靶向脑心肌炎病毒1D和3AB基因shRNA重组体构建与体内外抑制病毒复制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑心肌炎病毒(Encephalomyocarditis virus, EMCV)是一种重要的人畜共患病病原,可以感染昆虫、爬行动物、啮齿类动物和灵长类动物等。本病毒可引起仔猪的致命性心肌炎和母猪的繁殖障碍,对世界养猪业造成了较大经济损失。目前,我国猪群已经存在该病毒感染,但其流行状况尚不十分清楚,也无有效预防和治疗方法。本研究从我国中东地区患病猪群分离获得EMCV NJ08毒株,人工感染试验证实我国存在该病,并完成该病毒全基因序列分析,阐明我国EMCV流行毒株分子特征;同时,设计构建了表达靶向EMCV不同基因shRNA表达质粒,发现其在体外和体内可以有效抑制EMCV复制及其机制,并利用腺病毒介导shRNA技术探讨该病防治新策略,为该病防治提供了新手段。
     1.猪源脑心肌炎病毒的分离与鉴定
     本研究采集临床发病仔猪心脏组织,匀浆处理后接种BHK-21细胞,盲传3代出现细胞病变,分离获得一株病毒,病毒传代至第15-25代,病毒滴度稳定,TCID50为10-100~10-10-25/mL;采用脑心肌炎病毒(EMCV)单克隆抗体进行间接免疫荧光试验,结果在感染细胞的胞浆中可见特异性荧光;EMCV VP1基因RT-PCR检测为阳性,扩增产物基因序列与GenBank中的EMCV VP1基因同源性为85.7%-99.8%;纯化病毒粒子负染电镜观察,大小约25-28nm,证明该分离病毒为EMCV,命名为EMCV NJ08株。该分离株接种MARC-145、HEK-293A和ST细胞系均出现明显CPE,病毒于56℃作用15min,感染滴度显著降低。将NJ08株接种BALB/c小鼠,可引起小鼠出现明显临床症状和心肌变性与脑炎等病变,免疫组织化学试验检测结果证明,脑组织含有EMCV抗原;商品仔猪人工感染NJ08株后未出现明显的临床症状及病理变化,但血清中出现EMCV特异性中和抗体,证明该分离株对小鼠具有较强的致病作用,表明我国猪群存在EMCV感染。
     2.猪脑心肌炎病毒NJ08分离株基因组序列测定与分析
     本研究根据EMCV基因序列,设计合成7对PCR引物,采用RT-PCR方法从EMCV NJ08分离株扩增获得5个基因片段,大小为1002-1580bp,同时,应用RACE方法,从该病毒株扩增获得其3’和5’基因末端两个基因,扩增产物经凝胶纯化后分别克隆于pMD18-T载体,进行基因测序,利用片段之间的重叠碱基序列顺序将这些片段序列进行拼接,获得EMCV NJ08株全基因组cDNA序列,并将全基因组及其推导的氨基酸序列与GenBank中登录的国内外参考病毒株进行同源性比较及系统进化分析。结果为:EMCV NJ08分离株基因组全长7724bp;属于Ⅰa亚群;与GXLC、 GX0602、BJC3、HB1等国内分离株以及BEL-2887A、CBNU、K3、K11、EMCV-R、PV21等国外分离株同源性达99%以上;EMCV流行株的非结构蛋白中3D最为保守,2A变异最大,结构蛋白中VP2最为保守,VP1变异最大,从而丰富了我国EMCV分子流行病学资料。
     3.脑心肌炎病毒SYBR Green Ⅰ实时PCR检测方法的建立
     本研究分别针对EMCV NJ08株的1D和3AB基因设计合成了特异性的引物,通过反应条件的优化,利用SYBR Green Ⅰ染料建立了快速定量检测脑心肌炎病毒的实时PCR方法。通过检测PCV2、PRRSV、CSFV、PRV和FMDV的基因检测及融解曲线检测分析,结果表明两对引物实时PCR反应的熔解曲线具有唯一的尖峰,证明其具有较好的特异性。采用EMCV cDNA产物进行梯度稀释后作为模板进行检测,结果为:该方法对EMCV细胞培养物的检测下限为0.01TCID50,敏感性比普通RT-PCR高100倍,并具有较好重复性。分别采用该法和普通RT-PCR方法检测10份EMCV人工感染的小鼠心肌、脑组织、5份EMCV人工感染仔猪血清样品及3份健康小鼠心脑组织和2份健康仔猪血清样品检测,其符合率为100%。表明该方法具有较高特异性和敏感性,同时具有更快速、准确、低污染等优点,可用于定量检测EMCV和该病诊断。
     4.靶向EMCV1D和3AB基因shRNA重组质粒构建及其体内外抑制EMCV复制作用
     本研究根据EMCV NJ08株基因序列(GenBank HM641897),采用计算机软件设计针对1D和3AB基因的4个siRNA靶序列,按pSUPER载体要求,合成了4对互补的寡核苷酸,分别体外退火形成双链,克隆至pSUPER载体,经Kpn Ⅰ/EcoR Ⅰ双酶切鉴定和基因测序,证明构建获得4个shRNA (short hairpin RNA)重组质粒(pSUPER-1D-1, pSUPER-1D-2, pSUPER-3AB-1和pSUPER-3AB-2).将其分别转染BHK-21细胞,观察其抑制EMCV NJ08复制及其机制,并以pSUPER-mN3(shRNA序列长度相同)为对照质粒,结果为:pSUPER-1D-1, pSUPER-3AB-1和pSUPER-3AB-2均能明显减轻EMCV引起的细胞病变(CPE). pSUPER-3AB-1和pSUPER-3AB-2转染细胞中EMCV>商度降低100-1000倍,pSUPER-1D-2或pSUPER-1D-1组病毒滴度降低10-100倍,EMCV VP1蛋白和3AB mRNA转录水平均明显降低(p<0.05)。选取90只4周龄BALB/c小鼠,随机分为6组,每组15只。第1-4组分别脑内接种重组质粒pSUPER-1D-1、pSUPER-3AB-1、pSUPER-3AB-2和pSUPER-mN3,第5组脑内接种ddH2O作为阴性对照,第6组为空白对照组。第1-5组接种后6h、12h和24h,分别每组随机选择5只小鼠,采用EMCV进行攻击,观察临床症状和死亡鼠病变,并于攻毒后14d,对存活小鼠全部剖杀,进行病理学观察,并用实时PCR方法检测小鼠脑组织中EMCV含量。结果为:与pSUPER-mN3组和攻毒对照组相比,pSUPER-VP1-1、pSUPER-3AB-1和pSUPER-3AB-2组小鼠临床症状、脑和心脏组织病变程度明显减轻,病死率明显降低,表明靶向EMCV1D和3AB基因的shRNA可以有效减低EMCV靶基因转录、表达和病毒复制,降低EMCV对小鼠致病作用。
     5.靶向EMCV1D和3AB基因shRNA的重组腺病毒的构建与鉴定
     本研究以shRNA重组质粒pSUPER-1D-1、pSUPER-1D-2、pSUPER-3AB-1和pSUPER-3AB-2为模板,利用RT-PCR扩增获得4个PH1-shRNA表达框,分别克隆至重组腺病毒穿梭质粒pAdTrack-CMV中,然后与骨架质粒pAdEasy-1在大肠杆菌BJ5183内进行同源重组,再将重组质粒经转染HEK-293A细胞,获得表达针对EMCV1D或3AB基因的shRNA重组腺病毒,命名为rAd-1D-1、rAd-1D-2、rAd-3AB-1和rAd-3AB-2,重组腺病毒接种HEK-293A细胞后,出现明显CPE,呈变圆和脱落,同时在荧光显微镜下出现特异性荧光。提取HEK-293A细胞中的病毒DNA,利用PCR和基因序列分析,证明重组腺病毒基因组内PH1-shRNA表达框内基因序列正确,证明构建获得靶向EMCV1D或3AB shRNA的重组腺病毒,为EMCV感染防治研究奠定了基础。
     6.腺病毒介导的靶向EMCV1D和3AB基因shRNA体内外抑制EMCV复制作用
     本研究将4个靶向EMCV1D (rAd-1D-1和rAd-1D-2)和3AB (rAd-3AB-1和rAd-3AB-2) shRNA重组腺病毒(rAd5)分别接种MARC-145细胞,并以rAd-G1重组腺病毒为对照,观察其对EMCV复制作用,结果为:与对照组相比,该4个rAd5可以明显抑制EMCV靶基因mRNA转录和蛋白表达水平及病毒复制滴度,而且这种抗病毒抑制作用至少能持续72h,并有剂量依赖性。rAd5接种已经感染EMCV的MARC-145细胞,可以部分抑制EMCV复制。选取96只6周龄BALB/c小鼠,随机分为6组,每组16只。第1-4组腹腔接种rAd-1D-2、rAd-3AB-1、rAd-3AB-2和rAd-G1(阴性对照),其中8只小鼠接种剂量为107.0efu/mouse,另8只小鼠接种剂量为108.0efu/mouse,12h后在每只小鼠腹腔注射200TCID50的EMCV NJ08株病毒液,第5组作为EMCV攻毒对照组,第6组只注射PBS作为正常对照组。攻毒后观察临床症状和病理变化,第21d,对存活的小鼠全部剖杀,观察病变,并用实时PCR方法检测小鼠脑组织中EMCV含量。结果为:第1-5组小鼠均表现出不同程度临床症状和肉眼病变,与rAdG1阴性对照组和攻毒对照组相比,rAd-1D-2、rAd-3AB-1和rAd-3AB-2接种组临床症状明显减轻,且出现时间大大推迟,其中,rAd-1D-2(1080efu/mouse)接种组小鼠存活率为87.5%,而对照组小鼠全部死亡;脑组织中病毒病毒含量明显降低。该结果表明,由重组腺病毒介导的shRNA能在体内外有效抑制EMCV的复制,并有效提供小鼠对EMCV攻击,从而为该病防控提供了新策略。
Encephalomyocarditis virus (EMCV) is a new kind of zoonoses virus. It can infect many host species including pigs, rodents, cattle, elephants, raccoons, marsupials, baboons, monkeys and human, and cause severe economic losses on pig production due to high mortality in piglets as a result of respiratory failure and in sows as a result of myocarditis and reproductive failure. EMCV has been isolated in the South and North of China. But the pathogenicity and molecular epidemiology of the virus have not been deeply understood. And there is no effective prevention and control method for the EMCV-associated diseases. In this study, EMCV strain NJ08were isolated and identified from clinical tissue samples originated from the suspected cases with encephalomyocarditis on a pig farm in Jiangsu Province. The viral complete genome was sequenced and compared with that of other isolates. Meanwhile, plasmids and recombinant adenoviruses expressing shRNA target to EMCV different genes were constructed and the suppression effect on target genes induced by shRNA was examined both in vitro and in vivo. The main content was as following:
     1. Isolation and identification of an EMCV strain from piglets
     In order to isolate EMCV from piglet, the clinical tissue samples were selected from the pig with clinical sings of encephalomyocarditis in Jiangsu Province. After homogenization, freeze-thawing and then filtrated with filter membrane, the supernatants were collected and inoculated into BHK-21cells for virus isolation. CPE in BHK-21cells could be observed after three passages and the virus titers were10-10.0~10-10.25TCID50/mL after passaged by15~25times. The specific fluorescence was observed in the cytoplasm of BHK-21cells infected with the strain by IF A with the molecular antibody to VP1of EMCV. And EMCV VP1gene was amplified by RT-PCR. The sequencing results of PCR product showed that the VP1gene shared85.7%to99.8%nucleotide identity with those reported in GenBank. It was further demonstrated by electron micrography after discontinuous sucrose gradient centrifugation. The results showed that this virus isolate represented EMCV and named as EMCV NJ08. An animal infection experiment showed that the isolate could cause severe clinical symptoms and pathological changes in the infected BALB/c mice. And EMCV antigen could be examined in the brain tissues of the infected mice. But no obvious clinical symptoms and pathological changes were observed in the piglets infected with the strain, even thought the antibodies to EMCV could be detected in the pig serum. It was confirmed that EMCV really exist in China and provided new epidemiologic data of this virus in our country.
