or deletions, not single-nucleotide polymorphisms. J Bacteriol,2002. 184(7):p.1873-9.
    31. Ohnishi, M., et al., Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci USA, 2002.99(26):p.17043-8.
    32. Shaikh, N. and P.I. Tarr, Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages:integrations, excisions, truncations, and evolutionary implications. J Bacteriol,2003.185(12):p.3596-605.
    33. Hayashi, T., et al., Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNARes,2001.8(1):p.11-22.
    34. Perna, N.T., et al., Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature,2001.409(6819):p.529-33.
    35. Noller, A.C., et al., Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. J Clin Microbiol,2003.41(2):p.675-9.
    36. Foley, S.L., et al., Evaluation of molecular typing methods for Escherichia coli O157:H7 isolates from cattle, food, and humans. J Food Prot,2004.67(4): p.651-7.
    37. Eriksson, E., et al., Genotypic characterization to identify markers associated with putative hypervirulence in Swedish Escherichia coli O157:H7 cattle strains. J Appl Microbiol,2011.110(1):p.323-32.
    38. Yokoyama, E., et al., Clade analysis of enterohemorrhagic Escherichia coli serotype O157:H7/H-strains and hierarchy of their phylogenetic relationships. Infect Genet Evol,2012.12(8):p.1724-8.
    39. Rangel, J.M., et al., Epidemiology of Escherichia coli O157:H7 outbreaks, United States,1982-2002. Emerg Infect Dis,2005.11(4):p.603-9.
    40. Karmali, M.A., V. Gannon, and J.M. Sargeant, Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol,2010.140(3-4):p.360-70.
    41. Prendergast, D.M., et al., Verocytotoxigenic Escherichia coli O157 in beef and sheep abattoirs in Ireland and characterisation of isolates by Pulsed-Field Gel Electrophoresis and Multi-Locus Variable Number of Tandem Repeat Analysis. Int J Food Microbiol,2011.144(3):p.519-27.
    42. Sanchez, S., et al., Pheno-genotypic characterisation of Escherichia coli O157:H7 isolates from domestic and wild ruminants. Vet Microbiol,2010. 142(3-4):p.445-9.
    43. Fegan, N. and P. Desmarchelier, Comparison between human and animal isolates of Shiga toxin-producing Escherichia coli 0157 from Australia. Epidemiol Infect,2002.128(3):p.357-62.
    44. Fuller, C.A., et al., Shiga toxin subtypes display dramatic differences in potency. Infect Immun,2011.79(3):p.1329-37.
    45. Shimizu, T., et al., Receptor affinity, stability and binding mode of Shiga toxins are determinants of toxicity. Microb Pathog,2007.43(2-3):p.8.8-95.
    46. Kim, S.H., et al., Shiga toxin A subunit mutant of Escherichia coli O157:H7 releases outer membrane vesicles containing the B-pentameric complex. FEMS Immunol Med Microbiol,2010.58(3):p.412-20.
    47. Bertin, Y., et al., Stx2 subtyping of Shiga toxin-producing Escherichia coli isolated from cattle in France:detection of a new Stx2 subtype and correlation with additional virulence factors. J Clin Microbiol,2001.39(9):p.3060-5.
    48. Nakao, H. and T. Takeda, Escherichia coli Shiga toxin. J Nat Toxins,2000. 9(3):p.299-313.
    49. Mainil, J., Shiga/verocytotoxins and Shiga/verotoxigenic Escherichia coli in animals. Vet Res,1999.30(2-3):p.235-57.
    1. Riley, L.W., et al., Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med,1983.308(12):p.681-5.
    2. Brooks, J.T., et al., Non-O157 Shiga toxin-producing Escherichia coli infections in the United States,1983-2002. J Infect Dis,2005.192(8):p. 1422-9.
    3. Espie, E., et al., Surveillance of hemolytic uremic syndrome in children less than 15 years of age, a system to monitor 0157 and non-O157 Shiga toxin-producing Escherichia coli infections in France,1996-2006. Pediatr Infect Dis J,2008.27(7):p.595-601.
    4. Masana, M.O., et al., Genotypic characterization of non-O157 Shiga toxin-producing Escherichia coli in beef abattoirs of Argentina. J Food Prot, 2011.74(12):p.2008-17.
