A亚群禽白血病病毒单克隆抗体的制备和不同亚群禽白血病病毒共感染相互影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽白血病(Avian Leukosis)是由禽白血病病毒(Avian Leukosis Virus, ALV)和禽肉瘤病毒(Avian Sarcoma Virus,ASV)群中的病毒感染引起的多种肿瘤性疾病的统称。过去十几年,ALV-J亚群病毒对肉用型鸡、蛋用型鸡和我国地方品系鸡的感染已经给养殖业造成了巨大经济损失。由于中国在过去几十年中从未对ALV采取过有效的净化措施,中国鸡群中存在其它亚型ALV感染的可能性很大,近几年病毒分离鉴定也表明,血管瘤的发生不仅由J亚群禽白血病病毒引起,同时也有由A亚群禽白血病病毒(ALV-A)和B亚群禽白血病病毒(ALV-B)感染引起。为了更好、更快、更准确地进行病毒的分离、鉴定以及临床检测,探讨ALV-A和ALV-J共感染SPF鸡后抗体反应和带毒排毒的规律,本研究克隆与表达ALV-A-SDAU09C1毒株gp85蛋白,用纯化的gp85蛋白研制抗ALV-A单克隆抗体(Monoclonal antibody;McAb),进而研究了其与ALV-J共感染SPF鸡病毒血症和抗体反应相互影响。
     1. ALV-A-SDAU09C1 gp85基因的克隆与表达
     以感染本研究室分离保存的ALV-A-SDAU09C1(GenBank:HM452339)株的细胞基因组DNA为模板,采用PCR扩增技术,扩增出1017bp大小的env-gp85基因片段,并将其克隆到原核表达性载体pET-32a (+)中,构建成重组质粒pET-SDAU09C1-gp85。经测序鉴定结果显示,成功构建了重组质粒pET-SDAU09C1-gp85。将重组质粒转化到大肠杆菌BL21中培养并用IPTG诱导后,其菌体的超声波裂解物用SDS-PAGE电泳分离蛋白质,在经考马斯亮蓝染色的SDS-PAGE凝胶中与非重组载体pET-32a (+)的转化菌裂解物相比,重组质粒pET-SDAU09C1-gp85出现了1条相对分子量为53kD左右的条带,结果显示,env基因在大肠杆菌中进行了高效表达。Western-blot分析结果能从重组质粒pET-SDAU09C1-gp85的转化菌中特异性地识别出该53kD的蛋白条带,而与天然非重组载体pET-32a(+)的转化菌不发生反应。结果证明,能被gp85蛋白高免阳性血清识别的相对分子质量为53kD的蛋白质,确实为pET-SDAU09C1-gp85蛋白。
     2. A亚群禽白血病病毒单克隆抗体的研制及其部分生物学特性的研究
     2.1间接ELISA检测方法的建立
     用纯化的gp85蛋白为包被抗原,建立了检测抗ALV-A抗体的间接ELISA。经对ELISA的最佳工作条件测定结果表明,抗原最佳包被浓度为2μg/ml、血清的最佳稀释度为1:1000,二抗的最佳稀释度为1:2000,最佳包被液为PBS Buffer(pH7.4),最佳显色时间为15min。经重复性试验、特异性试验结果显示,建立ELISA方法有良好的可重复性;与鸡NDV、REV、IBDV、MDV等病毒阳性抗体均无交叉反应。
     2.2抗ALV-A单克隆抗体的制备及纯化表达的env-gp85蛋白经纯化复性后免疫8-10周龄Balb/c小白鼠,经2-3次免疫后,取小白鼠血清进行检测,当抗体效价超过105后,取小白鼠脾脏细胞与骨髓瘤细胞Sp2/0在PEG1450作用下进行细胞融合,经建立间接ELISA法进行检测筛选阳性杂交瘤细胞株,经有限稀释法亚克隆2-3次,共获得了3株(A6D1株,A5C1株,A4C8株)分泌抗ALV-A独特型抗体的杂交瘤细胞株,并进行了单抗腹水的大量制备,经过饱和硫酸铵沉淀,经过蛋G亲和纯化后得到的单克隆抗体浓度别为A6D1,1.575mg/ml;A5C1,0.903 mg/ml;A4C8,0.758 mg/ml。
     2.3抗ALV-A单克隆抗体特性研究
     2.3.1单抗的效价测定
     用已经建立的ELISA方法对三株单抗的效价测定结果分别为:A6D1 210; A5C1 28;A4C8 27。
     2.3.2抗体分泌稳定性
     将获得的3株单克隆抗体细胞株冻存后,隔3、6、9、12个月后,复苏培养,至少传代3次以上,用建立的间接ELISA方法进行检测。结果表明,获得的单克隆抗体细胞株经冻存复苏后,抗体分泌能力没有任何下降,其具有较高的分泌抗体水平的能力。
     2.3.3单抗的Western blotting分析
     取10ul纯化的表达蛋白,用等量的2×上样缓冲液处理后,进行SDS-PAGE,然后转到NC膜上,经封闭,单抗200倍稀释液孵育后,加入酶标羊抗鼠IgG孵育后,加底物显色,于NC膜上出现一条清晰的条带,该带与标准分子量比较,其大小约为53kD,说明这株单抗与所表达的gp85蛋白发生特异性结合。
     2.3.4间接免疫荧光分析
     用IFA对试验所获得的A6D1、A5C1、A4C8株单克隆抗体的特异性进行了鉴定。结果证明,单抗A5C1、A4C8是特异性抗ALV-A的单克隆抗体,它们均与试验的所有ALV-A分离株发生反应,而不与试验的ALV-B和ALV-J亚群的毒株发生反应。值得注意的是单抗A6D1,它不仅能与所试验的ALV-A毒株发生反应,而且还能与所试验的ALV-B亚群的毒株发生反应,但不与ALV-J亚群的毒株发生反应,这说明单抗A5C1、A4C8是特异性抗ALV-A的单克隆抗体,而A6D1是特异性抗ALV-AB的单克隆抗体,3株单克隆抗体均能与病毒正常分泌的天然蛋白发生特异反应。
     3. ALV-A与ALV-J共感染对SPF鸡病毒血症及抗体反应的相互影响
     1日龄SPF鸡200只随机分成4组,平均每组50只。2日龄时,4个组每只鸡分别腹腔接种:第一组接种0.2ml ALV-A和ALV-J感染细胞培养上清混合液(比例1:1);第二组接种ALV-A0.2ml感染细胞培养上清;第三组接种ALV-J0.2ml感染细胞培养上清;第四组接种灭菌Hank’s液0.2ml作为阴性对照;常规程序进行免疫;攻毒后在1周龄、2周龄、3周龄、5周龄、7周龄、8周龄时从各组中分别随机取出6只鸡,编号。其中6只无菌采集加抗凝剂的新鲜血液用于病毒血症检测,其余鸡常规采血,分离血清供抗体检测;病毒血症的检测采用IFA法,同时用ELISA检测鸡群的抗体水平。