     2. Complete genomic sequencing of an EMCV isolate NJ08from Mid-eastern China
     Based on the sequence of EMCV in GenBank,7primers were designed for to amplify the7fragments with some overlapped between the upstream and downstream fragments, which covering the complete genomic sequence. And then five large overlapped fragments (fragments2-6) were amplified from EMCV NJ08isolate by RT-PCR method and cloned into the pMD18-T vector for sequencing. Authentic5'and3'terminal fragments of S1isolate were obtained by5'-Full RACE Core Set and3'-Full RACE Core Set and cloned into the pMD18-T vector and sequenced. Five overlapping genomic fragments of EMCV NJ08strain were amplified by RT-PCR and authentic5' and31terminal fragments of NJ08strain were obtained by5'-and3'-full race core set. The PCR products were also cloned and sequenced. Then the complete nucleotide sequence of the viral genome was obtained by splicing of each fragment with overlapped gene sequence in order. The results of the sequence analysis showed that the complete genome of NJ08strain was7,724bp in length. It belonged to the sub-genotype la, with more than99%identity with the reference strains in GenBank. It was found that there were some variation of deduced amino acids in the non-structure protein2A and the structure protein VP1. These results could be helpful for understanding the molecular epidemiology information of EMCV in China.
     3. Establishment of SYBR Green I realtime PCR for detection of1D and3AB Genes of EMCV
     Based on the sequence of EMCV in GenBank, the primers specific to the1D and3AB of EMCV were designed, respectively. And two SYBR Green I real-time PCR methods were developed for the detection of the1D and3AB genes of EMCV, after a serial modification of the reaction condition and the reagents. The specificity of the primers was identified by melting curve analysis and there was no reaction in the presence of PCV2, PRRSV, CSFV, PRV and FMDV gene. Both pairs of the primers have a threshold range between10-100TCID50of EMCV as well as good repetitive. The result of detecting of the tissues or sera of mice and pigs showed that these methods had highly sensitivity and specificity for the viral detection. It should be useful for diagnosis and investigation of EMCV1D and3AB genes expression both in vitro and in vivo.
     4. Inhibition of EMCV replication by shRNA targeting to1D and3AB genes in vitro and in vivo
     Based on the genome sequence of encephalomyocarditis virus (EMCV) NJ08strain, four siRNA sequences targeting to1D and3AB genes of EMCV were selected with aid of web-based tool. And the oligonucleotides with overhang ends with64-nt long were synthesized, annealed and cloned into pSUPER plasmid. And four short hairpin RNA (shRNA) expression plasmids were constructed and identified with Kpn I and EcoR I restriction enzymes digestion and sequencing, and named as pSUPER-1D-1, pSUPER-1D-2, pSUPER-3AB-1and pSUPER-3AB-2. After transfection of these plasmids into BHK-21cells, EMCV replication were examined by virus titers, IFA, and real-time PCR, respectively. The results showed that EMCV induced cytopathic effect (CPE) could be inhibited in the cells transfected with pSUPER-1D-1, pSUPER-3AB-1and pSUPER-3AB-2, and the virus titers were reduced by approximately100-1000fold compared to those control cells. The expression of EMCV3AB gene was significantly decreased both at RNA and protein levels in the cells comparing to the controls. Ninety BALB/c mice were randomly assigned into six groups. And pSUPER-1D-1, pSUPER-3AB-1, pSUPER-3AB-2and pSUPER-mN3were interperitoneally inoculated to mice in group1to4, respectively. Meanwhile, mice in group5were injected with ddF2O as negative control, and mice in group6served as positive control. At6,12and24h after infection, five mice were randomly selected from each group were challenged with EMCV NJ08interperitoneally. At14dpc, all mice were killed and submitted to pathological and real-time PCR examinations for EMCV. The results showed that the clinical signs and pathological lesions of the mice in the groups inoculated with the shRNA constructs were milder obviously, compared with those in pSUPER-mN3and challenge control groups. The loads of EMCV in the brain tissue of the mice pretreated with the constructs were significantly lower than those in other control groups. It indicated that the vector-based shRN A targeting to3AB and1D gene might be a potential anti-EMCV strategy.
     5. Constrcution and identification of recombinant adenoviruses expressing shRN A tarteting to EMCV1D and3AB genes
     The PH1-shRNA expression frames in the recombinant pSUPRE vectors pSUPER-1D-1, pSUPER-1D-2, pSUPER-3AB-land pSUPER-3AB-2were amplified by PCR and cloned into shuttle vector pAdTrack-CMV, respectively. After the homologous recombination of the recombinant shuttle vectors with pAdEasy-1in BJ5183, the recombinant adenoviruses vectors containing the shRNA were obtained, and identified by Pac I digestion. After transfection of the linearized plasmids with Pac I into HEK-293A cells, and4recombinant adenoviruses expressing shRNA (rAd-shRNA) specific to1D and3AB were produced and named rAd-1D-1、rAd-1D-2、rAd-3AB-1and rAd-3AB-2, respectively. Forty-eight hours after inoculation with these rAd-shRNAs,293A cells developed cytopathogenic effect (CPE) as rounding and detached as well as expressed green fluorescence (GFP) observed under fluorescence microscopy. The adenoviruses genome DNA was extracted from the cell culture and the PH1-shRNA expression frames were detected by PCR. The results showed that all the rAd-shRNAs were positive, which confirmed the existence of PH1-shRN A expression frames in adenovirus genome. This study successfully constructed adenovirus expressing shRNA targeting to EMCV different genes that will be useful for evaluating the antiviral effect induced by shRNA both in vitro and in vivo.
     6. Adenovirus-mediated shRNA inhibit EMCV replication both in vitro and in vivo
     In order to evaluate the inhibition efficiency of EMCV replication induced by the recombinant adenovirus-medated shRNA targeting to the ID and3AB genes of EMCV, the four recombinant adenoviruses expressing shRN As were used to inoculate MARC-145cells and their inhibition efficiency on the replication of EMCV was evaluated firstly. The results showed that delivery of these shRNAs rAd-1D-2, rAd-3AB-1, rAd-3AB-2could induce a significant inhibition of EMCV replication in viral RNA and protein levels in MARC-145cells. And the antiviral effect was dose-dependent and sustained for at least72h. Moreover, 96BALB/c mice were randomly assigned into six groups. And rAd-1D-2, rAd-3AB-1, rAd-3AB-2and control rAd-G1were inoculated to mice in group1to4with dose of107efu or108efu per mouse, respectively. Meanwhile, mice in group5were injected with ddH2O as negative control, and mice in group6served as mock control. At12h after infection, the mice in group1-5were challenged with200TCID50EMCV NJ08. At21dpc, all mice were killed and submitted to pathological and real-time PCR examinations for EMCV. The results showed that mice injected with those shRNAs before EMCV infection had low viral load in the brain during the period of21days post-EMCV infection. The clinical signs and pathological lesions in the mice inoculated with the shRNA were milder than those in rAd-G1negative and EMCV control groups. The survival rates of mice inoculated with108efu rAds were up to87.5%, while, in the control groups all mice died. These results indicated that shRNAs mediated by the adenovirus could provide protective efficacy against EMCV challenge in mice. It might be a potential new tool for controlling EMCV infection.
引文
[1]Gualandi GL, Cammi G, Cardeti G. A serologic survey of encephalomyocarditis virus infection in pigs in Italy. Microbiologica 1989 Apr; 12(2):129-32.
    [2]Zimmerman J, Schwartz K, Hill HT, Meetz MC, Simonson R, Carlson JH. Influence of dose and route on transmission of encephalomyocarditis virus to swine. J Vet Diagn Invest 1993 Jul;5(3):317-21.
    [3]Links IJ, Whittington RJ, Kennedy DJ, Grewal A, Sharrock AJ. An association between encephalomyocarditis virus infection and reproductive failure in pigs. Aust Vet J 1986 May;63(5):150-2.
    [4]Love RJ, Grewal AS. Reproductive failure in pigs caused by encephalomyocarditis virus. Aust Vet J 1986 Apr;63(4):128-9.
    [5]Koenen F, De Clercq K, Lefebvre J, Strobbe R. Reproductive failure in sows following experimental infection with a Belgian EMCV isolate. Vet Microbiol 1994 Mar;39(1-2):111-6.
    [6]Gelmetti D, Meroni A, Brocchi E, Koenen F, Cammarata G. Pathogenesis of encephalomyocarditis experimental infection in young piglets:a potential animal model to study viral myocarditis. Vet Res 2006 Jan-Feb;37(1):15-23.
    [7]Brewer LA, Lwamba HC, Murtaugh MP, Palmenberg AC, Brown C, Njenga MK. Porcine encephalomyocarditis virus persists in pig myocardium and infects human myocardial cells. J Virol 2001 Dec;75(23):11621-9.
    [8]Billinis C. Encephalomyocarditis virus infection in wildlife species in Greece. J Wildl Dis 2009 Apr;45(2):522-6.
    [9]Canelli E, Luppi A, Lavazza A, Lelli D, Sozzi E, Martin AM, et al. Encephalomyocarditis virus infection in an Italian zoo. Virol J 2010;7:64.
    [10]Murnane TG, Craighead JE, Mondragon H, Shelokov A. Fatal disease of swine due to encephalomyocarditis virus. Science 1960 Feb 19;131(3399):498-9.
    [11]Paschaleri-Papadopoulou E, Axiotis I, Laspidis C. Encephalomyocarditis of swine in Greece. Vet Rec 1990 Apr 14;126(15):364-5.
    [12]Koenen F, Vanderhallen H, Papadopoulos O, Billinis C, Paschaleri-Papadopoulou E, Brocchi E, et al. Comparison of the pathogenic, antigenic and molecular characteristics of two encephalomyocarditis virus (EMCV) isolates from Belgium and Greece. Res Vet Sci 1997 May-Jun;62(3):239-44.
    [13]Czechowicz J, Huaman JL, Forshey BM, Morrison AC, Castillo R, Huaman A, et al. Prevalence and risk factors for encephalomyocarditis virus infection in Peru. Vector Borne Zoonotic Dis 2011 Apr;11(4):367-74.
    [14]Ge X, Zhao D, Liu C, Wang F, Guo X, Yang H. Seroprevalence of encephalomyocarditis virus in intensive pig farms in China. Vet Rec 2010 Jan 30;166(5):145-6.
    [15]Vlemmas J, Billinis C, Psychas V, Papaioannou N, Paschaleri-Papadopoulou E, Leontides S, et al. Immunohistochemical detection of encephalomyocarditis virus (EMCV) antigen in the heart of experimentally infected piglets. J Comp Pathol 2000 May;122(4):235-40.
    [16]Morishima T, McClintock PR, Aulakh GS, Billups LC, Notkins AL. Genomic and receptor attachment differences between mengovirus and encephalomyocarditis virus. Virology 1982 Oct 30;122(2):461-5.
    [17]Yoon JW, Ko W, Bae YS, Pak CY, Amano K, Eun HM, et al. Identification of antigenic differences between the diabetogenic and non-diabetogenic variants of encephalomyocarditis virus using monoclonal antibodies. J Gen Virol 1988 May;69 (Pt 5):1085-90.
    [18]Hubbard GB, Soike KF, Butler TM, Carey KD, Davis H, Butcher WI, et al. An encephalomyocarditis virus epizootic in a baboon colony. Lab Anim Sci 1992 Jun;42(3):233-9.