    5. Bettelheim, K.A., The non-0157 shiga-toxigenic (verocytotoxigenic) Escherichia coli; under-rated pathogens. Crit Rev Microbiol,2007.33(1):p. 67-87.
    6. Hiruta, N., T. Murase, and N. Okamura, An outbreak of diarrhoea due to multiple antimicrobial-resistant Shiga toxin-producing Escherichia coli O26:H11 in a nursery. Epidemiol Infect,2001.127(2):p.221-7.
    7. Brooks, J.T., et al., Outbreak of Shiga toxin-producing Escherichia coli O111:H8 infections among attendees of a high school cheerleading camp. Clin Infect Dis,2004.38(2):p.190-8.
    8. McMaster, C., et al., Verocytotoxin-producing Escherichia coli serotype O26:H11 outbreak in an Irish creche. Eur J Clin Microbiol Infect Dis,2001. 20(6):p.430-2.
    9. Werber, D., et al., A multistate outbreak of Shiga toxin-producing Escherichia coli O26:H11 infections in Germany, detected by molecular subtyping surveillance. J Infect Dis,2002.186(3):p.419-22.
    10. Caprioli, A., et al., Community-wide outbreak of hemolytic-uremic syndrome associated with non-O157 verocytotoxin-producing Escherichia coli. J Infect Dis,1994.169(1):p.208-11.
    11. Paton, A.W., et al., Molecular microbiological investigation of an outbreak of hemolytic-uremic syndrome caused by dry fermented sausage contaminated with Shiga-like toxin-producing Escherichia coli. J Clin Microbiol,1996. 34(7):p.1622-7.
    12. Morabito, S., et al., Enteroaggregative, Shiga toxin-producing Escherichia coli O111:H2 associated with an outbreak of hemolytic-uremic syndrome. J Clin Microbiol,1998.36(3):p.840-2.
    13. Bettelheim, K.A., et al., Combined infection of Norwalk-like virus and verotoxin-producing bacteria associated with a gastroenteritis outbreak. J Diarrhoeal Dis Res,1999.17(1):p.34-6.
    14. Frank, C, et al., Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med,2011.365(19):p.1771-80.
    15. Trachtman, H., Escherichia coli O104:H4 outbreak in Germany. N Engl J Med, 2012.366(8):p.766; author reply 766-7.
    16. Fegan, N. and P. Desmarchelier, Shiga toxin-producing Escherichia coli in sheep and pre-slaughter lambs in eastern Australia. Lett Appl Microbiol,1999. 28(5):p.335-9.
    17. Lefebvre, B., et al., Detection of virulence-associated genes in Escherichia coli O157 and non-0157 isolates from beef cattle, humans, and chickens. J Food Prot,2008.71(9):p.1774-84.
    18. Eggert, M., et al, Detection and characterization of Shiga toxin-producing Escherichia coli in faeces and lymphatic tissue of free-ranging deer. Epidemiol Infect,2012:p.1-9.
    19. Ghanbarpour, R. and S. Daneshdoost, Identification of shiga toxin and intimin coding genes in Escherichia coli isolates from pigeons (Columba livia) in relation to phylotypes and antibiotic resistance patterns. Trop Anim Health Prod,2012.44(2):p.307-12.
    20. Scheutz, F., et al., Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol, 2012.50(9):p.2951-63.
    21. Savarino, S.J., et al., Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc Natl Acad Sci U S A,1993.90(7):p.3093-7.
    22. Brunder, W., et al., The large plasmids of Shiga-toxin-producing Escherichia coli (STEC) are highly variable genetic elements. Microbiology,1999.145 (Pt 5):p.1005-14.
    23. Taneike, I., et al., Enterohemolysin operon of Shiga toxin-producing Escherichia coli:a virulence function of inflammatory cytokine production from human monocytes. FEBS Lett,2002.524(1-3):p.219-24.
    24. Doughty, S., et al., Identification of a novel fimbrial gene cluster related to long polar fimbriae in locus of enterocyte effacement-negative strains of enterohemorrhagic Escherichia coli. Infect Immun,2002.70(12):p.6761-9.
