家蚕核型多角体病毒分子流行病学调查及宿主特异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕核型多角体病毒(Bombyx mori nucleopolyhedrovirus, BmNPV)是家蚕血液型脓病病原,对家蚕幼虫产生致死性的感染,该病是养蚕业常见且危害较大的一种病毒病。广西地处亚热带地区,具有明显的气候优势,过去几年中广西蚕桑业得到迅猛发展,然而,由于养殖密度大,生产期较长,往往容易造成蚕病特别是病毒性传染病的流行。广西几乎每年都会出现BmNPV的流行,而且这些年来由于养殖规模不断扩大以及病原体在养蚕区不断积累,BmNPV流行显示出逐渐加剧的趋势,给广西养蚕业带来了严重的经济损失。为了广西养蚕业的可持续发展,对广西各地BmNPV流行情况进行调查,了解病毒传播特点,将有助于制定相应措施遏制BmNPV在养蚕区扩大化流行。
     本研究从广西各养蚕区分别收集了45个野生BmNPV分离毒株,对这些分离株的唯一两个极晚期表达基因多角体蛋白polh基因和微管相关蛋白p10基因进行克隆测序,构建系统进化树。序列分析结果显示,polh基因高度保守,而p10基因变异较大,频繁出现核苷酸点突变,表现出密码子使用多样化,并没有明显的密码子偏好。根据p10基因系统进化树分析,广西BmNPV分离株主要分为三个群clades I、Ⅱ和Ⅲ。广西BmNPV分离株的地理分布显示,clade I(?)口Ⅱ分群中的分离株来源地域较为集中而且毗邻,提示在这些区域内出现局部的流行与传播。cladeⅢ的分离株呈不规律分布于广西各地,提示有可能发生远距离的病毒传播。
     广西桑蚕资源丰富,蚕虫或者蚕蛹可以作为一种理想的生物反应器,利用杆状病毒表达系统在其中大量生产重组蛋白,不仅省时省力而且经济节约。狂犬病病毒糖蛋白(Rabies virus glycoprotein, RVG)是主要保护性抗原,能诱导机体产生中和性抗体。本研究使用了一个经过基因工程改良的杆状病毒表达系统,即与BmNPV基因组同源的bacmid缺失了几丁质酶和半胱氨酸酶基因,构建了携带RVG基因的重组bacmid,同时引入在哺乳动物细胞内具有转录活性的巨细胞瘤病毒启动子/增强子CMV-IE序列。将重组bacmid与脂质体混合注射家蚕幼虫血腔,进行体内转染获得重组杆状病毒。鉴定结果显示,重组RVG在蚕虫机体组织中获得大量表达,重组表达的RVG最终定位于细胞质膜,重组RVG分子量略小于在哺乳动物细胞中表达的天然RVG。但是,多个抗RVG单克隆抗体皆与之发生反应,且反应的程度与天然RVG的基本一致,提示重组RVG的结构和功能是完好的。
     针对BmNPV宿主特异性研究表明,无论是体内还是体外BmNPV的宿主域相当狭窄。草地夜蛾(Spodoptera frugiperda, Sf)细胞系Sf9一直被认为是BmNPV的非受纳细胞系,BmNPV不能在其中进行有效的复制增殖。本研究中,两个携带有外源报告基因的重组BmNPV,即携带狂犬病病毒RVG基因及巨细胞瘤病毒启动子CMV-IE序列的rBm-PCMV-RVG和携带绿色荧光蛋白GFP基因的rBm-GFP,被构建并表现出对Sf9细胞具有感染性。该重组BmNPV可以在Sf9细胞中复制增殖,被感染的Sf9细胞无明显细胞病变,显示一种无症状温和型的感染状态,并且在被感染的Sf9细胞上可以检测到由低pH值引发的膜融合反应。以重组rBm-GFP接种Sf9细胞,GFP荧光灶形成和子代病毒滴度增加证实了病毒可以从Sf9细胞中出芽。然而,只有在接种病毒量较大时,重组BmNPV才能在Sf9细胞中复制增殖,且增殖过程与其在受纳家蚕细胞系BmN中增殖过程不同;而当接种病毒量较小时,重组BmNPV在Sf9细胞中产生顿挫感染。另外,重组rBm-GFP在Sf9细胞中经过系列传代后显示出比传代前的原始病毒复制能力更强。
     根据GenBank发表的家蚕抗BmNPV病毒脂肪酶基因Bmlipase-1和丝氨酸蛋白酶基因BmSP-2序列,分别设计相应引物,以广西优良家蚕品系“两广二号”为实验材料,成功克隆了该品系家蚕两个抗病毒基因的完整开放阅读框(open reading frame, ORF),测序并与不同蚕来源的同源基因序列进行比较。实验结果显示:“两广二号”家蚕Bmlipase-1基因ORF长度是885bp,编码294个氨基酸,BmSP-2基因ORF长度是855bp,编码284个氨基酸;同源性比较表明二者与其他品系家蚕甚至野蚕和蓖麻蚕的同源序列高度保守,核苷酸和推导氨基酸序列的同源性皆在92%以上,其中Bmlipase-1更为保守,同源性达到99%以上;序列分析发现各种蚕来源的Bmlipase-1基因脂肪酶活化部位(GXSXG,X为任一氨基酸)的氨基酸序列完全一致,BmSP-2基因酶催化三联体(His95, Asp142,Ser236)位点及附近氨基酸序列也完全相同。以上结果说明这两个抗病毒基因在桑蚕遗传进化过程中保持高度一致,提示其可能在机体消化或者免疫防御方面起着重要生理作用。将这两个抗病毒基因连接到原核表达载体pET32a(+),在大肠杆菌BL21中融合表达目的蛋白,SDS-PAGE和Western blot结果显示:这两个抗病毒基因都在大肠杆菌中表达成功,融合表达的Bmlipase-1蛋白分子量约为47kD, BmSP-2的分子量约为42kD,与预期大小一致。
Bombyx mori nucleopolyhedrovirus (BmNPV) is a severe pathogen that lethally infects the Bombyx mori silkworm. BmNPV disease is a common but quite destructive viral disease in sericulture. Guangxi is located in southern China, where the subtropical climate is perfect for mulberry cultivation and silkworm husbandry, and the sericulture industry in Guangxi has been developed extensively during the past few years. However, due to the high raising density and long production period, the prevalence of silkworm diseases especially viral epidemics are likely to happen. The BmNPV epidemic takes place almost every year in Guangxi, and recently becomes more serious resulting from the large-scale development of sericulture and the accumulation of the pathogen in the silkworm-raising regions in Guangxi. This intractable disease has been caused considerable economic losses in Guangxi sericulture industry. In order to keep sustainable development of sericulture industry in Guangxi, it is essential to perform an investigation on the epidemic condition of BmNPV in Guangxi and make a better understanding of the BmNPV transmission, which will help to devise strategies for preventing this epidemic disease to spread widely in the silkworm-raising regions.