    [19]Ohguchi A, Nakayama Y, Doi C, Nakayama H, Doi K. Encephalomyocarditis (EMC) virus-induced sialodacryoadenitis in mice. Exp Mol Pathol 2005 Feb;78(1):58-63.
    [20]Nelsen-Salz B, Zimmermann A, Wickert S, Arnold G, Botta A, Eggers HJ, et al. Analysis of sequence and pathogenic properties of two variants of encephalomyocarditis virus differing in a single amino acid in VP1. Virus Res 1996 Apr;41 (2):109-22.
    [21]Jeoung HY, Lee WH, Jeong W, Ko YJ, Choi CU, An DJ. Immune responses and expression of the virus-like particle antigen of the porcine encephalomyocarditis virus. Res Vet Sci 2010 Oct;89(2):295-300.
    [22]Bordunova OA, Turina OV, Nadezhdina ES, Shatskaya GS, Veiko VP, Drygin YF. Antibodies against EMC virus RNA-VPg recognize Tyr-(5'P->O)-pU and immunostain infected cells. FEBS Lett 1998 Jan 23;422(1):57-60.
    [23]Robertson ME, Seamons RA, Belsham GJ. A selection system for functional internal ribosome entry site (IRES) elements:analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 1999 Sep;5(9):1167-79.
    [24]Dupont JA, Snoussi K. Effects of magnesium ions on two EMCV IRES key activity fragments. J Biol Phys 2011 Jan;37(1):61-8.
    [25]Dupont JA, Snoussi K. Mg2+ modulation of EMCV IRES key activity fragment equilibria and r(G*C) base-pair kinetics. J Biol Phys 2009 Aug;35(3):231-43.
    [26]Osorio JE, Hubbard GB, Soike KF, Girard M, van der Werf S, Moulin JC, et al. Protection of non-murine mammals against encephalomyocarditis virus using a genetically engineered Mengo virus. Vaccine 1996 Feb; 14(2):155-61.
    [27]Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, et al. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci U S A 1987 Jan;84(1):21-5.
    [28]Dvorak CM, Hall DJ, Hill M, Riddle M, Pranter A, Dillman J, et al. Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation. Virology 2001 Nov 25;290(2):261-71.
    [29]Palmenberg AC. In vitro synthesis and assembly of picornaviral capsid intermediate structures. J Virol 1982 Dec;44(3):900-6.
    [30]Grigera P, Vasquez C, Palmenberg A. Foot-and-mouth disease virus capsid proteins VPO, VP1 and VP3 synthesized by "in vitro" translation are the major components of 14S particles. Acta Virol 1985 Dec;29(6):449-54.
    [31]Shioi T, Matsumori A, Nishio R, Ono K, Kakio T, Sasayama S. Protective role of interleukin-12 in viral myocarditis. J Mol Cell Cardiol 1997 Sep;29(9):2327-34.
    [32]Sin JI, Sung JH, Suh YS, Lee AH, Chung JH, Sung YC. Protective immunity against heterologous challenge with encephalomyocarditis virus by VP1 DNA vaccination:effect of coinjection with a granulocyte-macrophage colony stimulating factor gene. Vaccine 1997 Dec;15(17-18):1827-33.
    [33]Suh YS, Ha SJ, Lee CH, Sin JI, Sung YC. Enhancement of VP1-specific immune responses and protection against EMCV-K challenge by co-delivery of IL-12 DNA with VP1 DNA vaccine. Vaccine 2001 Feb 28;19(15-16):1891-8.
    [34]Rossmann MG. The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J Biol Chem 1989 Sep 5;264(25):14587-90.
    [35]Krishnaswamy S, Rossmann MG. Structural refinement and analysis of Mengo virus. J Mol Biol 1990 Feb 20;211(4):803-44.
    [36]Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 1985 Sep 12-18;317(6033):145-53.
    [37]Aminev AG, Amineva SP, Palmenberg AC. Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 2003 Sep;95(1-2):59-73.
    [38]Aminev AG, Amineva SP, Palmenberg AC. Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. Virus Res 2003 Sep;95(1-2):45-57.
    [39]Donnelly ML, Gani D, Flint M, Monaghan S, Ryan MD. The cleavage activities of aphthovirus and cardiovirus 2A proteins. J Gen Virol 1997 Jan;78 (Pt 1):13-21.
    [40]Carocci M, Cordonnier N, Huet H, Romey A, Relmy A, Gorna K, et al. Encephalomyocarditis virus 2A protein is required for viral pathogenesis and inhibition of apoptosis. J Virol 2011 Oct;85(20):10741-54.
    [41]Svitkin YV, Hahn H, Gingras AC, Palmenberg AC, Sonenberg N. Rapamycin and wortmannin enhance replication of a defective encephalomyocarditis virus. J Virol 1998 Jul;72(7):5811-9.
    [42]Pfister T, Jones KW, Wimmer E. A cysteine-rich motif in poliovirus protein 2C(ATPase) is involved in RNA replication and binds zinc in vitro. J Virol 2000 Jan;74(1):334-43.
    [43]Parks GD, Duke GM, Palmenberg AC. Encephalomyocarditis virus 3C protease:efficient cell-free expression from clones which link viral 5'noncoding sequences to the P3 region. J Virol 1986 Nov;60(2):376-84.
    [44]Morrow CD, Navab M, Peterson C, Hocko J, Dasgupta A. Antibody to poliovirus genome-linked protein (VPg) precipitates in vitro synthesized RNA attached to VPg-precursor polypeptide(s). Virus Res 1984;1(2):89-100.
    [45]Allaire M, James M. Deduction of the 3C proteinases' fold. Nat Struct Biol 1994 Aug;1(8):505-6.
    [46]Schlax PE, Zhang J, Lewis E, Planchart A, Lawson TG. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo. Virology 2007 Apr 10;360(2):350-63.
    [47]Hahn H, Palmenberg AC. Deletion mapping of the encephalomyocarditis virus primary cleavage site. J Virol 2001 Aug;75(15):7215-8.
    [48]Van Dyke TA, Flanegan JB. Identification of poliovirus polypeptide P63 as a soluble RNA-dependent RNA polymerase. J Virol 1980 Sep;35(3):732-40.
    [49]Hammoumi S, Cruciere C, Guy M, Boutrouille A, Messiaen S, Lecollinet S, et al. Characterization of a recombinant encephalomyocarditis virus expressing the enhanced green fluorescent protein. Arch Virol 2006 Sep; 151 (9):1783-96.
    [50]Grobler DG, Raath JP, Braack LE, Keet DF, Gerdes GH, Barnard BJ, et al. An outbreak of encephalomyocarditis-virus infection in free-ranging African elephants in the Kruger National Park. Onderstepoort J Vet Res 1995 Jun;62(2):97-108.
    [51]Zimmermann A, Nelsen-Salz B, Kruppenbacher JP, Eggers HJ. The complete nucleotide sequence and construction of an infectious cDNA clone of a highly virulent encephalomyocarditis virus. Virology 1994 Sep;203(2):366-72.
    [52]Reddacliff LA, Kirkland PD, Hartley WJ, Reece RL. Encephalomyocarditis virus infections in an Australian zoo. J Zoo Wildl Med 1997 Jun;28(2):153-7.
    [53]Blanchard JL, Soike K, Baskin GB. Encephalomyocarditis virus infection in African green and squirrel monkeys:comparison of pathologic effects. Lab Anim Sci 1987 Oct;37(5):635-9.
    [54]Kirkland PD, Gleeson AB, Hawkes RA, Naim HM, Boughton CR. Human infection with encephalomyocarditis virus in New South Wales. Med J Aust 1989 Aug 7;151(3):176,8.
    [55]Tesh RB, Wallace GD. Observations on the natural history of encephalomyocarditis virus. Am J Trop Med Hyg 1978 Jan;27(1 Pt 1):133-43.
    [56]Billinis C, Paschaleri-Papadopoulou E, Anastasiadis G, Psychas V, Vlemmas J, Leontides S, et al. A comparative study of the pathogenic properties and transmissibility of a Greek and a Belgian encephalomyocarditis virus (EMCV) for piglets. Vet Microbiol 1999 Dec;70(3-4):179-92.
    [57]Horner GW, Hunter R. Experimental infection in pigs with encephalomyocarditis virus. N Z Vet J 1979 Oct;27(10):202-3.
    [58]Christianson WT, Kim HS, Yoon IJ, Joo HS. Transplacental infection of porcine fetuses following experimental challenge inoculation with encephalomyocarditis virus. Am J Vet Res 1992 Jan;53(1):44-7.
    [59]Joo HS, Kim HS, Leman AD. Detection of antibody to encephalomyocarditis virus in mummified or stillborn pigs. Arch Virol 1988; 100(1-2):131-4.
    [60]Papaioannou N, Billinis C, Psychas V, Papadopoulos O, Vlemmas I. Pathogenesis of encephalomyocarditis virus (EMCV) infection in piglets during the viraemia phase:a histopathological, immunohistochemical and virological study. J Comp Pathol 2003 Aug-Oct;129(2-3):161-8.
    [61]Koenen F, Vanderhallen H. Comparative study of the pathogenic properties of a Belgian and a Greek encephalomyocarditis virus (EMCV) isolate for sows in gestation. Zentralbl Veterinarmed B 1997 Jul;44(5):281-6.
    [62]Foni E, Barigazzi G, Sidoli L, Marcato PS, Sarli G, Della Salda L, et al. Experimental encephalomyocarditis virus infection in pigs. Zentralbl Veterinarmed B 1993 Jul;40(5):347-52.
    [63]Psalla D, Psychas V, Spyrou V, Billinis C, Papaioannou N, Vlemmas I. Pathogenesis of experimental encephalomyocarditis:a histopathological, immunohistochemical and virological study in mice. J Comp Pathol 2006 Aug-Oct;135(2-3):142-5.
    [64]Psalla D, Psychas V, Spyrou V, Billinis C, Papaioannou N, Vlemmas I. Pathogenesis of experimental encephalomyocarditis:a histopathological, immunohistochemical and virological study in rats. J Comp Pathol 2006 Jan;134(1):30-9.
    [65]Brewer L, Brown C, Murtaugh MP, Njenga MK. Transmission of porcine encephalomyocarditis virus (EMCV) to mice by transplanting EMCV-infected pig tissues. Xenotransplantation 2003 Nov;10(6):569-76.
    [66]Maurice H, Nielen M, Brocchi E, Nowotny N, Kassimi LB, Billinis C, et al. The occurrence of encephalomyocarditis virus (EMCV) in European pigs from 1990 to 2001. Epidemiol Infect 2005 Jun;133(3):547-57.
    [67]Bakkali Kassimi L, Madec F, Guy M, Boutrouille A, Rose N, Cruciere C. Serological survey of encephalomyocarditis virus infection in pigs in France. Vet Rec 2006 Oct 14;159(16):511-4.
    [68]An DJ, Jeong W, Jeoung HY, Yoon SH, Kim HJ, Choi CU, et al. Encephalomyocarditis in Korea: serological survey in pigs and phylogenetic analysis of two historical isolates. Vet Microbiol 2009 May 28;137(1-2):37-44.
    [69]Billinis C, Paschaleri-Papadopoulou E, Psychas V, Vlemmas J, Leontides S, Koumbati M, et al. Persistence of encephalomyocarditis virus (EMCV) infection in piglets. Vet Microbiol 1999 Dec;70(3-4):171-7.
    [70]Billinis C, Leontides L, Psychas V, Spyrou V, Kostoulas P, Koenen F, et al. Effect of challenge dose and age in experimental infection of pigs with encephalomyocarditis virus. Vet Microbiol 2004 Apr 19;99(3-4):187-95.