     实验结果表明:
     3.1病毒血症检测结果
     单独感染ALV-A组的病毒血症水平从2周龄开始检测到,随后一直持续增高,从从第3周到第7周增长较缓慢,到第7周龄时的病毒血症水平达到最高为3.72 PFU/ml,第8周龄病毒血症水平有所下降为3.01 PFU/ml。单独感染ALV-J组的病毒血症水平从1周龄开始检测到,随后一直呈升高趋势,第8周龄时为3.71 PFU/ml;
     ALV-A+ALV-J共感染组与单独感染ALV-A组相比,也在7周龄时达到最高,为3.74 PFU/ml;8周龄也有所下降,在7周龄以前病毒血症水平始终高于ALV-A组,但两组的病毒血症水平变化趋势大体相同,在整个实验过程中病毒血症水平总体差异不显著(p>0.05);
     2周龄时ALV-A +ALV-J共感染组的病毒血症还未出现,与单独感染ALV-J组相比差异显著(P<0.05),随后病毒血症水平逐渐升高,直到7周龄时达到最高,8周龄时已有所降低;而单独感染ALV-J组在整个检测过程中病毒血症水平一直在升高,但
     3周龄、5周龄、7周龄及8周龄的病毒血症水平与ALV-A +ALV-J共感染组相比差异不显著(p>0.05)。
     3.2共感染对特异性抗体反应的影响
     3.2.1 ALV-J共感染时对ALV-A特异性抗体的影响无论是ALV-A+ALV-J共感染组,还是单独感染ALV-A组在2周龄时血清中ALV-A特异性抗体的阳性率均为0;在3周龄时,ALV-A+ALV-J共感染组和单独感染ALV-A组中均只有部分鸡产生ALV-A特异性抗体,不过ALV-A+ALV-J共感染组ALV-A特异性抗体阳性率明显低于单独感染ALV-A组。而在5周龄、7周龄时,两组鸡中ALV-A特异性抗体阳性率基本相同,表明在本实验中ALV-J共感染对ALV-A感染诱发的抗体反应的影响不明显。
     3.2.2 ALV-A共感染时对ALV-J特异性抗体的影响
     在2周龄、3周龄时,ALV-A+ALV-J共感染组和单独感染ALV-J组中均没有出现ALV-J特异性抗体。在5周龄、7周龄时,ALV-A+ALV-J共感染组仍无阳性样品,单独感染ALV-J组的阳性率也仅为20.00%和13.33%。可见ALV-J特异性抗体较ALV-A特异性抗体产生得晚,在2日龄感染ALV-J后鸡群的耐受性感染程度比ALV-A更严重。特别是ALV-A+ALV-J共感染组,在8周龄之前一直未出现阳性样品,显然,ALV-A共感染显著减弱了鸡体对ALV-J感染诱导的特异性抗体反应。
     3.2.3病毒血症及相应抗体反应的相关性
     将被检测的不同鸡的病毒血症和抗体反应表现一一对应,ALV-A+ALV-J共感染组及单独感染ALV-A组在2周龄时没有出现病毒血症,抗体反应均为阴性;3周龄时ALV-A+ALV-J共感组1/6( 6.25%)和单独感染ALV-A组2/6(33.33%)都出现了部分鸡病毒血症和抗体反应均为阳性, ALV-A+ALV-J共感组5周时有4/6(50%)都出现了部分鸡病毒血症和抗体反应均为阳性,直到7周龄这种现象还持续存在;单独感染ALV-A组5周时有4/6(66.67%)都出现了部分鸡病毒血症和抗体反应均为阳性,到7周龄有所下降3/6(50%);
     在ALV-A+ALV-J共感染组和单独感染ALV-J组的被检鸡只中病毒血症和抗体反应均为阳性的数量明显较少,仅见于ALV-J组中(5周龄为1/6(6.25%)和7周龄为2/6(33.33% )),可见ALV-J感染后鸡体血液当中ALV-J和相应抗体共同存在的几率很小,而ALV-A的共感染更降低了这种几率。
Avian leukosis is a variety of tumor diseases caused by avian leukosis virus and avian sarcoma virus. In last ten years, leukemia / hemangioma cases increased significantly in layers breeder industry again. avian leukemia become a serious disease,which does severely harm to layer industry in China. Isolation and identification of virus showed that the vascular tumors was causednot only by the subgroup J avian leukemia virusbut also by the subgroup A and B. In order to greatly enhance the diagnosis and treatment of clinical diseases, the monoclonal antibodies (Mabs) to ALV–A were prepared and characterization of monoclonal antibodies to subgroup A avian leukosis virus were tudied in this study. To understand the dynamics of viremia, virus shedding and antibody responses in chickens inoculated with ALV-A and ALV-J and provide essential epidemiological data for prevention and eradicationo of ALV-A and ALV-J infection.