    25. Toma, C, et al., Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli. J Clin Microbiol,2004.42(11):p. 4937-46.
    26. Osek, J., M. Weiner, and E.L. Hartland, Prevalence of the lpfo113 gene cluster among Escherichia coli O157 isolates from different sources. Vet Microbiol, 2003.96(3):p.259-66.
    27. Tarr, P.I., et al., Iha:a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun,2000.68(3):p.1400-7.
    28. Vu-Khac, H., et al., Serotypes, virulence genes, intimin types and PFGE profiles of Escherichia coli isolated from piglets with diarrhoea in Slovakia. VetJ,2007.174(1):p.176-87.
    29. Toledo, A., et al., Prevalence of virulence genes in Escherichia coli strains isolated from piglets in the suckling and weaning period in Mexico. J Med Microbiol,2012.61(Pt 1):p.148-56.
    30. Smeds, A., et al., Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun,2003.71(4):p.2163-72.
    31. Nagy, B. and P.Z. Fekete, Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res,1999.30(2-3):p.259-84.
    32. Rey, J., et al., Serotypes, phage types and virulence genes of shiga-producing Escherichia coli isolated from sheep in Spain. Vet Microbiol,2003.94(1):p. 47-56.
    33. Boyd, E.F. and D.L. Hartl, Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol,1998.180(5):p.1159-65.
    34. Yamamoto, T. and R Echeverria, Detection of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene sequences in enterotoxigenic E. coli strains pathogenic for humans. Infect Immun,1996.64(4):p.1441-5.
    35. Karch, H., et al., A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect Immun,1999.67(11):p.5994-6001.
    36. Kobayashi, H., et al., Prevalence and characteristics of shiga toxin-producing Escherichia coli from healthy cattle in Japan. Appl Environ Microbiol,2001. 67(1):p.484-9.
    37. Zweifel, C, et al., Virulence profiles of Shiga toxin 2e-producing Escherichia coli isolated from healthy pig at slaughter. Vet Microbiol,2006.117(2-4):p. 328-32.
    38. Schmidt, H., et al., Identification and characterization of a novel genomic island integrated at selC in locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect Immun,2001.69(11):p.6863-73.
    39. Tarr, C.L., et al., Molecular characterization of a serotype O121:H19 clone, a distinct Shiga toxin-producing clone of pathogenic Escherichia coli. Infect Immun,2002.70(12):p.6853-9.
    40. Nicholls, L., T.H. Grant, and R.M. Robins-Browne, Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol Microbiol,2000. 35(2):p.275-88.
    41. Szalo, I.M., et al., Presence in bovine enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) Escherichia coli of genes encoding for putative adhesins of human EHEC strains. Res Microbiol,2002.153(10):p.653-8.
    42. CLSI, Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement, in Clinical and Laboratory Standards Institute.2012:Wayne, Pennsylvania.
    43. Haeggman, S., et al., Diversity and evolution of the class A chromosomal beta-lactamase gene in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2004.48(7):p.2400-8.
    44. Zou, L.K., et al., Phenotypic and genotypic characterization of beta-lactam resistance in Klebsiella pneumoniae isolated from swine. Vet Microbiol,2011. 149(1-2):p.139-46.
    45. Edelstein, M., et al, Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother,2003.47(12): p.3724-32.
    46. Jeong, S.H., et al., First outbreak of Klebsiella pneumoniae clinical isolates producing GES-5 and SHV-12 extended-spectrum beta-lactamases in Korea. Antimicrob Agents Chemother,2005.49(11):p.4809-10.
    47. Kim, J., et al, Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother,2005.49(4):p.1572-5.
    48. Wang, X.R., et al., Prevalence and characterization of plasmid-mediated blaESBL with their genetic environment in Escherichia coli and Klebsiella pneumoniae in patients with pneumonia. Chin Med J (Engl),2012.125(5):p. 894-900.
    49. Botteldoorn, N., et al, Detection and characterization of verotoxigenic Escherichia coli by a VTEC/EHEC multiplex PCR in porcine faeces and pig carcass swabs. Res Microbiol,2003.154(2):p.97-104.
    50. Kaufmann, M., et al, Escherichia coli O157 and non-O157 Shiga toxin-producing Escherichia coli in fecal samples of finished pigs at slaughter in Switzerland. J Food Prot,2006.69(2):p.260-6.