    [71]Spyrou V, Maurice H, Billinis C, Papanastassopoulou M, Psalla D, Nielen M, et al. Transmission and pathogenicity of encephalomyocarditis virus (EMCV) among rats. Vet Res 2004 Jan-Feb;35(1):113-22.
    [72]Nakayama Y, Su W, Katayama K, Nakayama H, Doi K. The susceptibility of pregnant mice to encephalomyocarditis (EMC) virus infection on different days of gestation. Exp Anim 2004 Apr;53(2):165-9.
    [73]Maurice H, Nielen M, Stegeman JA, Vanderhallen H, Koenen F. Transmission of encephalomyocarditis virus (EMCV) among pigs experimentally quantified. Vet Microbiol 2002 Sep 24;88(4):301-14.
    [74]Duke GM, Osorio JE, Palmenberg AC. Attenuation of Mengo virus through genetic engineering of the 5' noncoding poly(C) tract. Nature 1990 Feb 1;343(6257):474-6.
    [75]Osorio JE, Martin LR, Palmenberg AC. The immunogenic and pathogenic potential of short poly(C) tract Mengo viruses. Virology 1996 Sep 15;223(2):344-50.
    [76]Zimmermann A, Botta A, Arnold G, Eggers HJ, Nelsen-Salz B. The poly(C) region affects progression of encephalomyocarditis virus infection in Langerhans' islets but not in the myocardium. J Virol 1997 May;71(5):4145-9.
    [77]LaRue R, Myers S, Brewer L, Shaw DP, Brown C, Seal BS, et al. A wild-type porcine encephalomyocarditis virus containing a short poly(C) tract is pathogenic to mice, pigs, and cynomolgus macaques. J Virol 2003 Sep;77(17):9136-46.
    [78]Bae YS, Eun HM, Yoon JW. Genomic differences between the diabetogenic and nondiabetogenic variants of encephalomyocarditis virus. Virology 1989 May;170(1):282-7.
    [79]Craighead JE, Peralta PH, Murnane TG, Shelokov A. Oral infection of swine with the encephalomyocarditis virus. J Infect Dis 1963 May-Jun;112:205-12.
    [80]Takeda M, Hirasawa K, Doi K. Lesions in the central nervous system of DBA/2 mice infected with the D variant of encephalomyocarditis virus (EMC-D). J Vet Med Sci 1991 Dec;53(6):1013-7.
    [81]Takeda M, Miura R, Shiota K, Hirasawa K, Lee MJ, Itagaki SI, et al. Distribution of viral RNA in the spinal cord of DBA/2 mice developing biphasic paralysis following infection with the D variant of encephalomyocarditis virus (EMC-D). Int J Exp Pathol 1995 Dec;76(6):441-7.
    [82]Yamanouchi-Ueno A, Nakayama Y, Doi K. Characteristics of testicular lesions in mice infected with a low dose of encephalomyocarditis (EMC) virus. Exp Mol Pathol 2004 Aug;77(1):72-6.
    [83]Hirasawa K, Han JS, Takeda M, Itagaki S, Doi K. Encephalomyocarditis (EMC) virus-induced myocarditis by different virus variants and mouse strains. J Vet Med Sci 1992 Dec;54(6):1125-9.
    [84]Hirasawa K, Jun HS, Maeda K, Kawaguchi Y, Itagaki S, Mikami T, et al. Possible role of macrophage-derived soluble mediators in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice. J Virol 1997 May;71(5):4024-31.
    [85]Hirasawa K, Ogiso Y, Takeda M, Lee MJ, Itagaki S, Doi K. Protective effects of macrophage-derived interferon against encephalomyocarditis virus-induced diabetes mellitus in mice. Lab Anim Sci 1995 Dec;45(6):652-6.
    [86]Huber SA, Babu PG, Craighead JE. Genetic influences on the immunologic pathogenesis of encephalomyocarditis (EMC) virus-induced diabetes mellitus. Diabetes 1985 Nov;34(11):1186-90.
    [87]Jun HS, Yoon JW. The role of viruses in type I diabetes:two distinct cellular and molecular pathogenic mechanisms of virus-induced diabetes in animals. Diabetologia 2001 Mar;44(3):271-85.
    [88]Kounoue E, Izumi K, Ogawa S, Kondo S, Katsuta H, Akashi T, et al. The significance of T cells, B cells, antibodies and macrophages against encephalomyocarditis (EMC)-D virus-induced diabetes in mice. Arch Virol 2008; 153(7):1223-31.
    [89]Sriram S, Topham DJ, Huang SK, Rodriguez M. Treatment of encephalomyocarditis virus-induced central nervous system demyelination with monoclonal anti-T-cell antibodies. J Virol 1989 Oct;63(10):4242-8.
    [90]Kanda T, Koike H, Arai M, Wilson JE, Carthy CM, Yang D, et al. Increased severity of viral myocarditis in mice lacking lymphocyte maturation. Int J Cardiol 1999 Jan;68(1):13-22.
    [91]Matsumori A, Tomioka N, Kawai C. Viral myocarditis:immunopathogenesis and the effect of immunosuppressive treatment in a murine model. Jpn Circ J 1989 Jan;53(1):58-60.
    [92]Freudenburg W, Buller RM, Corbett JA. Src family kinases participate in the regulation of encephalomyocarditis virus-induced cyclooxygenase-2 expression by macrophages. J Gen Virol 2010 Sep;91(Pt 9):2278-85.
    [93]Yamamoto N, Shibamori M, Ogura M, Seko Y, Kikuchi M. Effects of intranasal administration of recombinant murine interferon-gamma on murine acute myocarditis caused by encephalomyocarditis virus. Circulation 1998 Mar 17;97(10):1017-23.
    [94]Exley MA, Bigley NJ, Cheng O, Shaulov A, Tahir SM, Carter QL, et al. Innate immune response to encephalomyocarditis virus infection mediated by CD1d. Immunology 2003 Dec; 110(4):519-26.
    [95]Ueno A, Takeda M, Hirasawa K, Itagaki S, Doi K. Detection of viral RNA by electron microscopic in situ hybridization (ISH-EM) in the germinal epithelium of mice infected with encephalomyocarditis (EMC) virus. Exp Anim 1997 Jan;46(1):79-81.
    [96]Vanderhallen H, Koenen F. Identification of encephalomyocarditis virus in clinical samples by reverse transcription-PCR followed by genetic typing using sequence analysis. J Clin Microbiol 1998 Dec;36(12):3463-7.
    [97]Vanderhallen H, Koenen F. Rapid diagnosis of encephalomyocarditis virus infections in pigs using a reverse transcription-polymerase chain reaction. J Virol Methods 1997 Jun;66(1):83-9.
    [98]Jia H, Ge X, Guo X, Yang H, Yu K, Chen Z, et al. Specific small interfering RNAs-mediated inhibition of replication of porcine encephalomyocarditis virus in BHK-21 cells. Antiviral Res 2008 Aug;79(2):95-104.
    [99]Bai J, Jiang K, Zeshan B, Wang X, Li Y, Jiang P. Inhibition of encephalomyocarditis virus replication by shRNA targeting 1D and 3AB genes in vitro and in vivo. Virus Genes 2012 Apr;44(2):183-90.
    [100]Zimmerman JJ, Hill HT, Beran GW, Meetz MC. Serologic diagnosis of encephalomyocarditis virus infection in swine by the microtiter serum neutralization test. J Vet Diagn Invest 1990 Oct;2(4):347-50.
    [101]Brocchi E, Carra E, Koenen F, et al. Development of monoclonal antibody based ELISA for the detection of encephalomyocarditis virus (EMCV) and of EMCV-induced antibodies. Assemblea Annuale dei Soci ed Evento Seientifico. Salsomaggiore, Italy,13 novembre,1998. Selezione Veterinaria.2000, Supplement, pp.207-215
    [102]韩妍妍,李玉峰,顾小雪,等.猪脑心肌炎病毒重组抗原间接ELISA诊断方法的建立与应用[J].畜牧与兽医,2007,39(12):1-3
    [103]樊得英,冯若飞,李向茸,等.脑心肌炎病毒抗体双抗原夹心ELISA检测方法的建立与初步应用[J].中国生物制品学杂志,2012,25(1):105-107
    [104]Kudo H, Yoshizawa S, Hiroike T, Hirose O. A retrospective serological survey of the encephalomyocarditis virus among pigs in Chiba prefecture, Japan. J Vet Med Sci 1995 Aug;57(4):793-5.
    [105]Zimmerman JJ, Owen WJ, Hill HT, Beran GW. Seroprevalence of antibodies against encephalomyocarditis virus in swine of Iowa. J Am Vet Med Assoc 1991 Dec 15; 199(12):1737-41.
    [106]Bogaerts WJ, Durville-van der O. Immunization of mice with live attenuated encephalomyocarditis virus:local immunity and survival. Infect Immun 1973 Oct;8(4):528-33.
    [107]Jacob S, Henriksen EJ, Schiemann AL, Simon I, Clancy DE, Tritschler HJ, et al. Enhancement of glucose disposal in patients with type 2 diabetes by alpha-lipoic acid. Arzneimittelforschung 1995 Aug;45(8):872-4.
    [108]Hunter P, Swanepoel SP, Esterhuysen JJ, Raath JP, Bengis RG, van der Lugt JJ. The efficacy of an experimental oil-adjuvanted encephalomyocarditis vaccine in elephants, mice and pigs. Vaccine 1998 Jan;16(1):55-61.
    [109]Matsumori A, Crumpacker CS, Abelmann WH, Kawai C. Virus vaccine and passive immunization for the prevention of viral myocarditis in mice. Jpn Circ J 1987 Dec;51(12):1362-4.
    [110]Gmoez L, Trujillo N, Lorernzo, et al. Production, development and field evaluation of the fisrt inactivated vaccine against viral encephalomyocarditis. Rev Cubana Cienc Vet 1995,24(2):9-15
    [111]McLelland DJ, Kirkland PD, Rose KA, Dixon RJ, Smith N. Serologic responses of Barbary sheep (Ammotragus lervia), Indian antelope (Antilope cervicapra), wallaroos (Macropus robustus), and chimpanzees (Pan troglodytes) to an inactivated encephalomyocarditis virus vaccine. J Zoo Wildl Med 2005 Mar;36(1):69-73.
    [112]Prato CM, Akers TG. The immunologic response of the mouse to aerosols of an attenuated encephalomyocarditis virus strain. J Immunol 1969 Jul;103(1):79-86.
    [113]Jun HS, Yoon SW, Kang Y, Pak CY, Lee MC, Yoon JW. Cloning and expression of the VP1 major capsid protein of diabetogenic encephalomyocarditis (EMC) virus and prevention of EMC virus-induced diabetes by immunization with the recombinant VP1 protein. J Gen Virol 1995 Oct;76(Pt 10):2557-66.
    [114]Jeoung HY, Lee WH, Jeong W, Shin BH, Choi HW, Lee HS, et al. Immunogenicity and safety of virus-like particle of the porcine encephalomyocarditis virus in pig. Virol J 2011;8:170.
    [115]Backues KA, Hill M, Palmenberg AC, Miller C, Soike K.F, Aguilar R. Genetically engineered Mengo virus vaccination of multiple captive wildlife species. J Wildl Dis 1999 Apr;35(2):384-7.
    [116]Thacker EL, Thacker BJ, Young TF, Halbur PG. Effect of vaccination on the potentiation of porcine reproductive and respiratory syndrome virus (PRRSV)-induced pneumonia by Mycoplasma hyopneumoniae. Vaccine 2000 Jan 18;18(13):1244-52.
    [117]Verheije MH, Kroese MV, van der Linden IF, de Boer-Luijtze EA, van Rijn PA, Pol JM, et al. Safety and protective efficacy of porcine reproductive and respiratory syndrome recombinant virus vaccines in young pigs. Vaccine 2003 Jun 2;21(19-20):2556-63.