     In this study,45wild BmNPV isolates were collected from different silkworm-raising regions in China's Guangxi Zhuang Autonomous Region. Two highly expressed very late genes from each isolate, polh and p10, were sequenced and subjected to phylogenetic analysis. The polh gene was found to be highly conserved, while the p10gene was more variable frequently harboring point mutations and displaying variations in codon use without obvious codon bias. The BmNPV isolates from Guangxi were separated into three main clades, Ⅰ, Ⅱ and Ⅲ,according to the p10gene phylogenetic tree. The geographical distribution of clade Ⅰ isolates in Guangxi showed a concentrated pattern and that of clade Ⅱ isolates showed a connected pattern. Local transmission of this pathogen clearly occurred in the silkworm-raising regions in Guangxi. And clade Ⅲ isolates were irregularly scattered throughout Guangxi, which suggested long-distance transmission may happen. This study may provide some data on BmNPV transmission in the silkworm-raising regions and be helpful in devising strategies for the prevention and control of BmNPV disease.
     There is quite a rich resource of silkworm production in Guangxi. Silkworm serves as an ideal bioreactor for abundantly producing recombinant protein by using a baculovirus expression system. Rabies virus glycoprotein (RVG) is the major protective antigen which can induce neutralizing antibody against lethal rabies virus infection. In this study, the complete open reading frame (ORF) of RVG gene was cloned and inserted into a modified bacmid/BmNPV deleting both chitinase and cysteine-protease genes. A mammalian cell-activate promoter cytomegalovirus immediate-early promoter-enhancer (CMV-IE) was also constructed into the bacmid. The recombinant baculovirus was generated by syringe injection of the silkworm larvae hemocoel with the recombinant bacmid and Cellfectin Reagent mixture. Results showed that recombinant RVG was highly expressed in the tissues of recombinant baculovirus infected silkworm larvae. The recombinant RVG was displayed on the membrane surface and its molecular weight was slightly smaller than that of the natural RVG expressed in mammalian cells. But the reacting patterns of anti-RVG monoclonal antibodies with the recombinant RVG were almost the same as those with the natural RVG, suggested that the structure and function of the recombinant RVG were intact.
     Studies on BmNPV host specificity have shown that this virus possess relatively narrow host ranges both in vivo and in vitro. Spodoptera frugiperda cell line Sf9was classically considered to be nonpermissive for BmNPV proliferation. In this study, two recombinant BmNPV carrying exogenous reporter gene, the recombinant rBm-PCMV-RVG carrying RVG gene and CMV-IE promoter sequence and the recombinant rBm-GFP carrying green fluorescent protein (GFP) gene, were constructed and showed infectivity in Sf9cells. There was no obvious cytopathic effect in the Sf9cells infected with recombinant BmNPV, showing an inapparent and mild pattern of infection. Low-pH-triggered envelope fusion was detected in the infected Sf9cells. When inoculating Sf9cells with rBm-GFP, virus budding was confirmed by the formation of GFP fluorescent focus and the increase of budded virion yield in Sf9cells. However, the viral replication only occured with high inoculation dose and showed a pattern different from that in permissive BmN cells. To the contrary, low inoculation dose led to abortive infection. The rBm-GFP after serial passages in Sf9cells showed more efficient replication than the original virus without serial passage.
     According to the sequences of Bombyx mori silkworm antiviral protein genes Bmlipase-1(lipase) and BmSP-2(serine protease) published in Genbank, specific primers were designed to clone the complete ORF of the two genes from Guangxi excellent silkworm race "Liangguang NO.2". The cloned products were sequenced and analyzed with the homologs derived from other silkworm species. The results show that Bmlipase-1is composed of885bp nucleotides coding294amino acids and BmSP-2is composed of855bp nucleotides coding284amino acids. Sequence analysis reveal that the two genes from "Liangguang NO.2" shared more than92%homology with those from different Bombyx mori races even Bombyx mandarina and Samia cynthia ricini, especially for Bmlipase-1which reached more than99%homology. Amino acid residues for the lipase active site of Bmlipase-1and serine protease catalytic triad of BmSP-2are identical among these gene sequences. The data above suggested that these two antiviral genes are highly conserved during silkworm species genetic evolution and may play important roles in immune defence as well as food digestion. Then the cloned genes were ligated into protokaryon expression vector pET32a(+) and expressed in E.coli BL21. Fused proteins were detected by SDS-PAGE and Western blot. According to the result, the protein mass of expressed Bmlipase-1is about47kD and BmSP-2is about42kD, which consisted with the anticipation.
引文
[1]International Committee on Taxonomy of Viruses. and King, A.M.Q., Virus taxonomy:classification and nomenclature of viruses:ninth report of the International Committee on Taxonomy of Viruses. 2011, London; Waltham, MA:Academic Press, pp 163-173.
    [2]Herniou, E.A. and Jehle, J.A. Baculovirus phylogeny and evolution. Current Drug Targets.2007.8(10): 1043-1050.
    [3]吕鸿声.昆虫病毒分子生物学.中国农业科学技术出版社,北京.1997.
    [4]Slack, J.M. and Lawrence, S.D. Evidence for proteolytic cleavage of the baculovirus occlusion-derived virion envelope protein P74. J Gen Virol.2005.86(Pt 6):1637-43.
    [5]Sparks, W.O., Harrison, R.L. and Bonning, B.C. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut. Virology.409(1):69-76.
    [6]Guarino, L.A., Xu, B., Jin, J., et al. A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol.1998.72(10):7985-91.
    [7]吕鸿声.昆虫病毒与昆虫病毒病.科学出版社,北京.1982.
    [8]Liu, J.M., David, W.C., Ip, D.T., et al. High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system. Mol Biol Rep.2009.36(2):329-35.
    [9]Sun, J., Yao, L., Yao, N., et al. Production of recombinant Bombyx mori nucleopolyhedrovirus in silkworm by intrahaemocoelic injection with invasive diaminopimelate auxotrophic Escherichia coli containing BmNPV-Bacmid. Biotechnol Appl Biochem.57(3):117-25.