    51. Hussein, H.S. and T. Sakuma, Prevalence of shiga toxin-producing Escherichia coli in dairy cattle and their products. J Dairy Sci,2005.88(2):p. 450-65.
    52. Houser, B.A., et al, Assessment of phenotypic and genotypic diversity of Escherichia coli shed by healthy lactating dairy cattle. Foodborne Pathog Dis, 2008.5(1):p.41-51.
    53. Grant, M.A., M.A. Mogler, and D.L. Harris, Comparison of enrichment procedures for shiga toxin-producing Escherichia coli in wastes from commercial swine farms. J Food Prot,2009.72(9):p.1982-6.
    54. Ennis, C, D. McDowell, and D.J. Bolton, The prevalence, distribution and characterization of Shiga toxin-producing Escherichia coli (STEC) serotypes and virulotypes from a cluster of bovine farms. J Appl Microbiol,2012.113(5): p.1238-48.
    55. Robins-Browne, R.M. and E.L. Hartland, Escherichia coli as a cause of diarrhea. J Gastroenterol Hepatol,2002.17(4):p.467-75.
    56. Sanchez, S., et al., Detection and characterisation of Shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild ruminants. Vet J, 2009.180(3):p.384-8.
    57. Blanco, M., et al., Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-xi). J Clin Microbiol,2004. 42(2):p.645-51.
    58. Beutin, L., et al., Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes. Appl Environ Microbiol,2007. 73(15):p.4769-75.
    59. Das, S.C., et al, Dairy farm investigation on Shiga toxin-producing Escherichia coli (STEC) in Kolkata, India with emphasis on molecular characterization. Epidemiol Infect,2005.133(4):p.617-26.
    60. Lienemann, T., et al, Shiga toxin-producing Escherichia coli O100:H(-):stx2e in drinking water contaminated by waste water in Finland. Curr Microbiol, 2011.62(4):p.1239-44.
    61. Zweifel, C, et al., Phenotypic and genotypic characteristics of non-O157 Shiga toxin-producing Escherichia coli (STEC) from Swiss cattle. Vet Microbiol,2005.105(1):p.37-45.
    62. Bower, J.R., et al, Escherichia coli O114:nonmotile as a pathogen in an outbreak of severe diarrhea associated with a day care center. J Infect Dis, 1989.160(2):p.243-7.
    63. Thomas, A., et al., Vero cytotoxin-producing Escherichia coli, particularly serogroup O157, associated with human infections in England and Wales: 1992-4. Epidemiol Infect,1996.117(1):p.1-10.
    64. Blanco, J.E., et al., Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from human patients: prevalence in Lugo, Spain, from 1992 through 1999. J Clin Microbiol,2004. 42(1):p.311-9.
    65. Orth, D., et al., Emerging Shiga toxin-producing Escherichia coli serotypes in Europe:O100:H-and O127:H40. Curr Microbiol,2006.53(5):p.428-9.
    66. Kappeli, U., et al., Human infections with non-O157 Shiga toxin-producing Escherichia coli, Switzerland,2000-2009. Emerg Infect Dis,2011.17(2):p. 180-5.
    67. Cornu, G., et al., Hemolytic uremic syndrome in Belgium:incidence and association with verocytotoxin-producing Escherichia coli infection. Clin Microbiol Infect,1999.5(1):p.16-22.
    68. Gonzalez, R., et al., Age-specific prevalence of Escherichia coli with localized and aggregative adherence in Venezuelan infants with acute diarrhea. J Clin Microbiol,1997.35(5):p.1103-7.
    69. Karch, H. and M. Bielaszewska, Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H(-) strains:epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J Clin Microbiol,2001.39(6):p. 2043-9.
    70. Pacheco, A.R. and V. Sperandio, Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol, 2012.2:p.81.
    71. Sonntag, A.K., et al, Pigeons as a possible reservoir of Shiga toxin 2f-producing Escherichia coli pathogenic to humans. Berl Munch Tierarztl Wochenschr,2005.118(11-12):p.464-70.
    72. Fratamico, P.M., et al, Characterization of Shiga toxin-producing Escherichia coli strains isolated from swine feces. Foodborne Pathog Dis,2008.5(6):p. 827-38.