    [1]Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001 Dec;114(Pt 24):4557-65.
    [2]Guo S, Kemphues KJ. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995 May 19;81(4):611-20.
    [3]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 Feb 19;391(6669):806-11.
    [4]Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell 2005 Sep 23;122(6):875-86.
    [5]Sen GL, Blau HM. A brief history of RNAi:the silence of the genes. FASEB J 2006 Jul;20(9):1293-9.
    [6]Siomi H, Siomi MC. On the road to reading the RNA-interference code. Nature 2009 Jan 22;457(7228):396-404.
    [7]Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001 Jan 18;409(6818):363-6.
    [8]Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001 Jan 15;15(2):188-200.
    [9]Sledz CA, Williams BR. RNA interference in biology and disease. Blood 2005 Aug 1;106(3):787-94.
    [10]Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 2002 Nov 1;21 (21):5864-74.
    [11]Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 2002 Nov 1;21(21):5875-85.
    [12]Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005 Aug 4;436(7051):740-4.
    [13]Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001 Nov 2;107(3):309-21.
    [14]Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 2005 Nov 18;123(4):607-20.
    [15]Kang S, Hong YS. RNA interference in infectious tropical diseases. Korean J Parasitol 2008 Mar;46(1):1-15.
    [16]Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 1998 Jan 2;17(1):170-80.
    [17]Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci U S A 2000 Oct 10;97(21):11650-4.
    [18]O'Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, Enright AJ, et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev 2007 Aug 15;21(16):1999-2004.
    [19]Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009 Jan 22;457(7228):413-20.
    [20]Pederson T. RNA interference and mRNA silencing,2004:how far will they reach? Mol Biol Cell 2004 Feb;15(2):407-10.
    [21]Ramaswamy G, Slack FJ. siRNA. A guide for RNA silencing. Chem Biol 2002 Oct;9(10):1053-5.
    [22]Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009 Jan 22;457(7228):426-33.
    [23]Baulcombe D. RNA silencing. Diced defence. Nature 2001 Jan 18;409(6818):295-6.
    [24]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 May 24;411(6836):494-8.
    [25]Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004 Mar;22(3):326-30.
    [26]Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004;32(3):936-48.
    [27]Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, et al.3'UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 2006 Mar;3(3):199-204.
    [28]Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A 2002 Apr 30;99(9):6047-52.
    [29]Yang D, Buchholz F, Huang Z, Goga A, Chen CY, Brodsky FM, et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase Ⅲ mediate effective RNA interference in mammalian cells. Proc Natl Acad Sci U S A 2002 Jul 23;99(15):9942-7.
    [30]Castanotto D, Rossi JJ. Construction and transfection of PCR products expressing siRNAs or shRNAs in mammalian cells. Methods Mol Biol 2004;252:509-14.
    [31]Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 2002 Apr 16;99(8):5515-20.
    [32]Vaishnaw AK, Gollob J, Gamba-Vitalo C, Hutabarat R, Sah D, Meyers R, et al. A status report on RNAi therapeutics. Silence 2010;1(1):14.
    [33]Ashihara E, Kawata E, Maekawa T. Future prospect of RNA interference for cancer therapies. Curr Drug Targets 2010 Mar;11(3):345-60.
    [34]Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, et al. Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 2009 Jun;27(6):567-71.
    [35]Tamura T, Kanuma T, Nakazato T, Faried LS, Aoki H, Minegishi T. A new system for regulated functional gene expression for gene therapy applications:nuclear delivery of a p16INK4A-estrogen receptor carboxy terminal fusion protein only in the presence of estrogen. Int J Oncol 2010 Apr;36(4):905-12.
    [36]Christie RJ, Nishiyama N, Kataoka K. Delivering the code:polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies. Endocrinology 2010 Feb;151(2):466-73.
    [37]Ong ST, Li F, Du J, Tan YW, Wang S. Hybrid cytomegalovirus enhancer-hl promoter-based plasmid and baculovirus vectors mediate effective RNA interference. Hum Gene Ther 2005 Dec; 16(12):1404-12.
    [38]Somia N. Gene transfer by retroviral vectors:an overview. Methods Mol Biol 2004;246:463-90.
    [39]Baum C, Schambach A, Bohne J, Galla M. Retrovirus vectors:toward the plentivirus? Mol Ther 2006 Jun;13(6):1050-63.
    [40]Sliva K, Schnierle BS. Selective gene silencing by viral delivery of short hairpin RNA. Virol J 2010;7:248.
    [41]Brummelkamp TR, Bernards R, Agami R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002 Sep;2(3):243-7.
    [42]Yamagishi M, Ishida T, Miyake A, Cooper DA, Kelleher AD, Suzuki K, et al. Retroviral delivery of promoter-targeted shRNA induces long-term silencing of HIV-1 transcription. Microbes Infect 2009 Apr; 11(4):500-8.
    [43]Wijeyekoon R, Barker RA. Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta 2009 Jul;1792(7):688-702.
    [44]Mandel RJ, Burger C, Snyder RO. Viral vectors for in vivo gene transfer in Parkinson's disease: properties and clinical grade production. Exp Neurol 2008 Jan;209(1):58-71.
    [45]Butaye KM, Goderis IJ, Wouters PF, Pues JM, Delaure SL, Broekaert WF, et al. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J 2004 Aug;39(3):440-9.
    [46]Halweg C, Thompson WF, Spiker S. The rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells:a flow cytometric study. Plant Cell 2005 Feb;17(2):418-29.
    [47]Wang TY, Yang R, Qin C, Wang L, Yang XJ. Enhanced expression of transgene in CHO cells using matrix attachment region. Cell Biol Int 2008 Oct;32(10):1279-83.
    [48]Kohn DB, Sadelain M, Dunbar C, Bodine D, Kiem HP, Candotti F, et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther 2003 Aug;8(2):180-7.
    [49]Nasz I, Adam E. Recombinant adenovirus vectors for gene therapy and clinical trials. Acta Microbiol Immunol Hung 2001;48(3-4):323-48.
    [50]Ehrhardt A, Haase R, Schepers A, Deutsch MJ, Lipps HJ, Baiker A. Episomal vectors for gene therapy. Curr Gene Ther 2008 Jun;8(3):147-61.
    [51]Gou D, Narasaraju T, Chintagari NR, Jin N, Wang P, Liu L. Gene silencing in alveolar type Ⅱ cells using cell-specific promoter in vitro and in vivo. Nucleic Acids Res 2004;32(17):e134.
    [52]Yoshida T, Kondoh M, Ojima M, Mizuguchi H, Yamagishi Y, Sakamoto N, et al. Adenovirus vector-mediated assay system for hepatitis C virus replication. Nucleic Acids Res 2011 May;39(10):e64.
    [53]Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007 Jul;36(3):184-204.
    [54]Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003 Mar;33(3):401-6.
    [55]Yip PK, Wong LF, Pattinson D, Battaglia A, Grist J, Bradbury EJ, et al. Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum Mol Genet 2006 Nov 1;15(21):3107-18.
    [56]Strauss BE, Patricio JR, de Carvalho AC, Bajgelman MC. A lentiviral vector with expression controlled by E2F-1:a potential tool for the study and treatment of proliferative diseases. Biochem Biophys Res Commun 2006 Oct 6;348(4):1411-8.
    [57]Deroose CM, Reumers V, Gijsbers R, Bormans G, Debyser Z, Mortelmans L, et al. Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging. Mol Ther 2006 Sep;14(3):423-31.
    [58]Tung JS, Davis DL, Anderson JP, Walker DE, Mamo S, Jewett N, et al. Design of substrate-based inhibitors of human beta-secretase. J Med Chem 2002 Jan 17;45(2):259-62.
    [59]Flotte TR. Gene therapy progress and prospects:recombinant adeno-associated virus (rAAV) vectors. Gene Ther 2004 May;11(10):805-10.
    [60]Tu L, Xu X, Wan H, Zhou C, Deng J, Xu G, et al. Delivery of recombinant adeno-associated virus-mediated human tissue kallikrein for therapy of chronic renal failure in rats. Hum Gene Ther 2008 Apr;19(4):318-30.
    [61]Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors:potential applications for cancer gene therapy. Cancer Gene Ther 2005 Dec;12(12):913-25.
    [62]Alaee F, Sugiyama O, Virk MS, Tang Y, Wang B, Lieberman JR. In vitro evaluation of a double-stranded self-complementary adeno-associated virus type2 vector in bone marrow stromal cells for bone healing. Genet Vaccines Ther 2011;9:4.
    [63]Mueller C, Flotte TR. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 2008 Jun;15(11):858-63.
    [64]Smith GE, Summers MD, Fraser MJ. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 1983 Dec;3(12):2156-65.
    [65]Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 1995 Oct 24;92(22):10099-103.
    [66]Boyce FM, Bucher NL. Baculovirus-mediated gene transfer into mammalian cells. Proc Natl Acad Sci U S A 1996 Mar 19;93(6):2348-52.
    [67]Xu XG, Liu HJ. Baculovirus surface display of E2 envelope glycoprotein of classical swine fever virus and immunogenicity of the displayed proteins in a mouse model. Vaccine 2008 Oct 9;26(43):5455-60.
    [68]Kim CH, Yoon JS, Sohn HJ, Kim CK, Paik SY, Hong YK, et al. Direct vaccination with pseudotype baculovirus expressing murine telomerase induces anti-tumor immunity comparable with RNA-electroporated dendritic cells in a murine glioma model. Cancer Lett 2007 Jun 8;250(2):276-83.
    [69]Martinez MA, Gutierrez A, Armand-Ugon M, Blanco J, Parera M, Gomez J, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002 Dec 6;16(18):2385-90.
    [70]Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002 Jul;8(7):681-6.
    [71]Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N, et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 2010 Feb 25; 115(8):1534-44.
    [72]Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Res Ther 2005 Jan 13;2(1):1.
    [73]Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, et al. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008 Aug 22;134(4):577-86.
    [74]Lau TS, Li Y, Kameoka M, Ng TB, Wan DC. Suppression of HIV replication using RNA interference against HIV-1 integrase. FEBS Lett 2007 Jul 10;581(17):3253-9.
    [75]McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H, et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003 Jun;21(6):639-44.
    [76]Ying C, De Clercq E, Neyts J. Selective inhibition of hepatitis B virus replication by RNA interference. Biochem Biophys Res Commun 2003 Sep 19;309(2):482-4.
    [77]Qian ZK, Xuan BQ, Min TS, Xu JF, Li L, Huang WD. Cost-effective method of siRNA preparation and its application to inhibit hepatitis B virus replication in HepG2 cells. World J Gastroenterol 2005 Mar 7; 11 (9):1297-302.
    [78]Shin D, Kim SI, Kim M, Park M. Efficient inhibition of hepatitis B virus replication by small interfering RNAs targeted to the viral X gene in mice. Virus Res 2006 Aug; 119(2):146-53.
    [79]Cheng TL, Chang WW, Su IJ, Lai MD, Huang W, Lei HY, et al. Therapeutic inhibition of hepatitis B virus surface antigen expression by RNA interference. Biochem Biophys Res Commun 2005 Oct28;336(3):820-30.
    [80]Chen Z, Xu ZF, Ye JJ, Yao HP, Zheng S, Ding JY. Combination of small interfering RNAs mediates greater inhibition of human hepatitis B virus replication and antigen expression. J Zhejiang Univ Sci B 2005 Apr;6(4):236-41.
    [81]Wu KL, Zhang X, Zhang J, Yang Y, Mu YX, Liu M, et al. Inhibition of Hepatitis B virus gene expression by single and dual small interfering RNA treatment. Virus Res 2005 Sep; 112(1-2):100-7.
    [82]Petit MC, Benkirane N, Guichard G, Du AP, Marraud M, Cung MT, et al. Solution structure of a retro-inverso peptide analogue mimicking the foot-and-mouth disease virus major antigenic site. Structural basis for its antigenic cross-reactivity with the parent peptide. J Biol Chem 1999 Feb 5;274(6):3686-92.