     1. Cloning and expression of gp85 gene of ALV-A-SDAU09C1
     The env-gp85 gene of ALV-A-SDAU09C1(GenBank:HM452339)was amplified by PCR and then subcloned into the prokaryotic expressing vector pET32a and recombinant vector pET32a-SDAU09C1-gp85 was further transformed into Escherichia coli strain BL21 for expression under the induction of IPTG.. After IPTG induction, there was a new protein band about Mr 53kD on SDS-PAGE. Western blot analysis also showed that a protein band with a molecular weight of about 53 kD was detected. Then the protein were purified and stored.
     2. Development and characterization of monoclonal antibodies to subgroup A avian leukosis virus
     2.1 Establishment of the Indirect ELISA
     An alternative indirect enzyme- linked immunosorbent assay (ELISA) for detection of ALV antibody was developed using a truncated envelop glycoprotein(env)-gp85 protein of ALV produced in Escherichia coli.The results show that the appropriate testing condition is as follows: 2μg/ml antigen used to coat ELISA plate with PBS Buffe(rpH7.4), 1:1000 of sera as detecting samples, The working concentration of HRP-labelled sheep antichicken IgG was 1:2000 and the reaction time was 10 min. Cross-reactivity assay showed that this assay was not cross-react with REV、NDV、IBDVet al, this demonstrated it has good specifity. It showed that the ELISA had good repeativity, high specifity and high sensitivity.
     2.2 Development of monoclonal antibodies to subgroup A avian leukosis virus
     Six adult female Balb/c mice, 8–10 weeks old, were subcutaneously injected with purified recombinant myocilinemulsified in a 1:1 ratio with complete Freund’s adjuvant. Two booster doses, again in 50% emulsion with Freund's incomplete adjuvant, were given at 2 weeks intervals. The mouse with the highest antibody titer tested by ELISA was boosted intraperitoneally with 100μg protein without adjuvant 3 days before the cell fusion. Feeder layer cells were prepared 1 day prior to fusion. Splenocytes from mice with the highest ELISA antibody titers were fused with murine myeloma cells Sp2/0 following standard procedures. Three strains (A6D1,A5C1,A4C8) were selected for subcloning. For the production of MAbs, BALB/c mice (4-6 weeks old) were injected intraperitoneally with 106 hybridoma cells per mouse. Ten days later, the ascitic fluid was further purified by using protein A agarose columns (Bio-Rad Laboratories). The concentration of three Mabs was : A6D1,1.575mg/ml;A5C1,0.903 mg/ml;A4C8,0.758 mg/ml. The purified ascitic fluids were used for further characterization.
     2.3 Characterization of monoclonal antibodies to subgroup A avian leukosis virus
     2.3.1 Titera of obtained McAbs
     The titera of obtained McAbs from the mouse ascetic fluid were 210 (A6D1)、28 (A5C1)、27(A4C8), respectively, in indirect ELISA.
     2.3.2 Antibody secreting stabilities of hybridoma cell strains
     Three primary hybridoma cell strains secreting McAb were resuscitated and cloned. After the cloning positive ratereached 100%, the 3 strains were passaged for 3, 6,9,12 months, and the antibody secreting stabilities of them were monitored by indirect ELISA. The results showed that the property of three strains secreting McAb was stable after long culture and cry preservation.
     2.3.3 Western blot analysis
     The purified protein was analysed by means of SDS polyacrylamide gel electrophoresis (SDS PAGE) and followed by Western blotting. The purified protein with a band of molecular mass 53 kDa were got in SDS-PAGE, and it bind specifically to McAbs in Western-blot and ELISA assay. The Western blot analysis showed the 3 strains McAbs were all specific to ALV env gp 85 protein.
     2.3.4 IFA analysis
     Three strains of monoclonal antibodies (McAbs) against ALV-A were obtained by using hybridoma technique and their characteristics were studied by IFA . The results showed that three MAbs (A5C1 and A4C8) reacted with ALV-A but not with subgroups B, or J of ALV. MAb A6D1 reacted with subgroups A and B of ALV but not with ALV-J.
     3. Dynamics of viremia and antibody responses in chickens Co-infected with ALV-A and ALV-J
     In order to discuss the interference of viremia and antibody caused by avian leucosis virus of subgroup A(ALV-A) and avian leucosis virus of subgroup J(ALV-J), 200 SPF chickens are divided into 4 groups randomly at 1d: one is injected by 0.2ml cell culture supernatant of ALV-A(containing 103.01 TCID50 of 0.1ml infected cell culture supernatant), the other is ALV-J, the third is ALV-A+ALV-J and the fourth is Hank’s liquid as negative control at 2d separately; the chickens are immuned as usual; on 14d, 21d, 35d and 49d, 30 chickens are taken out from these groups and the serial numbers are given contemporarily. The fresh blood containing anticoagulant are collected without any bacterias from 6 of the 30 chickens to test the viremia; the other blood are collected in the normal way to test antibodies; the viremia are detected by IFA and the level of antibody are detected by ELISA.