    [10]Khurad, A.M., Mahulikar, A., Rathod, M.K., et al. Vertical transmission of nucleopolyhedrovirus in the silkworm, Bombyx mori L. J Invertebr Pathol.2004.87(1):8-15.
    [11]Fuxa, J.R., Richter, A.R., Ameen, A.O., et al. Vertical transmission of TnSNPV, TnCPV, AcMNPV, and possibly recombinant NPV in Trichoplusia ni. J Invertebr Pathol.2002.79(1):44-50.
    [12]Kamita, S.G. and Maeda, S. Inhibition of Bombyx mori nuclear polyhedrosis virus (NPV) replication by the putative DNA helicase gene of Autographa californica NPV. J Virol.1993.67(10):6239-45.
    [13]Kamita, S.G. and Maeda, S. Abortive infection of the baculovirus Autographa californica nuclear polyhedrosis virus in Sf-9 cells after mutation of the putative DNA helicase gene. J Virol.1996.70(9): 6244-50.
    [14]Kemp, E.M., Woodward, D.T. and Cory, J.S. Detection of single and mixed covert baculovirus infections in eastern spruce budworm, Choristoneura fumiferana populations. J Invertebr Pathol.
    [15]Cory, J.S., Vilaplana, L., Wilson, K., et al. Pathogen persistence in migratory insects:high levels of vertically-transmitted virus infection in field populations of the African armyworm. Evolutionary Ecology.2010.24(1):147-160.
    [16]Lin, C.L., Lee, J.C., Chen, S.S., et al. Persistent Hz-1 virus infection in insect cells:evidence for insertion of viral DNA into host chromosomes and viral infection in a latent status. J Virol.1999.73(1): 128-39.
    [17]Hughes, D.S., Possee, R.D. and King, L.A. Evidence for the presence of a low-level, persistent baculovirus infection of Mamestra brassicae insects. J Gen Virol.1997.78 (Pt 7):1801-5.
    [18]Lee, J.C., Chen, H.H. and Chao, Y.C. Persistent baculovirus infection results from deletion of the apoptotic suppressor gene p35. J Virol.1998.72(11):9157-65.
    [19]Burand, J.P., Wood, H.A. and Summers, M.D. Defective particles from a persistent baculovirus infection in Trichoplusia ni tissue culture cells. J. gen. Virol.1983.64:391-398.
    [20]Wickham, T.J., Davis, T., Granados, R.R., et al. Baculovirus defective interfering particles are responsible for variations in recombinant protein production as a function of multiplicity of infection. Biotechnology Letters.1991.13(7):483-448.
    [21]Kool, M., Voncken, J.W., van Lier, F.L., et al. Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology.1991.183(2):739-46.
    [22]Chao, Y.C., Hamblin, M. and Wood, H.A. Physical map of Hz-1 baculovirus genome from standard and defective interfering particles. Journal of General Virology.1990.71:1265-70.
    [23]Pijlman, G.P., van den Born, E., Martens, D.E., et al. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology.2001.283(1):132-8.
    [24]Popham, H.J., Grasela, J.J., Goodman, C.L., et al. Baculovirus infection influences host protein expression in two established insect cell lines. J Insect Physiol.56(9):1237-45.
    [25]Gomi, S., Majima, K. and Maeda, S. Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol.1999.80 (Pt 5):1323-37.
    [26]Guo, T., Wang, S., Guo, X., et al. Productive infection of Autographa californica nucleopolyhedrovirus in silkworm Bombyx mori strain Haoyue due to the absence of a host antiviral factor. Virology.2005. 341(2):231-7.
    [27]Katou, Y., Ikeda, M. and Kobayashi, M. Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells:defective nuclear transport of the virions. Virology.2006.347(2):455-65.
    [28]Martin, O. and Croizier, G. Infection of a Spodoptera frugiperda cell line with Bombyx mori nucleopolyhedrovirus. Virus Res.1997.47(2):179-85.
    [29]Rahman, M.M. and Gopinathan, K.P. Analysis of host specificity of two closely related baculoviruses in permissive and nonpermissive cell lines. Virus Res.2003.93(1):13-23.
    [30]Kondo, A. and Maeda, S. Host range expansion by recombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica nuclear polyhedrosis virus. J Virol.1991.65(7): 3625-32.
    [31]Woo, S.D., Kim, W.J., Kim, H.S., et al. The morphology of the polyhedra of a host range-expanded recombinant baculovirus and its parents. Arch Virol.1998.143(6):1209-14.
    [32]Maeda, S., Kamita, S.G. and Kondo, A. Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6-kilobase-pair DNA fragment originating from Bombyx mori NPV. J Virol.1993.67(10):6234-8.
    [33]Wu, X., Cao, C., Xu, Y., et al. Construction of a host range-expanded hybrid baculovirus of BmNPV and AcNPV, and knockout of cysteinase gene for more efficient expression. Sci China C Life Sci.2004. 47(5):406-15.
    [34]Croizier, G., Croizier, L., Argaud, O., et al. Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proc Natl Acad Sci U S A.1994.91(1):48-52.
    [35]Argaud, O., Croizier, L., Lopez-Ferber, M., et al. Two key mutations in the host-range specificity domain of the p143 gene of Autographa californica nucleopolyhedrovirus are required to kill Bombyx mori larvae. J Gen Virol.1998.79 (Pt 4):931-5.
    [36]Clem, R.J., Fechheimer, M. and Miller, L.K. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science.1991.254(5036):1388-90.
    [37]Kamita, S.G., Majima, K. and Maeda, S. Identification and characterization of the p35 gene of Bombyx mori nuclear polyhedrosis virus that prevents virus-induced apoptosis. J Virol.1993.67(1):455-63.
    [38]Griffiths, C.M., Barnett, A.L., Ayres, M.D., et al. In vitro host range of Autographa californica nucleopolyhedrovirus recombinants lacking functional p35, iapl or iap2. J Gen Virol.1999.80 (Pt 4): 1055-66.
    [39]Thiem, S.M. and Chejanovsky, N. The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells. Virology.2004.319(2):292-305.
    [40]Chejanovsky, N. and Gershburg, E. The wild-type Autographa californica nuclear polyhedrosis virus induces apoptosis of Spodoptera littoralis cells. Virology.1995.209(2):519-25.
    [41]Palli, S.R., Caputo, G.F., Sohi, S.S., et al. CfMNPV blocks AcMNPV-induced apoptosis in a continuous midgut cell line. Virology.1996.222(1):201-13.