    [83]Liu M, Chen W, Ni Z, Yan W, Fei L, Jiao Y, et al. Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome. Virology 2005 May 25;336(1):51-9.
    [84]de los Santos T, Wu Q, de Avila Botton S, Grubman MJ. Short hairpin RNA targeted to the highly conserved 2B nonstructural protein coding region inhibits replication of multiple serotypes of foot-and-mouth disease virus. Virology 2005 May 10;335(2):222-31.
    [85]Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res 2002 Apr 15;30(8):1757-66.
    [86]Kahana R, Kuznetzova L, Rogel A, Shemesh M, Hai D, Yadin H, et al. Inhibition of foot-and-mouth disease virus replication by small interfering RNA. J Gen Virol 2004 Nov;85(Pt 11):3213-7.
    [87]Chen W, Liu M, Jiao Y, Yan W, Wei X, Chen J, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol 2006 Apr;80(7):3559-66.
    [88]Joyappa DH, Sasi S, Ashok KC, Reddy GR, Suryanarayana VV. The plasmid constructs producing shRNA corresponding to the conserved 3D polymerase of Foot and Mouth Disease virus protects guinea pigs against challenge virus. Vet Res Commun 2009 Mar;33(3):263-71.
    [89]Cong W, Jin H, Jiang C, Yan W, Liu M, Chen J, et al. Attenuated Salmonella choleraesuis-mediated RNAi targeted to conserved regions against foot-and-mouth disease virus in guinea pigs and swine. Vet Res 2010 May-Jun;41(3):30.
    [90]Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 2003 Mar 4; 100(5):2718-23.
    [91]Li YC, Kong LH, Cheng BZ, Li KS. Construction of influenza virus siRNA expression vectors and their inhibitory effects on multiplication of influenza virus. Avian Dis 2005 Dec;49(4):562-73.
    [92]Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A 2004 Jun 8;101(23):8682-6.
    [93]Zhou H, Jin M, Yu Z, Xu X, Peng Y, Wu H, et al. Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice. Antiviral Res 2007 Nov;76(2):186-93.
    [94]Lu L, Ho Y, Kwang J. Suppression of porcine arterivirus replication by baculovirus-delivered shRNA targeting nucleoprotein. Biochem Biophys Res Commun 2006 Feb 24;340(4):1178-83.
    [95]Huang J, Jiang P, Li Y, Xu J, Jiang W, Wang X. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells. Vet Microbiol 2006 Jul 20;115(4):302-10.
    [96]He YX, Hua RH, Zhou YJ, Qiu HJ, Tong GZ. Interference of porcine reproductive and respiratory syndrome virus replication on MARC-145 cells using DNA-based short interfering RNAs. Antiviral Res 2007 May;74(2):83-91.
    [97]Li G, Jiang P, Li Y, Wang X, Huang J, Bai J, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine. Antiviral Res 2009 Jun;82(3):157-65.
    [98]Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002 Jul 25;418(6896):435-8.
    [99]Lum L, Yao S, Mozer B, Rovescalli A, Von Kessler D, Nirenberg M, et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 2003 Mar 28;299(5615):2039-45.
    [100]Chen W, Yan W, Du Q, Fei L, Liu M, Ni Z, et al. RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice. J Virol 2004 Jul;78(13):6900-7.
    [101]Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, et al. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 2004 Feb 27;560(1-3):141-6.
    [102]Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002 Apr 19;296(5567):550-3.
    [103]Dykxhoorn DM, Novina CD, Sharp PA. Killing the messenger:short RNAs that silence gene expression. Nat Rev Mol Cell Biol 2003 Jun;4(6):457-67.
    [104]Kitabwalla M, Ruprecht RM. RNA interference-a new weapon against HIV and beyond. N Engl J Med 2002 Oct 24;347(17):1364-7.
    [105]Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 2004 Feb 17;101(7):1892-7.
    [106]Snove O, Jr., Holen T. Many commonly used siRNAs risk off-target activity. Biochem Biophys Res Commun 2004 Jun 18;319(1):256-63.
    [107]Li WX, Ding SW. Viral suppressors of RNA silencing. Curr Opin Biotechnol 2001 Apr; 12(2):150-4.
    [108]Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, et al. Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 2003 Jun;21(6):635-7.
    [109]Marques JT, Williams BR. Activation of the mammalian immune system by siRNAs. Nat Biotechnol 2005 Nov;23(11):1399-405.
    [110]Sioud M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005 May 20;348(5):1079-90.
    [111]Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005 Feb;23(2):222-6.
    [112]Chiu YL, Rana TM. RNAi in human cells:basic structural and functional features of small interfering RNA. Mol Cell 2002 Sep;10(3):549-61.
    [1]LaRue R, Myers S, Brewer L, Shaw DP, Brown C, Seal BS, et al. A wild-type porcine encephalomyocarditis virus containing a short poly(C) tract is pathogenic to mice, pigs, and cynomolgus macaques. J Virol 2003 Sep;77(17):9136-46.
    [2]Love RJ, Grewal AS. Reproductive failure in pigs caused by encephalomyocarditis virus. Aust Vet J 1986 Apr;63(4):128-9.
    [3]Dea S, Bilodeau R, Sauvageau R, Martineau GP. Outbreaks in Quebec pig farms of respiratory and reproductive problems associated with encephalomyocarditis virus. J Vet Diagn Invest 1991 Oct;3(4):275-82.
    [4]Koenen F, De Clercq K, Lefebvre J, Strobbe R. Reproductive failure in sows following experimental infection with a Belgian EMCV isolate. Vet Microbiol 1994 Mar;39(1-2):111-6.
    [5]Billinis C, Paschaleri-Papadopoulou E, Psychas V, Vlemmas J, Leontides S, Koumbati M, et al. Persistence of encephalomyocarditis virus (EMCV) infection in piglets. Vet Microbiol 1999 Dec;70(3-4):171-7.
    [6]Gelmetti D, Meroni A, Brocchi E, Koenen F, Cammarata G. Pathogenesis of encephalomyocarditis experimental infection in young piglets:a potential animal model to study viral myocarditis. Vet Res 2006 Jan-Feb;37(1):15-23.
    [7]Morishima T, McClintock PR, Aulakh GS, Billups LC, Notkins AL. Genomic and receptor attachment differences between mengovirus and encephalomyocarditis virus. Virology 1982 Oct 30;122(2):461-5.
    [8]Hammoumi S, Cruciere C, Guy M, Boutrouille A, Messiaen S, Lecollinet S, et al. Characterization of a recombinant encephalomyocarditis virus expressing the enhanced green fluorescent protein. Arch Virol 2006 Sep;151(9):1783-96.
    [9]盖新娜,杨汉春,郭鑫,等.猪脑心肌炎病毒的分离与鉴定[J].畜牧兽医学报,2007,38(1):59-65.
    [10]Vlemmas J, Billinis C, Psychas V, Papaioannou N, Paschaleri-Papadopoulou E, Leontides S, et al. Immunohistochemical detection of encephalomyocarditis virus (EMCV) antigen in the heart of experimentally infected piglets. J Comp Pathol 2000 May;122(4):235-40.
    [11]Nelsen-Salz B, Zimmermann A, Wickert S, Arnold G, Botta A, Eggers HJ, et al. Analysis of sequence and pathogenic properties of two variants of encephalomyocarditis virus differing in a single amino acid in VP1. Virus Res 1996 Apr;41(2):109-22.
    [12]Psalla D, Psychas V, Spyrou V, Billinis C, Papaioannou N, Vlemmas I. Pathogenesis of experimental encephalomyocarditis:a histopathological, immunohistochemical and virological study in mice. J Comp Pathol 2006 Aug-Oct;135(2-3):142-5.
    [13]Koenen F, Vanderhallen H, Castryck F, Miry C. Epidemiologic, pathogenic and molecular analysis of recent encephalomyocarditis outbreaks in Belgium. Zentralbl Veterinarmed B 1999 May;46(4):217-31.
    [14]Koenen F, Vanderhallen H, Papadopoulos O, Billinis C, Paschaleri-Papadopoulou E, Brocchi E, et al. Comparison of the pathogenic, antigenic and molecular characteristics of two encephalomyocarditis virus (EMCV) isolates from Belgium and Greece. Res Vet Sci 1997 May-Jun;62(3):239-44.
    [15]Denis P, Koenen F. Molecular analysis of the capsid coding region of a virulent encephalomyocarditis virus isolate after serial cell passages and assessment of its virulence. Arch Virol 2003 May;148(5):903-12.
    [16]Deutz A, Fuchs K, Schuller W, Nowotny N, Auer H, Aspock H, et al. [Seroepidemiological studies of zoonotic infections in hunters in southeastern Austria-prevalences, risk factors, and preventive methods]. Berl Munch Tierarztl Wochenschr 2003 Jul-Aug;116(7-8):306-11.
    [1]Brewer LA, Lwamba HC, Murtaugh MP, Palmenberg AC, Brown C, Njenga MK. Porcine encephalomyocarditis virus persists in pig myocardium and infects human myocardial cells. J Virol 2001 Dec;75(23):11621-9.
    [2]Vanderhallen H, Koenen F. Identification of encephalomyocarditis virus in clinical samples by reverse transcription-PCR followed by genetic typing using sequence analysis. J Clin Microbiol 1998 Dec;36(12):3463-7.
    [3]Hammoumi S, Cruciere C, Guy M, Boutrouille A, Messiaen S, Lecollinet S, et al. Characterization of a recombinant encephalomyocarditis virus expressing the enhanced green fluorescent protein. Arch Virol 2006 Sep;151(9):1783-96.
    [4]Billinis C, Paschaleri-Papadopoulou E, Psychas V, Vlemmas J, Leontides S, Koumbati M, et al. Persistence of encephalomyocarditis virus (EMCV) infection in piglets. Vet Microbiol 1999 Dec;70(3-4):171-7.
    [5]Gelmetti D, Meroni A, Brocchi E, Koenen F, Cammarata G. Pathogenesis of encephalomyocarditis experimental infection in young piglets:a potential animal model to study viral myocarditis. Vet Res 2006 Jan-Feb;37(1):15-23.
    [6]Maurice H, Nielen M, Brocchi E, Nowotny N, Kassimi LB, Billinis C, et al. The occurrence of encephalomyocarditis virus (EMCV) in European pigs from 1990 to 2001. Epidemiol Infect 2005 Jun;133(3):547-57.
    [7]Duke GM, Hoffman MA, Palmenberg AC. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J Virol 1992 Mar;66(3):1602-9.
    [8]Murnane TG, Craighead JE, Mondragon H, Shelokov A. Fatal disease of swine due to encephalomyocarditis virus. Science 1960 Feb 19;131(3399):498-9.
    [9]盖新娜,杨汉春,郭鑫,等.猪脑心肌炎病毒的分离与鉴定[J].畜牧兽医学报,2007,38(1):59-65.
    [10]Zhang GQ, Ge XN, Guo X, Yang HC. Genomic analysis of two porcine encephalomyocarditis virus strains isolated in China. Arch Virol 2007; 152(6):1209-13.
    [11]赵婷,张家龙,盖新娜,等.猪源和鼠源脑心肌炎病毒分离株基因组的比较分析[J].畜牧兽医学报,2009,40(6):873-878.
    [12]施开创,屈素洁,陈进喜,等.猪源脑心肌炎病毒GXLC株全基因组序列测定与分析[J].病毒学报,2010,26(2):134-141.
    [13]Koenen F, Vanderhallen H, Papadopoulos O, Billinis C, Paschaleri-Papadopoulou E, Brocchi E, et al. Comparison of the pathogenic, antigenic and molecular characteristics of two encephalomyocarditis virus (EMCV) isolates from Belgium and Greece. Res Vet Sci 1997 May-Jun;62(3):239-44.