     3.1 Dynamics of viremia in chickens Co-infected with ALV-A and ALV-J
     Viremia was detected from the 2nd week after inoculation with ALV-A at 2-day-old and was increasing gradually from the 3nd week to 7nd week; The viremia was 3.72 PFU/ml at 7-week-old(reach to peak and was decreased at 8week-old (3.01 PFU/ml);
     Viremia was detected from the 1nd week after inoculation with ALV-A at 2-day-old and was increasing gradually from the 3nd week to 8nd week; The viremia was 3.71 PFU/ml at 8-week-old;
     The coinfection of ALV-A can interfere the dynamic viremia level of ALV-J obviously(P<0.05)on 2w, but the coinfection of ALV-J can’t interfere the dynamic viremia level of ALV-A(P>0.05).
     3.2 Dynamics of antibody responses in chickens Co-infected with ALV-J
     3.2.1 Iinfluence of coinfection with ALV-J on antibody to ALV-A
     The antibody is 0 in ALV-A group and ALV-A+ALV-J group on 2w; Only some chicken produced specific antibodies to ALV-A on 3w, the antibody positive rates of in ALV-A group was significantly lower than that in ALV-A+ALV-J group (P<0.05), increasing with age. The antibody positive rates of in ALV-A group and ALV-A+ALV-J group was basically the same on 5w and 7w. The results showed that coinfection with ALV-J has no significantly influence on ALV-A antibody produce.
     3.2.2 Iinfluence of coinfection with ALV-A on antibody to ALV-J
     The antibody positive rates of was 0 in ALV-J group and ALV-A+ALV-J group on 2w and 3w ; The antibody also was 0 ALV-A+ALV-J group on 5w and 7w; the antibody positive rates of in ALV-J group only was 20.00% on on 5w and 13.33% on 7w. The results showed that the emerge of antibody of ALV-J was inhibitated because of coinfection of ALV-A, although the coinfection of ALV-J don’t affect the emerge of antibody of ALV-A.
     3.2.3 Interaction of Virema and Antibody in Chickens Coinfected with ALV-A and ALV-J
     Compared the dynamic viremia level and the level of antibody at the same time, the rate of coexistance of ALV and its antibody positive rates of is 0 in ALV group and ALV-A+ALV-J group on 2w and there is coexistance of ALV and its antibody positive rates of in ALV-A(33.33%) group and ALV-A+ALV-J group on 3w ( 6.25%) ; the antibody positive rates of ALV-A +ALV-J group was 50.00% on 5w, this phenomena lasts until 7w; the antibody positive rates of ALV-A group was 66.67%% on 5w, and 50% on 7w.
     The antibody in ALV-J group ALV-A +ALV-J group was 6.25% on 5w and 33.33% on 7w. The results showed that there isn’t coexistance of ALV-J and its antibody at all in the whole test processa nd the rate declines obviously after coinfected ALV-A .
引文
蔡丽娅,秦爱建.我国禽白血病病毒生物学特点及其控制[J].中国兽药杂志, 2009, 43(11): 46-48.
    蔡雪辉.检测禽白血病/肉瘤病毒ELISA双抗体法的研究[J].中国畜禽传染病, 1995, 1: 48-51.
    曹丙蕾.山羊IL-18定量抗原捕获ELISA检测方法的建立及其免疫增强作用的研究[D]. 山东农业大学, 2010.
    柴家前,王贵强,孙淑红,等. J亚群禽白血病病毒分子流行病学研究进展[J].山东畜牧兽医, 2009, 30: 40-41.
    常维山,郭慧君,孙淑红.近年来我国禽白血病流行现状及发展趋势分析[J].中国家禽,2010 ,32 (1): 8-11.
    陈晨,曹红,陈福勇.抗禽白血病p27抗原单克隆抗体的制备与鉴定[J].中国预防兽医学报,2005,27(4):287-289.
    成子强,赵振华,张利,等. J亚群白血病的病理学观察及PCR诊断.中国预防兽学报, 2003, 25 (6): 490-493.
    成子强,张利,刘思当,等.中国麻鸡中发现禽J亚群白血病[J].微生物学报, 2005, 45: 584-587.
    成子强,刘思当,孟祥凯,等.商品蛋鸡成髓细胞瘤、血管瘤型J亚群白血病病理学初报[J].畜牧兽医学报,2008,39(7):935-940.
    崔治中,孟珊珊,姜世金,等.我国白羽肉用型鸡群中CAV、REV和REOV感染状况的血清学调查[J].畜牧兽医学报, 2006, 37, 152-157.
    崔治中,孙怀昌,朱承如.禽白血病及禽网状内皮细胞增生病感染情况的调查[J].中国畜禽传染病, 1987, 15 (1): 37-38.
    崔治中,张志,杜岩,等.我国肉用型鸡中J亚群禽白血病的流行现状调查[J].中国兽医学报, 2002, 24 (4): 292-294.
    崔治中.鸡白血病及其鉴别诊断和预防控制[J].鸡淋巴白血病防控技术研讨会论文集, 2010, 1-12.
    崔治中.鸡群中免疫抑制性病毒蛋传病毒的多重感染[J].中国家禽, 2000, 22 (5):17-18.
    崔治中.免疫抑制性病毒多重感染在鸡群疫病发生和流行中的作用[J].畜牧兽医学报, 2003, 34: 417-421.