    [42]Guzo, D., Rathburn, H., Guthrie. K., et al. Viral and host cellular transcription in Autographa californica nuclear polyhedrosis virus-infected gypsy moth cell lines. J Virol.1992.66(5):2966-72.
    [43]Thiem, S.M., Du, X., Quentin, M.E., et al. Identification of baculovirus gene that promotes Autographa californica nuclear polyhedrosis virus replication in a nonpermissive insect cell line. J Virol.1996. 70(4):2221-9.
    [44]Du, X. and Thiem, S.M. Characterization of host range factor 1 (hrf-1) expression in Lymantria dispar M nucleopolyhedrovirus-and recombinant Autographa californica M nucleopolyhedrovirus-infected IPLB-Ld652Y cells. Virology.1997.227(2):420-30.
    [45]Chen, C.J., Quentin, M.E., Brennan, L.A., et al. Lymantria dispar nucleopolyhedrovirus hrf-1 expands the larval host range of Autographa californica nucleopolyhedrovirus. J Virol.1998.72(3):2526-31.
    [46]Ishikawa, H., Ikeda, M., Alves, C.A., et al. Host range factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L. dispar. J Virol.2004.78(22):12703-8.
    [47]Ikeda, M., Reimbold, E.A. and Thiem, S.M. Functional analysis of the baculovirus host range gene, hrf-1. Virology.2005.332(2):602-13.
    [48]Katou, Y., Ikeda, M. and Kobayashi, M. Characterization of Bombyx mori nucleopolyhedrovirus infection of Spodoptera frugiperda cells. Journal of Insect Biotechnology and Sericology.2001.70(2): 137-47.
    [49]Shirata, N., Ikeda, M., Kamiya, K., et al. Replication of nucleopolyhedroviruses of Autographa californica (Lepidoptera:Noctuidae), Bombyx mori (Lepidoptera:Bombycidae). Hyphantria cunea (Lepidoptera:Arctiidae), and Spodoptera exigua (Lepidoptera:Noctuidae) in four lepidopteran cell lines Applied entomology and zoology 1999.34(4):507-16.
    [50]Shirata, N., Ikeda, M., Kamiya, K., et al. Restriction of Bombyx mori nucleopolyhedrovirus (NPV) replication by Hyphantria cunea NPV in a cell line from B. mori. Journal of Insect Biotechnology and Sericology.2004.73:23-33.
    [51]Shirata, N., Ikeda, M. and Kobayashi, M. Identification of a Hyphantria cunea nucleopolyhedrovirus (NPV) gene that is involved in global protein synthesis shutdown and restricted Bombyx mori NPV multiplication in a B. mori cell line. Virology.2010.398(2):149-57.
    [52]Kovacs, G.R., Guarino, L.A. and Summers, M.D. Novel regulatory properties of the IE1 and IE0 transactivators encoded by the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus. J Virol.1991.65(10):5281-8.
    [53]Lu, L., Du, Q. and Chejanovsky, N. Reduced expression of the immediate-early protein IE0 enables efficient replication of Autographa californica multiple nucleopolyhedrovirus in poorly permissive Spodoptera littoralis cells. J Virol.2003.77(1):535-45.
    [54]Prikhod'ko, E.A., Lu, A., Wilson, J.A., et al. In vivo and in vitro analysis of baculovirus ie-2 mutants. J Virol.1999.73(3):2460-8.
    [55]Rapp, J.C., Wilson, J.A. and Miller, L.K. Nineteen baculovirus open reading frames, including LEF-12, support late gene expression. J Virol.1998.72(12):10197-206.
    [56]Chen, C.J. and Thiem. S.M. Differential infectivity of two Autographa californica nucleopolyhedrovirus mutants on three permissive cell lines is the result of lef-7 deletion. Virology.1997.227(1):88-95.
    [57]Lu, A. and Miller, L.K. Differential requirements for baculovirus late expression factor genes in two cell lines. J Virol.1995.69(10):6265-72.
    [58]Lu, A. and Miller, L.K. Species-specific effects of the hcf-1 gene on baculovirus virulence. J Virol. 1996.70(8):5123-30.
    [59]Carbonell, L.F., Klowden, M.J. and Miller, L.K. Baculovirus-mediated expression of bacterial genes in dipteran and mammalian cells. J Virol.1985.56(1):153-60.
    [60]Morris, T.D. and Miller, L.K. Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. J Virol.1992.66(12):7397-405.
    [61]Heldens, J.G., Broer, R., Zuidema, D., et al. Identification and functional analysis of a non-hr origin of DNA replication in the genome of Spodoptera exigua multicapsid nucleopolyhedrovirus. J Gen Virol. 1997.78 (Pt 6):1497-506.
    [62]Habib, S. and Hasnain, S.E. Differential activity of two non-hr origins during replication of the baculovirus Autographa californica nuclear polyhedrosis virus genome. J Virol.2000.74(11):5182-9.
    [63]Pijlman, G.P., Vermeesch, A.M. and Vlak, J.M. Cell line-specific accumulation of the baculovirus non-hr origin of DNA replication in infected insect cells. J Invertebr Pathol.2003.84(3):214-9.
    [64]Pijlman, G.P., Dortmans, J.C., Vermeesch, A.M., et al. Pivotal role of the non-hr origin of DNA replication in the genesis of defective interfering baculoviruses. J Virol.2002.76(11):5605-11.
    [65]Iwanaga, M., Takaya, K., Katsuma, S., et al. Expression profiling of baculovirus genes in permissive and nonpermissive cell lines. Biochem Biophys Res Commun.2004.323(2):599-614.
    [66]Yamagishi, J., Isobe, R., Takebuchi, T., et al. DNA microarrays of baculovirus genomes:differential expression of viral genes in two susceptible insect cell lines. Arch Virol.2003.148(3):587-97.
    [67]Berretta, M.F., Deshpande, M., Crouch, E.A., et al. Functional characterization of Bombyx mori nucleopolyhedrovirus late gene transcription and genome replication factors in the non-permissive insect cell line SF-21. Virology.2006.348(1):175-89.
    [68]Hefferon, K.L., Oomens, A.G., Monsma, S.A., et al. Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology.1999.258(2):455-68.
    [69]Zhou, J. and Blissard, G.W. Identification of a GP64 subdomain involved in receptor binding by budded virions of the baculovirus Autographica californica multicapsid nucleopolyhedrovirus. J Virol. 2008.82(9):4449-60.
    [70]Blissard, G.W. and Wenz, J.R. Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol.1992.66(11):6829-35.