    73. Schubert, S., A. Rakin, and J. Heesemann, The Yersinia high-pathogenicity island (HPI):evolutionary and functional aspects. Int J Med Microbiol,2004. 294(2-3):p.83-94.
    74. Bielaszewska, M., et al., Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011:a microbiological study. Lancet Infect Dis,2011.11(9):p.671-6.
    75. Sonntag, A.K., et al., Shiga toxin 2e-producing Escherichia coli isolates from humans and pigs differ in their virulence profiles and interactions with intestinal epithelial cells. Appl Environ Microbiol,2005.71(12):p.8855-63.
    76. Zhao, S., et al., Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin-producing Escherichia coli isolates. Appl Environ Microbiol,2001.67(4):p.1558-64.
    77. Wang, X.M., et al., Serotypes, virulence genes, and antimicrobial susceptibility of Escherichia coli isolates from pigs. Foodborne Pathog Dis, 2011.8(6):p.687-92.
    78.曲志娜,等,鸡、猪大肠杆菌ESBLs基因型检测及耐药性分析.中国农学通报,2013.29(8):p.50-54.
    79.杜向党,等,鸡猪源大肠杆菌CTX-M型ESBLs的分子检测.华北农学报,2009.24(2):p.90-93.
    80.刘雅妮,商军,郭士博,猪源分离大肠埃希菌产ESBLs的基因型及耐药性分析.中国兽药杂志,2011.45(9):p.19-22.
    81. Ishii, Y., et al.,Extended-spectrum beta-lactamase-producing Shiga toxin gene (Stxl)-positive Escherichia coli 026:H11:a new concern. J Clin Microbiol, 2005.43(3):p.1072-5.
    82. Buvens, G., et al., Antimicrobial resistance testing of verocytotoxin-producing Escherichia coli and first description of TEM-52 extended-spectrum beta-lactamase in serogroup 026. Antimicrob Agents Chemother,2010.54(11): p.4907-9.
    83. Roest, H.I., et al., [Antibiotic resistance in Escherichia coli O157 isolated between 1998 and 2003 in The Netherlands]. Tijdschr Diergeneeskd,2007. 132(24):p.954-8.
    84. Valat, C, et al., CTX-M-15 extended-spectrum beta-lactamase in a shiga toxin-producing Escherichia coli isolate of serotype O111:H8. Appl Environ Microbiol,2012.78(4):p.1308-9.
    1. Griffin, P.M. and R. V. Tauxe, The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev,1991.13:p.60-98.
    2. Wells, J.G., et al., Isolation of Escherichia coli serotype 0157:H7 and other Shiga-like-toxin-producing E. coli from dairy cattle. J Clin Microbiol,1991. 29(5):p.985-9.
    3. Bohm, H. and H. Karch, DNA fingerprinting of Escherichia coli 0157:H7 strains by pulsed-field gel electrophoresis. J Clin Microbiol,1992.30(8):p. 2169-72.
    4. Gerner-Smidt, P., et al., PulseNet USA:a five-year update. Foodborne Pathog Dis,2006.3(1):p.9-19.
    5. Noller, A.C., et al., Multilocus variable-number tandem repeat analysis distinguishes outbreak and sporadic Escherichia coli O157:H7 isolates. J Clin Microbiol,2003.41(12):p.5389-97.
    6. Laing, C.R., et al., In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence. BMC Genomics,2009.10:p.287.
    7. Yang, Z., et al., Identification of common subpopulations of non-sorbitol-fermenting, beta-glucuronidase-negative Escherichia coli O157:H7 from bovine production environments and human clinical samples. Appl Environ Microbiol,2004.70(11):p.6846-54.
    8. Clawson, M.L., et al., Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms. Genome Biol,2009.10(5):p. R56.
    9. Eppinger, M., et al, Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A,2011.108(50):p.20142-7.
    10. Bono, J.L., et al., Phylogeny of Shiga toxin-producing Escherichia coli 0157 isolated from cattle and clinically ill humans. Mol Biol Evol,2012.29(8):p. 2047-62.
    11. Manning, S.D., et al., Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci U S A,2008. 105(12):p.4868-73.
    12. Zhang, W., et al., Probing genomic diversity and evolution of Escherichia coli 0157 by single nucleotide polymorphisms. Genome Res,2006.16(6):p. 757-67.