    崔治中.我国鸡群中免疫抑制性病毒多重感染的诊断和对策[J].动物科学与动物医学, 2001, 18 (4): 19-2.
    崔治中.我国鸡群中禽白血病流行现状和对策[J].中国家禽,2009, 31(13):1-3.
    杜岩,崔治中,秦爱建,等.从市场商品肉鸡中检出J亚群禽白血病病毒[J].中国家禽学报, 1999, 3 (1): 1-4.
    杜岩,崔治中,秦爱建,等.鸡的J亚群白血病病毒的分离及部分序列比较[J].病毒学报, 2000, 16: 341-346.
    杜岩,崔治中. J亚群禽白血病病毒中国分离毒SD9902株env - gp85基因的克隆及表达[J].中国兽医学报,2002, 22 (1) : 3 .
    郭桂杰,孙淑红,崔治中. J亚群禽白血病病毒蛋鸡分离株SD07LK1全基因组核苷酸序列的比较分析[J].微生物学报, 2009, 49 (3): 400-404.
    何彦春.产蛋鸡马立克氏病和淋巴细胞白血病混合感染的诊治[J].中国家禽,2006,28(13):34.
    侯磊,高宏雷,高玉龙,祁小乐,王笑梅,张淼涛. ALV-J分离株Hrb-1 gp85基因蛋白的原核表达及多克隆血清的制备[J].黑龙江畜牧兽医, 2009, 8: 86 - 88.
    胡薛英,谷长勤,程国富,等.应用单克隆抗体的免疫组织化学法研究雏鸭体内鸭瘟病毒的分布[ J ] .中国预防兽医学报, 2006, 28( 3) : 320~ 322.
    贾纯琰,张莉,李永清,张培君. J亚群禽白血病病毒gp85基因的克隆与表达[J].动物医学进展, 2008, 29(5):7-9.
    李艳,崔治中,孙淑红.黄羽肉鸡J亚群白血病病毒的分子生物学特性和致病性[J].病毒学报, 2007, 23: 207-211.
    刘超男,高玉龙,高宏雷,等. J亚群与E亚群禽白血病自然重组病毒的全基因组序列分析[J].中国预防兽医学报, 2009, 31: 978-981.
    刘迪,王桂军,赵圆圆,辛伟,魏建忠,李郁,孙裴,张训海,秦爱建.J亚群鸡白血病病毒AH09 /2株的gp85基因的克隆与原核表达[J].中国微生态学杂志2010, 22 (8):679-681.
    刘公平,赵振芬,刘福安. PCR /RFLP鉴别禽白血病病毒[J].中国兽医学报, 2001, 21 (3) :243-245 .
    刘公平.禽白血病病毒囊膜基因gp85片段的克隆与鉴定[J].中国预防兽医学报, 2001, 23 (1) : 17 - 18 .
    刘秀梵主编.单克隆抗体在农业上的应用[M].1994.
    孟珊珊,崔治中,孙淑红. REV和ALV-J共感染鸡病毒血症及抗体反应的互相影响[J]. 中国兽医学报, 2006, 26 (4): 363-366.
    乔彩霞,关云涛,陈洪岩.禽白血病研究进展[J].动物医学进展,2003,24 (6) : 18 - 21 .
    秦爱建,崔治中, Lee L,等.抗J亚群禽白血病病毒囊膜糖蛋白特异性单克隆抗体的研制及其特性[J].畜牧兽医学报, 2001a, 32: 556-562.
    秦爱建,刘岳龙,周绮雯,等. J亚群禽白血病病毒的免疫荧光检测效果[J].中国预防兽医学报, 2001b, 3: 214-216.
    秦爱建. J亚群禽白血病病毒囊膜糖蛋白gp85基因及其产物的生物学和生物化学特性[D].博士学位论文,扬州大学, 1999.
    萨姆布鲁克J,拉塞尔D W.分子克隆试验指南[M].第3版.黄培堂,王嘉玺,朱厚础,等译.北京:科学出版社,2002,96-99;1232-1236
    宋素泉,付朝阳,高宏雷,等. J亚群禽白血病JL-2株的分离鉴定[J].中国预防兽医学报, 2003, 25(5): 142-145.
    孙贝贝,崔治中,张青婵,娄本红.ALV-J人工感染鸡病毒血症和抗体反应动态[J].中国农业科学2009, 42(11):4069-4076.
    王伯法等主编.病理学技术[M].北京:人民卫生出版社,2000,822-834.
    王自良,王建华,杨艳艳,等.抗氯霉素单克隆抗体杂交瘤细胞株的筛选及金标试纸检测方法的建立[ J ].西北农林科技大学学报(自然科学版), 2006, 34(5): 6-11.
    王辉,崔治中.蛋鸡J亚群白血病病毒的分离鉴定与序列分析[J].病毒学报, 2008, 24: 369 -375.
    王建新,崔治中,张纪元,等. J亚群禽白血病病毒与禽网状内皮增生症病毒共感染对肉鸡生长和免疫功能的抑制作用[J].中国兽医学报, 2003. 23 (3) : 211-213.
    王增福,崔治中,张志,等.我国1999-2003年间ALV-J野毒株gp85基因变异趋势[J]. 中国病毒学, 2005, 20: 393-398.
    汪招雄,何启盖,刘丽娜,等.检测伪狂犬病病毒双抗体夹心间接ELISA方法的建立与应用[ J] .中国预防兽医学报, 2006, 28( 2 ) :220-225.