    [71]Monsma, S.A. and Blissard, G.W. Identification of a membrane fusion domain and an oligomerization domain in the baculovirus GP64 envelope fusion protein. J Virol.1995.69(4):2583-95.
    [72]Oomens, A.G. and Blissard, G.W. Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology.1999.254(2):297-314.
    [73]Li, Z. and Blissard, G.W. The pre-transmembrane domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein is critical for membrane fusion and virus infectivity. J Virol.2009. 83(21):10993-1004.
    [74]Kumar, M., Bradow, B.P. and Zimmerberg, J. Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther.2003.14(1):67-77.
    [75]Schauber, C.A., Tuerk, M.J., Pacheco, C.D., et al. Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro. Gene Ther.2004.11(3):266-75.
    [76]Oomens, A.G. and Wertz, G.W. The baculovirus GP64 protein mediates highly stable infectivity of a human respiratory syncytial virus lacking its homologous transmembrane glycoproteins. J Virol.2004. 78(1):124-35.
    [77]Sastre, P., Oomens, A.G. and Wertz, G.W. The stability of human respiratory syncytial virus is enhanced by incorporation of the baculovirus GP64 protein. Vaccine.2007.25(27):5025-33.
    [78]Yoshida, S., Kondoh, D., Arai, E., et al. Baculovirus virions displaying Plasmodium berghei circumsporozoite protein protect mice against malaria sporozoite infection. Virology.2003.316(1): 161-70.
    [79]Xu, X.G., Chiou, M.T., Zhang, Y.M., et al. Baculovirus surface display of E(rns) envelope glycoprotein of classical swine fever virus. J Virol Methods.2008.153(2):149-55.
    [80]Feng, Q., Liu, Y., Qu, X., et al. Baculovirus surface display of SARS coronavirus (SARS-CoV) spike protein and immunogenicity of the displayed protein in mice models. DNA Cell Biol.2006.25(12): 668-73.
    [81]WF, I.J., van Strien, E.A., Heldens, J.G., et al. Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol.1999.80 (Pt 12):3289-304.
    [82]Pang, Y., Yu, J., Wang, L., et al. Sequence analysis of the Spodoptera litura multicapsid nucleopolyhedrovirus genome. Virology.2001.287(2):391-404.
    [83]Chen, X., WF, I.J., Tarchini, R., et al. The sequence of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus genome. J Gen Virol.2001.82(Pt 1):241-57.
    [84]Carstens, E.B., Krebs, A. and Gallerneault, C.E. Identification of an amino acid essential to the normal assembly of Autographa californica nuclear polyhedrosis virus polyhedra J Virol.1986.58(2):684-8.
    [85]Carstens, E.B., Ye, L.B. and Faulkner, P. A point mutation in the polyhedrin gene of a baculovirus, Autographa californica MNPV, prevents crystallization of occlusion bodies. J Gen Virol.1987.68 (Pt 3):901-5.
    [86]Carstens, E.B., Williams, G.V., Faulkner, P., et al. Analysis of polyhedra morphology mutants of Autographa californica nuclear polyhedrosis virus:molecular and ultrastructural features. J Gen Virol. 1992.73 (Pt 6):1471-9.
    [87]Ribeiro, B.M., Generino, A.P., Acacio, C.N., et al. Characterization of a new Autographa californica multiple nucleopolyhedrovirus (AcMNPV) polyhedra mutant Virus Res.2009.140(1-2):1-7.
    [88]Lin, G.Y., Zhong, J. and Wang, X.Z. Abnormal formation of polyhedra resulting from a single mutation in the polyhedrin gene of Autographa californica multicapsid nucleopolyhedrovirus. J Invertebr Pathol. 2000.76(1):13-9.
    [89]Lopez, M.G., Alfonso, V., Carrillo, E., et al. Description of a novel single mutation in the AcMNPV polyhedrin gene that results in abnormally large cubic polyhedra. Arch Virol.156(4):695-9.
    [90]Katsuma, S., Noguchi, Y., Shimada, T., et al. Molecular characterization of baculovirus Bombyx mori nucleopolyhedrovirus polyhedron mutants. Arch Virol.1999.144(7):1275-85.
    [91]Coulibaly, F., Chiu, E., Ikeda, K., et al. The molecular organization of cypovirus polyhedra. Nature. 2007.446(7131):97-101.
    [92]Coulibaly, F., Chiu, E., Gutmann, S., et al. The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc Natl Acad Sci U S A 2009.106(52):22205-10.
    [93]Ji, X., Sutton, G., Evans, G., et al. How baculovirus polyhedra fit square pegs into round holes to robustly package viruses. EMBO J.29(2):505-14.
    [94]Ijiri, H., Coulibaly, F., Nishimura, G., et al. Structure-based targeting of bioactive proteins into cypovirus polyhedra and application to immobilized cytokines for mammalian cell culture. Biomaterials. 2009.30(26):4297-308.
    [95]Nishishita, N., Ijiri, H., Takenaka, C., et al. The use of leukemia inhibitory factor immobilized on virus-derived polyhedra to support the proliferation of mouse embryonic and induced pluripotent stem cells. Biomaterials.2011.32(14):3555-63.
    [96]Ikeda, K., Nakazawa, H., Shimo-Oka, A., et al. Immobilization of diverse foreign proteins in viral polyhedra and potential application for protein microarrays. Proteomics.2006.6(1):54-66.
    [97]Roh, J.Y., Choi, J.Y., Kang, J.N., et al. Simple purification of a foreign protein using polyhedrin fusion in a baculovirus expression system. Biosci Biotechnol Biochem.2010.74(8):1522-6.
    [98]Chang, J.H., Choi, J.Y., Jin, B.R., et al. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J Invertebr Pathol.2003.84(1):30-7.
    [99]Shim, H.J., Choi, J.Y., Li, M.S., et al. A novel recombinant baculovirus expressing insect neurotoxin and producing occlusion bodies that contain Bacillus thuringiensis Cry toxin. Journal of Asia-Pacific Entomology.2009.12:217-20.
    [100]Lee, K.S., Sohn, M.R., Kim, B.Y., et al. Production of Classical Swine Fever Virus Envelope Glycoprotein E2 as Recombinant Polyhedra in Baculovirus-Infected Silkworm Larvae. Mol Biotechnol.
    [101]Carpentier, D.C., Griffiths, C.M. and King, L.A. The baculovirus P10 protein of Autographa californica nucleopolyhedrovirus forms two distinct cytoskeletal-like structures and associates with polyhedral occlusion bodies during infection. Virology.2008.371(2):278-91.