    13. Feng, P., et al., Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis,1998.177(6):p.1750-3.
    14. Monday, S.R., T.S. Whittam, and P.C. Feng, Genetic and evolutionary analysis of mutations in the gusA gene that cause the absence of beta-glucuronidase activity in Escherichia coli O157:H7. J Infect Dis,2001.184(7):p.918-21.
    15. Monday, S.R., S.A. Minnich, and P.C. Feng, A 12-base-pair deletion in the flagellar master control gene flhC causes nonmotility of the pathogenic German sorbitol-fermenting Escherichia coli O157:H-strains. J Bacteriol, 2004.186(8):p.2319-27.
    16. Hayes, P.S., et al., Isolation and characterization of a beta-D-glucuronidase-producing strain of Escherichia coli serotype O157:H7 in the United States. J Clin Microbiol,1995.33(12):p.3347-8.
    17. Louise, C.B. and T.G. Obrig, Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin Ⅱ with human renal endothelial cells. J Infect Dis,1995.172(5):p.1397-401.
    18. Law, D., Virulence factors of Escherichia coli 0157 and other Shiga toxin-producing E. coli. J Appl Microbiol,2000.88(5):p.729-45.
    19. Ohnishi, M., et al., Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci U S A, 2002.99(26):p.17043-8.
    20. Perna, N.T., et al., Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature,2001.409(6819):p.529-33.
    21. Persson, S., et al., Subtyping method for Escherichia coli shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. J Clin Microbiol,2007.45(6):p.2020-4.
    22. CDC, Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach--United States, September 2006. MMWR Morb Mortal Wkly Rep,2006.55(38):p.1045-6.
    23. Strauch, E., C. Schaudinn, and L. Beutin, First-time isolation and characterization of a bacteriophage encoding the Shiga toxin 2c variant, which is globally spread in strains of Escherichia coli 0157. Infect Immun,2004. 72(12):p.7030-9.
    24. Abu-Ali, G.S., et al., Increased adherence and expression of virulence genes in a lineage of Escherichia coli O157:H7 commonly associated with human infections. PLoS One,2010.5(4):p. e10167.
    25. Neupane, M., et al., Shiga toxin 2 overexpression in Escherichia coli O157:H7 strains associated with severe human disease. Microb Pathog,2011.51(6):p. 466-70.
    26. Riordan, J.T., et al., Genetic differentiation of Escherichia coli O157:H7 clades associated with human disease by real-time PCR. J Clin Microbiol, 2008.46(6):p.2070-3.
    27. Yokoyama, E., et al., Clade analysis of enterohemorrhagic Escherichia coli serotype O157:H7/H-strains and hierarchy of their phylogenetic relationships. Infect Genet Evol,2012.12(8):p.1724-8.
    28. Hartzell, A., et al., Escherichia coli 0157:H7 of genotype lineage-specific polymorphism assay 211111 and clade 8 are common clinical isolates within Pennsylvania. Foodborne Pathog Dis,2011.8(7):p.763-8.
    29. Yokoyama, E., et al., Emergence of enterohemorrhagic Escherichia coli serovar O157 strains in clade 8 with highly similar pulsed-field gel electrophoresis patterns. J Food Prot,2011.74(8):p.1324-7.
    30. Whitworth, J., et al., Diverse genetic markers concordantly identify bovine origin Escherichia coli 0157 genotypes underrepresented in human disease. Appl Environ Microbiol,2010.76(1):p.361-5.
    31. Bono, J.L.,et al., Association of Escherichia coli O157:H7 tir polymorphisms with human infection. BMC Infect Dis,2007.7:p.98.
    32. Xu, J.G., B.K. Cheng, and H.Q. Jing, Escherichia Coli O157 H7 and Shiga-like-toxin-producing Escherichia Coli in China. World J Gastroenterol, 1999.5(3):p.191-194.
    33. Xiong, Y., et al., ANovel Escherichia coli O157:H7 Clone Causing a Major Hemolytic Uremic Syndrome Outbreak in China. PLoS One,2012.7(4):p. e36144.
    34. Wang, P., et al., pO 157_Sal, a novel conjugative plasmid detected in outbreak isolates of Escherichia coli O157:H7. J Clin Microbiol,2011.49(4):p. 1594-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700