    韦平,阳秀英,蒋玲艳,等.我国商业鸡群多种免疫抑制性病毒共感染的研究[J].中国家禽,2007, 29(8):10-13.
    徐镔蕊,董卫星,何召庆,等.间接荧光抗体法快速诊断海兰褐蛋鸡J亚群禽白血病的研究.中国兽医杂志, 2002a, 38 (9): 7-9.
    徐镔蕊,董卫星,余春明,等.用ALV-J gp85单克隆抗体证明蛋鸡存在J亚群禽白血病[J].畜牧兽医学报, 2005a, 36 (3): 269-271.
    徐镔蕊,吕艳丽,董卫星,等.蛋鸡骨髓细胞瘤病的病理学诊断[J].畜牧兽医学报, 2002b, 33 (6): 562-564.
    徐耀辉,焦新安,胡青海,等.酶标单抗阻断ELISA检测鸡白痢和鸡伤寒抗体[J].中国兽医学报, 2006, 26( 2) : 140-143.
    杨克礼,韦平,潘玲,等.安徽省鸡免疫抑制性疾病的流行病学调查[J].中国兽医科技,2005,35(8):665-670.
    杨玉莹,叶建强,赵振华,等. J亚群禽白血病病毒的分离与鉴定[J].中国病毒学, 2003. 18 (5) : 46-50.
    杨玉莹,叶建强,赵振华,等.禽白血病J亚群内蒙株的分离与鉴定[J].中国病毒学, 2003. 18 (5) : 454-458.
    杨玉莹. J亚群白血病病毒内蒙株的分离鉴定以及部分分子生物学特性研究[J].博士学位论文,内蒙古农业大学, 2003.
    叶建强,秦爱建,刘岳龙,等.祖代肉用鸡群禽白血病病毒感染的实验室诊断[J].中国兽医科技, 2002. 32 (3) : 18-19
    殷震,刘景华.动物病毒学[M].第2版.北京:科学出版社, 1997. 870-885.
    岳筠,罗明星,史开志,等.贵州省禽白血病病毒J亚群感染的血清学检测与PCR鉴定[J].中国兽医科学,2009, 39(06): 516-521.
    余斌.抗猪γ-干扰素单克隆抗体的制备及定量抗原捕获ELISA检测方法的初步建立[D].华中农业大学.2007
    张恒,李传龙,杨明,崔治中.A亚群禽白血病病毒gp85基因的表达及单因子血清的制备和应用[J].微生物学报,2010,51(1):149~155
    张纪元,崔治中,丁家波,等. J亚群禽白血病病毒NX0101株感染性克隆化病毒的构建及致病性[J].微生物学报, 2005. 45 (3) : 437-440.
    张立成,关云涛,陈洪岩等.应用RT - PCR技术检测禽白血病病毒及其在不同组织中检出结果的比较[J].中国实验动物学杂志, 2002,12 (5) : 303~304 .
    张昶,任向阳,刘秋燕,吴青,陈陆,王川庆.单克隆抗体在畜禽疫病诊断中的应用[J]. 中国畜牧兽医, 2007, 34(05):93-95.
    张文娟. REV囊膜糖蛋白env基因的原核表达及单克隆抗体的制备与应用[D].山东农业大学,2009.
    张小桃,卢受昇,张贺楠,等. J亚群禽白血病病毒SCAU- 0901株的分离鉴定[J].中国兽医科学, 2009, 39: 674-678.
    张志,崔治中,姜世金.从J亚群禽白血病肿瘤中检测出禽网状内皮增生症病毒[J].中国兽医学报, 2004, 24 (1): 10-13.
    张志,崔治中,赵宏坤,等.商品代肉鸡J亚群禽白血病的病理及病毒分离鉴定[ J] .中国兽医杂志, 2002,38: 6-8.
    张志,庄国庆,孙淑红,等.禽网状内皮增生病病毒和马立克氏病病毒共感染对鸡的致肿瘤作用[J].畜牧兽医学报, 2005, 36 (1): 62-65.
    张志.我国J亚群禽白血病病毒的流行病学调查和囊膜糖蛋白env基因的克隆及序列分析[D].山东泰安:山东农业大学, 2001.
    赵冬敏,张青婵,崔治中.芦花鸡中B亚群禽白血病病毒的分离与鉴定[J].病毒学报, 2010, 26: 53-57.
    祝令伟,冯书章,刘军,等.肠出血性大肠杆菌O157: H7主要保护性抗原单克隆抗体的研制及特性分析[ J ].中国兽医学报,2006, 26( 3) : 275-277.
    朱美真,吴玉宝,崔治中.地方品系鸡中一株A亚群鸡白血病病毒的分离和鉴定[J]. 中国动物传染病学报, 2009, 17 4 :31– 35.
    Adkins ITB, Borjatsch J, Nauhgton J. Idnetifieation of a cellular receptor of subgroup E avian leukosis virus[J]. Proc Natl Acda Sci USA, 1997, 94: 11617-11622.
    Aly MM. Isolation of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in Egypt. Proceedings of the international symposium on ALV-J and other avian retroviruses. Germany: Rauischolzhauzen, 2000: 165-176.
    Arshad SS, Smith LM, Howes K. Tropism of subgroup J avian leukosis virus as detected by in situ hybtidization. Avian Pathol, 1999, 28:163-169.
    Bagust TJ, Fenton SP, Reddy MR. Detection of subgroup J Avian leucosis virus infection in Australian meat-type chickens[J]. Australian Veterinary Journal, 2004, 82 (11): 701-706.