    [102]Alaoui-Ismaili, M.H. and Richardson, C.D. Insect virus proteins (FALPE and p10) self-associate to form filaments in infected cells. J Virol.1998.72(3):2213-23.
    [103]Patmanidi, A.L., Possee, R.D. and King, L.A. Formation of P10 tubular structures during AcMNPV infection depends on the integrity of host-cell microtubules. Virology.2003.317(2):308-20.
    [104]van Oers, M.M., Flipsen, J.T., Reusken, C.B., et al. Functional domains of the p10 protein of Autographa californica nuclear polyhedrosis virus. J Gen Virol.1993.74 (Pt 4):563-74.
    [105]Dong, C., Deng, F., Li, D., et al. The heptad repeats region is essential for AcMNPV P10 filament formation and not the proline-rich or the C-terminus basic regions. Virology.2007.365(2):390-7.
    [106]Roelvink, P.W., van Meer, M.M., de Kort, C.A., et al. Dissimilar expression of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus polyhedrin and p10 genes. J Gen Virol.1992.73 (Pt 6):1481-9.
    [107]Chaabihi, H., Ogliastro, M.H., Martin, M., et al. Competition between baculovirus polyhedrin and p10 gene expression during infection of insect cells. J Virol.1993.67(5):2664-71.
    [108]Hu, N.T., Lu, Y.F., Hashimoto, Y., et al. The plO gene of natural isolates of Bombyx mori nuclear polyhedrosis virus encodes a truncated protein with an M(r) of 7700. J Gen Virol.1994.75 (Pt 8): 2085-8.
    [109]Hong, H.K., Woo, S.D., Choi, J.Y., et al. Characterization of four isolates of Bombyx mori nucleopolyhedrovirus. Arch Virol.2000.145(11):2351-61.
    [110]Zhang, Y., Wu, X. and Li, Z. p10 genes of Bombyx mori nuclear polyhedrosis virus and Autographa californica multiple nuclear polyhedrosis virus. Sci China B.1995.38(1):50-9.
    [111]Lauzon, H.A., Jamieson, P.B., Krell, P.J., et al. Gene organization and sequencing of the Choristoneura fumiferana defective nucleopolyhedrovirus genome. J Gen Virol.2005.86(Pt4):945-61.
    [112]de Rezende, S.H., Castro, M.E. and Souza, M.L. Accumulation of few-polyhedra mutants upon serial passage of Anticarsia gemmatalis multiple nucleopolyhedrovirus in cell culture. J Invertebr Pathol. 2009.100(3):153-9.
    [113]Lua, L.H., Pedrini, M.R., Reid, S., et al. Phenotypic and genotypic analysis of Helicoverpa armigera nucleopolyhedrovirus serially passaged in cell culture. J Gen Virol.2002.83(Pt 4):945-55.
    [114]Slavicek, J.M., Hayesplazolles, N. and Kelly, M.E. Rapid formation of few polyhedra mutants of Lymantria dispar multinucleocapsid nuclear polyhedrosis virus during serial passage in cell culture. Biological Control.1995.5(2):251-61.
    [115]Okano, K., Vanarsdall, A.L., Mikhailov, V.S., et al. Conserved molecular systems of the Baculoviridae. Virology.2006.344(1):77-87.
    [116]Herniou, E.A., Luque, T., Chen, X., et al. Use of whole genome sequence data to infer Baculovirus phylogeny. Journal of Virology.2001.75(17):8117-8126.
    [117]Harrison, R.L. Structural divergence among genomes of closely related baculoviruses and its implications for baculovirus evolution. J Invertebr Pathol.2009.101(3):181-6.
    [118]Hajos, J.P., Pijnenburg, J., Usmany, M., et al. High frequency recombination between homologous baculoviruses in cell culture. Arch Virol.2000.145(1):159-64.
    [119]Kamita, S.G., Maeda, S. and Hammock, B.D. High-frequency homologous recombination between baculoviruses involves DNA replication. J Virol.2003.77(24):13053-61.
    [120]Kim, H.S., Woo, S.D., Kim, W.J., et al. High-level expression of a foreign gene by a recombinant baculovirus with an expanded host range. Cytotechnology.2000.32(2):87-92.
    [121]Takatsuka, J., Okuno, S., Nakai, M., et al. Genetic and biological comparisons of ten geographic isolates of a nucleopolyhedrovirus that infects Spodoptera litura (Lepidoptera:Noctuidae). Biological Control.2003.26:32-39.
    [122]Kamiya, K., Zhu, J., Murata, M., et al. Cloning and comparative characterization of three distinct nucleopolyhedroviruses isolated from the common cutworm, Spodoptera litura (Lepidoptera Noctuidae) in Japan. Biological Control.2004.31(1):38-48.
    [123]Cory, J.S., Green, B.M., Paul, R.K., et al. Genotypic and phenotypic diversity of a baculovirus population within an individual insect host J Invertebr Pathol.2005.89(2):101-11.
    [124]Takahashi, M., Nakai, M., Nakanishi, K., et al. Genetic and biological comparisons of four nucleopolyhedrovirus isolates that are infectious to Adoxophyes honmai (Lepidoptera:Tortricidae). Biological Control.2008.46(3):542-546.
    [125]Figueiredo, E., Munoz, D., Murillo, R., et al. Diversity of Iberian nucleopolyhedrovirus wild-type isolates infecting Helicoverpa armigera (Lepidoptera:Noctuidae). Biological Control.2009.50:43-49.
    [126]Herniou, E.A., Olszewski, J.A., O'Reilly, D.R., et al. Ancient coevolution of baculoviruses and their insect hosts. J Virol.2004.78(7):3244-51.
    [127]Shackelton, L.A. and Holmes, E.C. The evolution of large DNA viruses:combining genomic information of viruses and their hosts. Trends Microbiol.2004.12(10):458-65.
    [128]Hughes, A.L. Evolution of inhibitors of apoptosis in baculoviruses and their insect hosts. Infect Genet Evol.2002.2(1):3-10.
    [129]Daimon, T., Hamada, K., Mita, K., et al. A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem Mol Biol.2003.33(8):749-59.
    [130]Harrison, R.L., Jarvis, D.L. and Summers, M.D. The role of the AcMNPV 25K gene, "FP25," in baculovirus polh and p10 expression Virology.1996.226(1):34-46.