    [14]Knowles NJ, Dickinson ND, Wilsden G, Carra E, Brocchi E, De Simone F. Molecular analysis of encephalomyocarditis viruses isolated from pigs and rodents in Italy. Virus Res 1998 Sep;57(1):53-62.
    [15]Paschaleri-Papadopoulou E, Axiotis I, Laspidis C. Encephalomyocarditis of swine in Greece. Vet Rec 1990 Apr 14;126(15):364-5.
    [16]Kudo H, Yoshizawa S, Hiroike T, Hirose O. A retrospective serological survey of the encephalomyocarditis virus among pigs in Chiba prefecture, Japan. J Vet Med Sci 1995 Aug;57(4):793-5.
    [17]Denis P, Liebig HD, Nowotny N, Billinis C, Papadopoulos O, O'Hara RS, et al. Genetic variability of encephalomyocarditis virus (EMCV) isolates. Vet Microbiol 2006 Mar 10;113(1-2):1-12.
    [18]Deutz A, Fuchs K, Schuller W, Nowotny N, Auer H, Aspock H, et al. [Seroepidemiological studies of zoonotic infections in hunters in southeastern Austria--prevalences, risk factors, and preventive methods]. Berl Munch Tierarztl Wochenschr 2003 Jul-Aug;116(7-8):306-11.
    [19]Oberste MS, Gotuzzo E, Blair P, Nix WA, Ksiazek TG, Comer JA, et al. Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg Infect Dis 2009 Apr;15(4):640-6.
    [20]Racaniello V R. Picornaviridae:The Viruses and Their Replication [M]//Knipe D M, Howley P M, Griffin D E, et al. Fields Virology,4th Edition. Lippincott Williams & Wilkins Publishers,2001:685-715.
    [1]Koenen F, De Clercq K, Lefebvre J, Strobbe R. Reproductive failure in sows following experimental infection with a Belgian EMCV isolate. Vet Microbiol 1994 Mar;39(1-2):111-6.
    [2]Garkavenko O, Muzina M, Muzina Z, Powels K, Elliott RB, Croxson MC. Monitoring for potentially xenozoonotic viruses in New Zealand pigs. J Med Virol 2004 Feb;72(2):338-44.
    [3]Kume K, Sawata A, Nakase Y. Relationship between protective activity and antigen structure of Haemophilus paragallinarum serotypes 1 and 2. Am J Vet Res 1980 Jan;41(1):97-100.
    [4]盖新娜.猪脑心肌炎病毒V P1基因的原核表达、血清学调查及分离毒株的鉴定[D].北京:中国农业大学,2005.16
    [5]张家龙,盖新娜,杨汉春,等.规模化猪场脑心肌炎病毒感染的血清学调查[J].中国兽医杂志.2007,43(1):7-9.
    [6]韩研妍,李玉峰,姜平,等.猪脑心肌炎病毒重组抗原间接ELISA诊断方法的建立与应用[J],畜牧与兽医2007,39(12):1-3.
    [7]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001 Dec;25(4):402-8.
    [8]Hammoumi S, Guy M, Eloit M, Bakkali-Kassimi L. Encephalomyocarditis virus may use different pathways to initiate infection of primary human cardiomyocytes. Arch Virol 2012 Jan;157(1):43-52.
    [9]Oberste MS, Gotuzzo E, Blair P, Nix WA, Ksiazek TG, Comer JA, et al. Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg Infect Dis 2009 Apr;15(4):640-6.
    [10]Clotilde LM, Bernard Ct, Sequera DE, Karmali A, Fusellier A, Carter JM. Dynex:Multiplex ELISA Technology. J Lab Autom 2012 Feb 14.
    [11]Ueno A, Takeda M, Hirasawa K, Itagaki S, Doi K. Detection of viral RNA by electron microscopic in situ hybridization (ISH-EM) in the germinal epithelium of mice infected with encephalomyocarditis (EMC) virus. Exp Anim 1997 Jan;46(1):79-81.
    [12]Kassimi LB, Gonzague M, Boutrouille A, Cruciere C. Detection of encephalomyocarditis virus in clinical samples by immunomagnetic separation and one-step RT-PCR. J Virol Methods 2002 Mar;101(1-2):197-206.
    [13]Maurice H, Nielen M, Stegeman JA, Vanderhallen H, Koenen F. Transmission of encephalomyocarditis virus (EMCV) among pigs experimentally quantified. Vet Microbiol 2002 Sep 24;88(4):301-14.
    [14]Psalla D, Psychas V, Spyrou V, Billinis C, Papaioannou N, Vlemmas I. Pathogenesis of experimental encephalomyocarditis:a histopathological, immunohistochemical and virological study in mice. J Comp Pathol 2006 Aug-Oct; 135(2-3):142-5.
    [15]白娟’.李广明1.宋勤叶2.李玉峰’.王先炜1.张国龙1.姜平.猪脑心肌炎病毒和猪繁殖与呼吸综合征病毒二重RT-PCR检测方法的建立[J].畜牧与兽医2009,41(6):1-4
    [16]Jia H, Ge X, Guo X, Yang H, Yu K, Chen Z, et al. Specific small interfering RNAs-mediated inhibition of replication of porcine encephalomyocarditis virus in BHK-21 cells. Antiviral Res 2008 Aug;79(2):95-104.
    [1]Vlemmas J, Billinis C, Psychas V, Papaioannou N, Paschaleri-Papadopoulou E, Leontides S, et al. Immunohistochemical detection of encephalomyocarditis virus (EMCV) antigen in the heart of experimentally infected piglets. J Comp Pathol 2000 May;122(4):235-40.
    [2]Yoon JW, Ko W, Bae YS, Pak CY, Amano K, Eun HM, et al. Identification of antigenic differences between the diabetogenic and non-diabetogenic variants of encephalomyocarditis virus using monoclonal antibodies. J Gen Virol 1988 May;69 (Pt 5):1085-90.
    [3]Morishima T, McClintock PR, Aulakh GS, Billups LC, Notkins AL. Genomic and receptor attachment differences between mengovirus and encephalomyocarditis virus. Virology 1982 Oct 30; 122(2):461-5.
    [4]Gelmetti D, Meroni A, Brocchi E, Koenen F, Cammarata G. Pathogenesis of encephalomyocarditis experimental infection in young piglets:a potential animal model to study viral myocarditis. Vet Res 2006 Jan-Feb;37(1):15-23.
    [5]LaRue R, Myers S, Brewer L, Shaw DP, Brown C, Seal BS, et al. A wild-type porcine encephalomyocarditis virus containing a short poly(C) tract is pathogenic to mice, pigs, and cynomolgus macaques. J Virol 2003 Sep;77(17):9136-46.
    [6]Juncker-Voss M, Prosl H, Lussy H, Enzenberg U, Auer H, Lassnig H, et al. [Screening for antibodies against zoonotic agents among employees of the Zoological Garden of Vienna, Schonbrunn, Austria]. Berl Munch Tierarztl Wochenschr 2004 Sep-Oct;117(9-10):404-9.
    [7]Psalla D, Psychas V, Spyrou V, Billinis C, Papaioannou N, Vlemmas I. Pathogenesis of experimental encephalomyocarditis:a histopathological, immunohistochemical and virological study in mice. J Comp Pathol 2006 Aug-Oct; 135(2-3):142-5.
    [8]Psalla D, Psychas V, Spyrou V, Billinis C, Papaioannou N, Vlemmas 1. Pathogenesis of experimental encephalomyocarditis:a histopathological, immunohistochemical and virological study in rats. J Comp Pathol 2006 Jan;134(1):30-9.
    [9]Zhang JL, Ge XN, Ma L, Chen YH, Zha ZL, Guo X, et al. Serological survey of EMCV infection in pigs on large-scale pig farms in China 2005-2006. Chin J Vet Med 2007;43:7-9.
    [10]Bogaerts WJ, Durville-van der O. Immunization of mice with live attenuated encephalomyocarditis virus: local immunity and survival. Infect Immun 1973 Oct;8(4):528-33.
    [11]Sin JI, Sung JH, Suh YS, Lee AH, Chung JH, Sung YC. Protective immunity against heterologous challenge with encephalomyocarditis virus by VP1 DNA vaccination:effect of coinjection with a granulocyte-macrophage colony stimulating factor gene. Vaccine 1997 Dec;15(17-18):1827-33.
    [12]Thacker EL, Thacker BJ, Young TF, Halbur PG. Effect of vaccination on the potentiation of porcine reproductive and respiratory syndrome virus (PRRSV)-induced pneumonia by Mycoplasma hyopneumoniae. Vaccine 2000 Jan 18;18(13):1244-52.
    [13]Verheije MH, Kroese MV, van der Linden IF, de Boer-Luijtze EA, van Rijn PA, Pol JM, et al. Safety and protective efficacy of porcine reproductive and respiratory syndrome recombinant virus vaccines in young pigs. Vaccine 2003 Jun 2;21(19-20):2556-63.
    [14]Matzke MA, Primig M, Trnovsky J, Matzke AJ. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 1989 Mar;8(3):643-9.
    [15]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998 Feb 19;391(6669):806-11.
    [16]Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001 May 24;411(6836):494-8.
    [17]Bitko V, Barik S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 2001; 1:34.
    [18]Heinrich A, Riethmuller D, Gloger M, Schusser GF, Giese M, Ulbert S. RNA interference protects horse cells in vitro from infection with Equine Arteritis Virus. Antiviral Res 2009 Mar;81(3):209-16.
    [19]Hinton TM, Doran TJ. Inhibition of chicken anaemia virus replication using multiple short-hairpin RNAs. Antiviral Res 2008 Nov;80(2):143-9.
    [20]Kim SM, Lee KN, Park JY, Ko YJ, Joo YS, Kim HS, et al. Therapeutic application of RNA interference against foot-and-mouth disease virus in vitro and in vivo. Antiviral Res 2008 Nov;80(2):178-84.
    [21]Snyder LL, Esser JM, Pachuk CJ, Steel LF. Vector design for liver-specific expression of multiple interfering RNAs that target hepatitis B virus transcripts. Antiviral Res 2008 Oct;80(1):36-44.
    [22]Huang J, Jiang P, Li Y, Xu J, Jiang W, Wang X. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells. Vet Microbiol 2006 Jul 20;115(4):302-10.
    [23]Li G, Huang J, Jiang P, Li Y, Jiang W, Wang X. Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region. Virus Genes 2007 Dec;35(3):673-9.
    [24]Gao Y, Liu W, Gao H, Qi X, Lin H, Wang X, et al. Effective inhibition of infectious bursal disease virus replication in vitro by DNA vector-based RNA interference. Antiviral Res 2008 Aug;79(2):87-94.
    [25]Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A 2004 Jun 8;101(23):8682-6.
    [26]Qin XF, An DS, Chen IS, Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 2003 Jan 7;100(1):183-8.
    [27]Palmenberg AC, Kirby EM, Janda MR, Drake NL, Duke GM, Potratz KF, et al. The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Res 1984 Mar 26;12(6):2969-85.
    [28]Suh YS, Ha SJ, Lee CH, Sin JI, Sung YC. Enhancement of VP1-specific immune responses and protection against EMCV-K challenge by co-delivery of IL-12 DNA with VP1 DNA vaccine. Vaccine 2001 Feb 28;19(15-16):1891-8.
    [29]Hunter P, Swanepoel SP, Esterhuysen JJ, Raath JP, Bengis RG, van der Lugt JJ. The efficacy of an experimental oil-adjuvanted encephalomyocarditis vaccine in elephants, mice and pigs. Vaccine 1998 Jan;16(1):55-61.