    Bagust TJ. Proceedings of the international symposium on ALV-J and other avian retroviruses. Germany Rauischolzhauzen, 2000, 234-239.
    Bai J, Howes K, Payne LN. Sequence of host-range determinantsin the env gene of a full-length, infectious provirus clone of exogenous avian leukosis HPRS-103 confirms that it represents a new subgroup (designed J) J. Gen Viol, 1995a, 76: 181-187.
    Bai J, Payne LN, Skinner MA, et al. HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an element found previously only in sarcoma viruses[J]. J Virol, 1995b, 69: 779-784.
    Banders UT, Coussens PM. Interactions between Marek’s disease virus encodedor induced fact or sand the Rous sarcoma virus long terminal repeat promoter. J Virol, 1994, 199: 1-10.
    Barbosa T, Zavala G, Cheng S. Molecualr characterization of three recombinant isolates of avian leukosis virus obtained from contaminated Marek’s disease vaccines. Avian Dis, 2008, 52: 245-252.
    Benkel, BF. Locus-specific diagnostic tests for endogenous avian leukosis-type viral loci in chickens. Poult Sci, 1998, 77: 1027-1035.
    Bennett RP. Amino acids encoded downstream of gag are not required by Rous sarcoma virus Protease during gag-mediated assembly. J Virol, 1991, 65: 272-280.
    Benson SJ, Ruis BL, Fadly AM. The unique envelope gene of the group J avian leukosis virus derive from a ev/J provirus, a novel family of avian endogenous viruses. J Virol, 1998a, 72: 1157-1164.
    Benson SJ, Ruis BL, Garbers AL, et al. Independent isolates of the emerging subgroup J avian leucosis virus derive from a common ancestor. J Virol, 1998b, 72: 1121-1129.
    Beug H, Kirchbach A, D?derlein G., et al. Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell, 1979. 18 (2) : 375-390
    Bieth E, Darlix JL. Complete nucleotide sequence of a highly infectious avian leukosis virus. Nucleic Acids Res, 1992, 20: 367.
    Bizub D, Katz RA, Skalka AM. Nucleotide sequence of noncoding regions in Rous-associated virus-2: comparisons delineate conserved regions important in replication and oncogenesis. J Virol, 1984, 49: 557-565.
    Borjasthe J, Naughton J, Rolls MM. CARI, a TNFR-related protein is acellular receptor for cyotpathic avian-Sacroma viruses and mediates apopotsis. Cell, 1996, 87.
    Bova CA, Manfredi JP, Ronald S. env genes of avian retroviruses: nucleotide sequence and molecular recombinants define host range determinants. Virol, 1986, 152: 343-354.
    Bova-Hill C, Olsen JC, Swanstrom R. Genetic analysis of the Rous sarcoma virus subgroup D env gene: mammal tropism correlates with the temperature sensitivity of gp85. J Gen Virol, 1991, 65: 2073-2080.
    Brandvold KA, Ewert DL, KentSC, et al. Bloeked B cell differentiation and emigration support the early growth of myc-induced lymphomas. Oncogene, 2001. 20: 3226-3234.
    Brown DW, BP Blais, HL Robinson. Long terminal repeat (LTR) sequences, env, and a region near the 5’LTR influence the pathogenic potential of recombinants between Rous-associated virus types 0 and 1. J Virol, 1988, 62: 3431-3437.
    Burmester BR, Fonter BR, Walter WG. Pathogenicity of a viral strain (RPL 12) causing avian visceral lymphomatosis and related neoplasms. III. Influence of host age and route of inoculation. J Natl Cancer Inst, 1960, 24: 1423-1442.
    Burmester BR, NF Waters. Variation in the presence of the virus of visceral lymphomatosis in the eggs of the same hens. Poult Sci, 1956, 35: 939-944.
    Burmester BR. Immunity to visceral lymphomatosis in chicks following injection of virus into dams[J]. Proc Soc Exp Biol Medicine, 1955, 88:153-155.
    Buscaglia C, Del Barrio EI, Flamini MA. Proceedings of the International Symposium on ALV-J and Other Avian Retroviruses. Germany: Rauischolzhauzen, 2000, 177-180.
    BW卡尔尼克.高福,刘文军主译.禽病学.第9版.北京:北京农业大学出版社, 1991: 334-381.
    Calnek, BW. Lymphoid leukosis virus: a survey of commercial breeding flocks for genetic resistance and incidence of embryo infection. Avian Dis, 1968, 12:104-111.
    Chesters PM, Howes K, Petherbridge L, et al. The viral envelope is a major determinant for the induction of lymphoid and myeloid tumours by avian leukosis virus subgroups A and J, respectively. J Gen Virol, 2002, 83(10): 2553-2561.
    Clark DP and Dougherty RM. Detection of avian oncovirus group-specific antigens by the enzyme-linked immunosorbent assay. J Gen Virol, 1980. 47: 283-291.
    Coffin JM, PN Tsichlis, KF Conklin, et al. Genomes of endogenous and exogenous avian retroviruses. Virol, 1983, 126: 51-72.
    Coffin JM,Hughes SH, Varmus HE. Retroviral Pathogenesis ln: Retroviruses, Cold Spring Harbor Laboratory Press. 1997.
    Cottral GE, BR Burmester, NF Waters. Egg transmission of avian lymphomatosis[J]. Poult Sci, 1954, 33: 1174-1184.
    Crittenden LB, DW Salter. A transgene, alv 6, that expresses the envelope of subgroup A avian leukosis virus reduces the rate of congenital transmission of a field strain of avian leukosis virus. Poult Sci, 1992, 71: 799-806.