    [131]Bischoff, D.S. and Slavicek, J.M. Phenotypic and genetic analysis of Lymantria dispar nucleopolyhedrovirus few polyhedra mutants:mutations in the 25K FP gene may be caused by DNA replication errors. J Virol.1997.71(2):1097-106.
    [132]Pijlman, G.P., van Schijndel, J.E. and Vlak, J.M. Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol.2003.84(Pt 10):2669-78.
    [133]Pijlman, G.P., de Vrij, J., van den End, F.J., et al. Evaluation of baculovirus expression vectors with enhanced stability in continuous cascaded insect-cell bioreactors. Biotechnology and Bioengineering. 2004.87(6):743-753.
    [134]Pijlman, G.P., Roode, E.C., Fan, X., et al. Stabilized baculovirus vector expressing a heterologous gene and GP64 from a single bicistronic transcript. J Biotechnol.2006.123(1):13-21.
    [135]Motohashi, T., Shimojima, T., Fukagawa, T., et al. Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun.2005.326(3):564-9.
    [136]张耀洲.家蚕生物反应器.浙江大学出版社,浙江.2008.
    [137]Usami, A., Ishiyama, S., Enomoto, C., et al. Comparison of recombinant protein expression in a baculovirus system in insect cells (Sf9) and silkworm. J Biochem.2010.149(2):219-27.
    [138]Ohkawa, T., Majima, K. and Maeda, S. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus. J Virol.1994.68(10):6619-25.
    [139]Hawtin, R.E., Zarkowska, T., Arnold, K., et al. Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology.1997.238(2):243-53.
    [140]Park, E.Y., Abe, T. and Kato, T. Improved expression of fusion protein using a cysteine- protease- and chitinase-deficient Bombyx mori (silkworm) multiple nucleopolyhedrovirus bacmid in silkworm larvae. Biotechnol Appl Biochem.2008.49(Pt 2):135-40.
    [141]Shi, X. and Jarvis, D.L. Protein N-glycosylation in the baculovirus-insect cell system. Curr Drug Targets.2007.8(10):1116-25.
    [142]Tuchiya, K., Matsuura, Y., Kawai, A., et al. Characterization of rabies virus glycoprotein expressed by recombinant baculovirus. Virus Res.1992.25(1-2):1-13.
    [143]Jarvis, D.L., Howe, D. and Aumiller, J.J. Novel baculovirus expression vectors that provide sialylation of recombinant glycoproteins in lepidopteran insect cells. J Virol.2001.75(13):6223-7.
    [144]Palomares, L.A., Joosten, C.E., Hughes, P.R., et al. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol Prog.2003.19(1):185-92.
    [145]Watanabe, S., Kokuho, T., Takahashi, H., et al. Sialylation of N-glycans on the recombinant proteins expressed by a baculovirus-insect cell system under beta-N-acetylglucosaminidase inhibition. J Biol Chem.2002.277(7):5090-3.
    [146]Xu, X.G. and Liu, H.J. Baculovirus surface display of E2 envelope glycoprotein of classical swine fever virus and immunogenicity of the displayed proteins in a mouse model. Vaccine.2008.26(43):5455-60.
    [147]Meller Harel, H.Y., Fontaine, V., Chen, H., et al. Display of a maize cDNA library on baculovirus infected insect cells. BMC Biotechnol.2008.8:64.
    [148]Wang, Y.B., Rubtsov, A., Heiser, R., et al. Using a baculovirus display library to identify MHC class I mimotopes. Proceedings of the National Academy of Sciences of the United States of America.2005. 102(7):2476-2481.
    [149]Makela, A.R., Enback, J., Laakkonen, J.P., et al. Tumor targeting of baculovirus displaying a lymphatic homing peptide. J Gene Med.2008.10(9):1019-31.
    [150]Lindley, K.M., Su, J.L., Hodges, P.K., et al. Production of monoclonal antibodies using recombinant baculovirus displaying gp64-fusion proteins. J Immunol Methods.2000.234(1-2):123-35.
    [151]Kenoutis, C., Efrose, R.C., Swevers, L., et al. Baculovirus-mediated gene delivery into Mammalian cells does not alter their transcriptional and differentiating potential but is accompanied by early viral gene expression. J Virol.2006.80(8):4135-46.
    [152]Wang, C.Y., Li, F., Yang, Y., et al. Recombinant baculovirus containing the diphtheria toxin A gene for malignant glioma therapy. Cancer Res.2006.66(11):5798-806.
    [153]Wang, C.Y. and Wang, S. Astrocytic expression of transgene in the rat brain mediated by baculovirus vectors containing an astrocyte-specific promoter. Gene Ther.2006.13(20):1447-56.
    [154]Luz-Madrigal, A., Clapp, C., Aranda, J., et al. In vivo transcriptional targeting into the retinal vasculature using recombinant baculovirus carrying the human flt-1 promoter. Virol J.2007.4:88.
    [155]Kitajima, M., Abe, T., Miyano-Kurosaki, N., et al. Induction of natural killer cell-dependent antitumor immunity by the Autographa californica multiple nuclear polyhedrosis virus. Mol Ther.2008.16(2): 261-8.
    [156]Suzuki, T., Chang, M.O., Kitajima, M., et al. Baculovirus activates murine dendritic cells and induces non-specific NK cell and T cell immune responses. Cell Immunol.2010.262(1):35-43.
    [157]Suzuki, T., Oo Chang, M., Kitajima, M., et al. Induction of antitumor immunity against mouse carcinoma by baculovirus-infected dendritic cells. Cell Mol Immunol.7(6):440-6.
    [158]McCutchen, B.F., Choudary, P.V., Crenshaw, R., et al. Development of a recombinant baculovirus expressing an insect-selective neurotoxin:potential for pest control. Biotechnology (N Y).1991.9(9): 848-52.
    [159]Maeda, S. Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem Biophys Res Commun.1989.165(3):1177-83.
    [160]Rahman, M.M. and Gopinathan, K.P. Systemic and in vitro infection process of Bombyx mori nucleopolyhedrovirus. Virus Res.2004.101(2):109-18.
    [161]Stanley, D., Miller, J. and Tunaz, H. Eicosanoid actions in insect immunity. J Innate Immun.2009.1(4): 282-90.
    [162]Nakazawa, H., Tsuneishi, E., Ponnuvel, K.M., et al. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus. Virology.2004.321(1):154-62.
    [163]Ponnuvel, K.M., Nakazawa, H., Furukawa, S., et al. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J Virol.2003.77(19):10725-9.