    [30]Jia H, Ge X, Guo X, Yang H, Yu K, Chen Z, et al. Specific small interfering RNAs-mediated inhibition of replication of porcine encephalomyocarditis virus in BHK-21 cells. Antiviral Res 2008 Aug;79(2):95-104.
    [31]Koenen F, Vanderhallen H, Papadopoulos O, Billinis C, Paschaleri-Papadopoulou E, Brocchi E, et al. Comparison of the pathogenic, antigenic and molecular characteristics of two encephalomyocarditis virus (EMCV) isolates from Belgium and Greece. Res Vet Sci 1997 May-Jun;62(3):239-44.
    [32]Aminev AG, Amineva SP, Palmenberg AC. Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. Virus Res 2003 Sep;95(1-2):45-57.
    [33]Parks GD, Duke GM, Palmenberg AC. Encephalomyocarditis virus 3C protease:efficient cell-free expression from clones which link viral 5'noncoding sequences to the P3 region. J Virol 1986 Nov;60(2):376-84.
    [34]Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem Biophys Res Commun 2004 May 21;318(1):303-10.
    [35]Nykanen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 2001 Nov 2;107(3):309-21.
    [36]Gainer JH. Encephalomyocarditis virus infections in Florida,1960-1966. J Am Vet Med Assoc 1967 Aug 15;151(4):421-5.
    [37]Littlejohns IR, Acland HM. Encephalomyocarditis virus infection of pigs.2. Experimental disease. Aust Vet J 1975 Sep;51(9):416-22.
    [1]Hammoumi S, Guy M, Eloit M, Bakkali-Kassimi L. Encephalomyocarditis virus may use different pathways to initiate infection of primary human cardiomyocytes. Arch Virol 2012 Jan;157(1):43-52.
    [2]Brewer LA, Lwamba HC, Murtaugh MP, Palmenberg AC, Brown C, Njenga MK. Porcine encephalomyocarditis virus persists in pig myocardium and infects human myocardial cells. J Virol 2001 Dec;75(23):11621-9.
    [3]Canelli E, Luppi A, Lavazza A, Lelli D, Sozzi E, Martin AM, et al. Encephalomyocarditis virus infection in an Italian zoo. Virol J 2010;7:64.
    [4]Billinis C. Encephalomyocarditis virus infection in wildlife species in Greece. J Mildl Dis 2009 Apr;45(2):522-6.
    [5]Billinis C, Paschaleri-Papadopoulou E, Anastasiadis G, Psychas V, Vlemmas J, Leontides S, et al. A comparative study of the pathogenic properties and transmissibility of a Greek and a Belgian encephalomyocarditis virus (EMCV) for piglets. Vet Microbiol 1999 Dec;70(3-4):179-92.
    [6]Gelmetti D, Meroni A, Brocchi E, Koenen F, Cammarata G Pathogenesis of encephalomyocarditis experimental infection in young piglets:a potential animal model to study viral myocarditis. Vet Res 2006 Jan-Feb;37(1):15-23.
    [7]Hunter P, Swanepoel SP, Esterhuysen JJ, Raath JP, Bengis RG, van der Lugt JJ. The efficacy of an experimental oil-adjuvanted encephalomyocarditis vaccine in elephants, mice and pigs. Vaccine 1998 Jan;16(1):55-61.
    [8]Osorio JE, Hubbard GB, Soike KF, Girard M, van der Werf S, Moulin JC, et al. Protection of non-murine mammals against encephalomyocarditis virus using a genetically engineered Mengo virus. Vaccine 1996 Feb; 14(2):155-61.
    [9]Sin JI, Sung JH, Suh YS, Lee AH, Chung JH, Sung YC. Protective immunity against heterologous challenge with encephalomyocarditis virus by VP1 DNA vaccination:effect of coinjection with a granulocyte-macrophage colony stimulating factor gene. Vaccine 1997 Dec; 15(17-18):1827-33.
    [10]Suh YS, Ha SJ, Lee CH, Sin JI, Sung YC. Enhancement of VP1-specific immune responses and protection against EMCV-K challenge by co-delivery of IL-12 DNA with VP1 DNA vaccine. Vaccine 2001 Feb 28;19(15-16):1891-8.
    [11]Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH. Delivery of RNA interference. Cell Cycle 2006 Sep;5(18):2103-9.
    [12]Li G, Jiang P, Li Y, Wang X, Huang J, Bai J, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine. Antiviral Res 2009 Jun;82(3):157-65.
    [13]Li J, Jiang P, Li Y, Wang X, Cao J, Zeshan B. HSP70 fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus enhanced the immune responses and protective efficacy against virulent PRRSV challenge in pigs. Vaccine 2009 Feb 5;27(6):825-32.
    [14]Tamura T, Kanuma T, Nakazato T, Faried LS, Aoki H, Minegishi T. A new system for regulated functional gene expression for gene therapy applications:nuclear delivery of a p16INK4A-estrogen receptor carboxy terminal fusion protein only in the presence of estrogen. Int J Oncol 2010 Apr;36(4):905-12.
    [15]Bai J, Jiang K, Zeshan B, Wang X, Li Y, Jiang P. Inhibition of encephalomyocarditis virus replication by shRNA targeting 1D and 3AB genes in vitro and in vivo. Virus Genes 2012 Apr;44(2):183-90.
    [16]Frahm N, DeCamp AC, Friedrich DP, Carter DK, Defawe OD, Kublin JG, et al. Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine. J Clin Invest 2012 Jan 3;122(1):359-67.
    [17]Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci U S A 2005 Jan 18;102(3):773-8.
    [18]Feng Z, Jiang P, Wang X, Li Y, Jiang W. Adenovirus-mediated shRNA interference against porcine circovirus type 2 replication both in vitro and in vivo. Antiviral Res 2008 Mar;77(3):186-94.
    [19]Chen W, Liu M, Jiao Y, Yan W, Wei X, Chen J, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol 2006 Apr;80(7):3559-66.
    [1]Vlemmas J, Billinis C, Psychas V, Papaioannou N, Paschaleri-Papadopoulou E, Leontides S, et al. Immunohistochemical detection of encephalomyocarditis virus (EMCV) antigen in the heart of experimentally infected piglets. J Comp Pathol 2000 May;122(4):235-40.
    [2]Palmenberg AC, Kirby EM, Janda MR, Drake NL, Duke GM, Potratz KF, et al. The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Res 1984 Mar 26;12(6):2969-85.
    [3]Gelmetti D, Meroni A, Brocchi E, Koenen F, Cammarata G. Pathogenesis of encephalomyocarditis experimental infection in young piglets:a potential animal model to study viral myocarditis. Vet Res 2006 Jan-Feb;37(1):15-23.
    [4]Juncker-Voss M, Prosl H, Lussy H, Enzenberg U, Auer H, Lassnig H, et al. [Screening for antibodies against zoonotic agents among employees of the Zoological Garden of Vienna, Schonbrunn, Austria]. Berl Munch Tierarztl Wochenschr 2004 Sep-Oct;117(9-10):404-9.
    [5]Koenen F. Encephalomyocarditis virus. In:Straw,B.E., Zimmerman, J.J., Allaire, S.D., Taylor, D.J. (Eds.), Diseases of Swine. Blackwell Publishing Professional, Iowa 2006:pp.331-6.
    [6]LaRue R, Myers S, Brewer L, Shaw DP, Brown C, Seal BS, et al. A wild-type porcine encephalomyocarditis virus containing a short poly(C) tract is pathogenic to mice, pigs, and cynomolgus macaques. J Virol 2003 Sep;77(17):9136-46.
    [7]Billinis C, Paschaleri-Papadopoulou E, Psychas V, Vlemmas J, Leontides S, Koumbati M, et al. Persistence of encephalomyocarditis virus (EMCV) infection in piglets. Vet Microbiol 1999 Dec;70(3-4):171-7.
    [8]Dea S, Bilodeau R, Sauvageau R, Martineau GP. Outbreaks in Quebec pig farms of respiratory and reproductive problems associated with encephalomyocarditis virus. J Vet Diagn Invest 1991 Oct;3(4):275-82.
    [9]Koenen F, De Clercq K, Lefebvre J, Strobbe R. Reproductive failure in sows following experimental infection with a Belgian EMCV isolate. Vet Microbiol 1994 Mar;39(1-2):111-6.
    [10]Zhang JL, Ge XN, Ma L, Chen YH, Zha ZL, Guo X, et al. Serological survey of EMCV infection in pigs on large-scale pig farms in China 2005-2006. Chin J Vet Med 2007;43:7-9.
    [11]Brewer L, Brown C, Murtaugh MP, Njenga MK. Transmission of porcine encephalomyocarditis virus (EMCV) to mice by transplanting EMCV-infected pig tissues. Xenotransplantation 2003 Nov;10(6):569-76.
    [12]Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature 2002 Jul 25;418(6896):435-8.
    [13]Tan FL, Yin JQ. RNAi, a new therapeutic strategy against viral infection. Cell Res 2004 Dec;14(6):460-6.
    [14]Uprichard SL, Boyd B, Althage A, Chisari FV. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci U S A 2005 Jan 18;102(3):773-8.
    [15]Chen W, Liu M, Jiao Y, Yan W, Wei X, Chen J, et al. Adenovirus-mediated RNA interference against foot-and-mouth disease virus infection both in vitro and in vivo. J Virol 2006 Apr;80(7):3559-66.
    [16]Tompkins SM, Lo CY, Tumpey TM, Epstein SL. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci U S A 2004 Jun 8;101(23):8682-6.
    [17]Li G, Huang J, Jiang P, Li Y, Jiang W, Wang X. Suppression of porcine reproductive and respiratory syndrome virus replication in MARC-145 cells by shRNA targeting ORF1 region. Virus Genes 2007 Dec;35(3):673-9.
    [18]Li G, Jiang P, Li Y, Wang X, Huang J, Bai J, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by adenovirus-mediated RNA interference both in porcine alveolar macrophages and swine. Antiviral Res 2009 Jun;82(3):157-65.
    [19]Feng Z, Jiang P, Wang X, Li Y, Jiang W. Adenovirus-mediated shRNA interference against porcine circovirus type 2 replication both in vitro and in vivo. Antiviral Res 2008 Mar;77(3):186-94.
    [20]Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2001 Feb;2(2):110-9.
    [21]Bai J, Jiang K, Zeshan B, Wang X, Li Y, Jiang P. Inhibition of encephalomyocarditis virus replication by shRNA targeting 1D and 3AB genes in vitro and in vivo. Virus Genes 2012 Apr;44(2):183-90.
    [22]Reed LJ, and H.A.Muench. A simple method of estimating fifty percent end points. AmJHyg 1938;27:493-7.
    [23]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976 May 7;72:248-54.
    [24]Haasnoot PC, Cupac D, Berkhout B. Inhibition of virus replication by RNA interference. J Biomed Sci 2003;10(6 Pt 1):607-16.
    [25]Randall G, Grakoui A, Rice CM. Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Natl Acad Sci U S A 2003 Jan 7;100(1):235-40.
    [26]Sui G, Soohoo C, Affar el B, Gay F, Shi Y, Forrester WC. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 2002 Apr 16;99(8):5515-20.
    [27]Chen M, Payne WS, Hunt H, Zhang H, Holmen SL, Dodgson JB. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference. Virology 2008 Aug 1;377(2):265-72.
    [28]Moore MD, McGarvey MJ, Russell RA, Cullen BR, McClure MO. Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors. J Gene Med 2005 Jul;7(7):918-25.
    [29]Jia H, Ge X, Guo X, Yang H, Yu K, Chen Z, et al. Specific small interfering RNAs-mediated inhibition of replication of porcine encephalomyocarditis virus in BHK-21 cells. Antiviral Res 2008 Aug;79(2):95-104.
    [30]Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 2006 Jun;7(6):590-7.
    [31]Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A 2004 Feb 3;101(5):1350-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700