    [164]姚慧鹏,何芳青,郭爱芹,et al.中国野蚕一种强抗病毒蛋白的基因分析和活性鉴定中国科学.2008.6(38):521-526.
    [165]姚慧鹏,何芳青,郭爱芹,et al.中国野桑蚕抗病毒蛋白基因(Lipase)的克隆与活性鉴定.蚕业科学.2008.3(34):466-471.
    [166]Warrell, M.J. and Warrell, D.A. Rabies and other lyssavirus diseases. Lancet. 2004.363(9413): 959-969.
    [167]Gaudin, Y., Tuffereau, C., Durrer, P., et al. Biological function of the low-pH, fusion-inactive conformation of rabies virus glycoprotein (G):G is transported in a fusion-inactive state-like conformation. J Virol.1995.69(9):5528-34.
    [168]Garry, C.E. and Garry, R.F. Proteomics computational analyses suggest that baculovirus GP64 superfamily proteins are class Ⅲ penetrenes. Virol J.2008.5:28.
    [169]Faber, M., Faber, M.L., Papaneri, A., et al. A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol.2005.79(22):14141-8.
    [170]Ito, Y., Ito, N., Saito, S., et al. Amino acid substitutions at positions 242,255 and 268 in rabies virus glycoprotein affect spread of viral infection. Microbiol Immunol.2010.54(2):89-97.
    [171]Luo, T.R., Minamoto, N., Hishida, M., et al. Antigenic and functional analyses of glycoprotein of rabies virus using monoclonal antibodies. Microbiol Immunol.1998.42(3):187-93.
    [172]Luo, T.R., Minamoto, N., Ito, H., et al. A virus-neutralizing epitope on the glycoprotein of rabies virus that contains Trp251 is a linear epitope. Virus Res.1997.51(1):35-41.
    [173]Prehaud, C., Takehara, K., Flamand, A., et al. Immunogenic and protective properties of rabies virus glycoprotein expressed by baculovirus vectors. Virology.1989.173(2):390-9.
    [174]Ashraf, S., Singh, P.K., Yadav, D.K., et al. High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol.2005.119(1):1-14.
    [175]Tims, T., Briggs, D.J., Davis, R.D., et al. Adult dogs receiving a rabies booster dose with a recombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizing antibodies. Vaccine. 2000.18(25):2804-7.
    [176]Fuxa, J.R. Ecology of insect nucleopolyhedroviruses. Agriculture Ecosystems & Environment 2004. 103(1):27-43.
    [177]Levin, D.B. and Whittome, B. Codon usage in nucleopolyhedroviruses. J Gen Virol.2000.81(Pt 9): 2313-25.
    [178]Tani, H., Limn, C.K., Yap, C.C., et al. In vitro and in vivo gene delivery by recombinant baculoviruses. J Virol.2003.77(18):9799-808.
    [179]Wang, X., Bao, M., Wan, M., et al. A CpG oligodeoxynucleotide acts as a potent adjuvant for inactivated rabies virus vaccine. Vaccine.2008.26(15):1893-901.
    [180]Fu, Z.F., Rupprecht, C.E., Dietzschold, B., et al. Oral vaccination of racoons (Procyon lotor) with baculovirus-expressed rabies virus glycoprotein. Vaccine.1993.11(9):925-8.
    [181]Rupprecht, C.E., Hanlon, C.A. and Slate, D. Oral vaccination of wildlife against rabies:opportunities and challenges in prevention and control. Dev Biol (Basel).2004.119:173-84.
    [182]Zhang, S., Liu, Y., Fooks, A.R., et al. Oral vaccination of dogs (Canis familiaris) with baits containing the recombinant rabies-canine adenovirus type-2 vaccine confers long-lasting immunity against rabies. Vaccine.2008.26(3):345-50.
    [183]Henderson, H., Jackson, F., Bean, K., et al. Oral immunization of raccoons and skunks with a canine adenovirus recombinant rabies vaccine. Vaccine.2009.27(51):7194-7.
    [184]Abe, T., Takahashi, H., Hamazaki, H., et al. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol.2003.171(3):1133-9.
    [185]Gronowski, A.M., Hilbert, D.M., Sheehan, K.C., et al. Baculovirus stimulates antiviral effects in mammalian cells. J Virol.1999.73(12):9944-51.
    [186]Niu, M., Han, Y. and Li, W. Baculovirus up-regulates antiviral systems and induces protection against infectious bronchitis virus challenge in neonatal chicken. Int Immunopharmacol.2008.8(12):1609-15.
    [187]Prabakaran, M., Madhan, S., Prabhu, N., et al. Gastrointestinal delivery of baculovirus displaying influenza virus hemagglutinin protects mice against heterologous H5N1 infection. J Virol.2010.84(7): 3201-9.
    [188]Pfeifer, T.A., Hegedus, D.D., Grigliatti, T.A., et al. Baculovirus immediate-early promoter-mediated expression of the Zeocin resistance gene for use as a dominant selectable marker in dipteran and Iepidopteran insect cell lines. Gene.1997.188(2):183-90.
    [189]Woo, S.D., Roh, J.Y., Choi, J.Y., et al. Propagation of Bombyx mori Nucleopolyhedrovirus in nonpermissive insect cell lines. J Microbiol.2007.45(2):133-8.
    [190]Wang, F., Zhang, C.X., Shyam Kumar, V., et al. Influences of chitinase gene deletion from BmNPV on the cell lysis and host liquefaction. Arch Virol.2005.150(5):981-90.
    [191]Braunagel, S.C., Parr, R., Belyavskyi, M., et al. Autographa californica nucleopolyhedrovirus infection results in Sf9 cell cycle arrest at G2/M phase. Virology.1998.244(1):195-211.
    [192]Ligoxygakis, P., Pelte, N., Hoffmann, J.A., et al. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science.2002.297(5578):114-6.
    [193]Satoh, D., Horii, A., Ochiai, M, et al. Prophenoloxidase-activating enzyme of the silkworm, Bombyx mori. Purification, characterization, and cDNA cloning. J Biol Chem.1999.274(11):7441-53.
    [194]Vilmos, P. and Kurucz, E. Insect immunity:evolutionary roots of the mammalian innate immune system. Immunol Lett.1998.62(2):59-66.
    [195]Slocinska, M., Marciniak, P. and Rosinski, G. Insects antiviral and anticancer peptides:new leads for the future? Protein Pept Lett 2008.15(6):578-85.
    [196]Ourth, D.D. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens. Biochem Biophys Res Commun.2004.320(1):190-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700