    Crittenden LB, EJ Smith, FA Gulvas, et al. Endogenous virus expression in chicken lines maintained at the regional poultry research laboratory. Virol, 1979, 95: 434-444.
    Crittenden LB, EJ Smith, W Okazaki. Identification of broiler breeders congenitally transmitting avian leukosis virus by enzyme linked immunosorbent assay. Poult Sci, 1984, 63: 492-496.
    Crittenden LB, Kung HJ. Mechanisim of induction of lymphoid leukosis and related neoplasms by avian leukosis virus. In: J.M.Goldmanand, O.Jarrett (eds.) Mechanism of viral leukaemogenesis. Charchill living stone, Edinburg. Scouand, 1984, 64-88.
    Crittenden LB. Retroviral elements in the genome of the chicken: implications for poultry genetics and breeding. Crit Rev Poult Biol, 1991, 3: 73-109.
    Crittenden LB. The epidemiology of avian lymphoid leukosis. Cancer Res. 1976, 36: 570-73.
    Cui ZZ, Du Y, Zhang Z, et al. Comparison of Chinese field strains of avian leukosis subgroup J viruses with prototype strain HPRS-103 and United States strains. Avian Dis, 2003, 47: 1321-1330.
    Cui ZZ, Lee LF, Silva RF. Monoclonal antibodies against avian reticuloendotheliosis virus identification of strain-specific and strain-common epitopes. J Immun, 1986, 136 (11): 4237-4241.
    Cui ZZ, Sun SH, Meng SS. Simultaneous endemic infections with subgroup J avian leukosis virus and reticuloendotheliosis virus in commercial and local breeds of chickens. Avian Pathol, 2009, 38: 443-448.
    Davidson I and Borenshtain R. The feather tips of commercial chickens are a favourable source of DNA for the amplification of Marek's disease virus and avian leukosis virus, subgroup J. Avian Pathol, 2002. 31: 237-240.
    De Boer G. F, Gielkens AL J, Boerrigter HM, et al. Identification of avian leukosis virus shedding hens. Comparison of ALV GS-antigen levels in various test samples. Avian Pathol, 1984. 13: 321-332.
    De Boer GF, Gielkens A L J, Hartog L, et al. The use of ELISA for detection of exogenous and endogenous avian leukosis viral antigens in basic breeding flocks. Avian Pathol, 1983. 12: 447-459.
    De Boer GF, Maas HJL, Van Vloten J, et al. Horizontal transmission of lymphoid leukosis virus. Influence of age, maternal antibodies and degree of contact exposure. Avian Technology, 1981. 10: 343-358.
    Delos SE, Godby JA and White JM. Receptor-induced conformational changes in the SU subunit of the avian sarcoma/leukosis virus A envelope protein: implications for fusion activation. J Virol, 2005. 79 (6) : 3488-99.
    Dorner AJ, Stoye JP, Coffin JM. Molecular basis of host range variation in avian retroviruses. J Virol, 1985, 53: 32-39.
    Dupraz P. Analysis of deletions and thermosenstive mutation in Rous sarcoma virus gag protein10. J Virol, 1993, 67: 3824-3826.
    Fadly A, R Silva, H Hunt, et al. Isolation and characterization of an adventitious avian leukosis virus isolated from commercial Marek’s disease vaccines. Avian Dis, 2006, 50: 380-385.
    Fadly AM and Witter RL.Oncornaviruses: leukosis/sarcoma & reticuloendotheliosis. In D. ESwayne JR Glisson MW, Jackwood, et al (eds.) A Laboratory Manual for the Isolation and Identification of Avian Pathogens,4th ed.Am.Assoc.Avian Pathologists: Kennet Square, PA, 1998,185-196.
    Fadly AM, Okazaki W, Smith E J, et al. Relative efficiency of test procedures to detect lymphoid leukosis virus infection. Poult Sci, 1981, 60 (9) : 2037-2044.
    Fadly A, Silva R, Hunt H, et al. Isolation and characterization of an adventitious avian leukosis virus isolated from commercial Marek's disease vaccines. Avian Dis, 2006, 50 (3) :380-385.
    Fadly AM, Nair V. Leukosis/Sarcoma Group. In: Diseases of Poultry. ed.12th. Saif Y M,
    Fadly A M, Glisson J R, McDougald L R, Nolan L K, and Swayne D E. eds. 2008, Blackwell Publishing, Ames. pp. 514-568.
    Fadly AM, RL Witter. Comparative evaluation of in vitro and in vivo assays for the detection of reticuloendotheliosis virus as a contaminant in a live virus vaccine of poultry. Avian Dis, 1997, 41: 695-701.
    Fadly AM, Smith EJ. Isolation and some characteristics of a subgroup J-like avian leukosis virus associated with myeloid leukosis in meat-type chickens in the United States. Avian Dis, 1999, 43: 391-400.
    Fadly AM, Smith EL. An overview of subgroup J-like avian leucosis virus infection in broiler flocks in the United States. Proceedings of the avian tumor viruses symposium, July 21st, 1997, Reno, Nevada. American Association of Avian Pathologists, p54-57.
    Fadly AM. Avian leukosis virus (ALV) infection, shedding, and tumors in maternal ALV antibody-positive and -negative chickens exposed to virus at hatching. Avian Dis, 1988, 32 (1): 89-95.
    Franklin RB, CY Kang, K Min-Min Wan, et al. Transformation of chick embryo fibroblasts by reticuloendothelia virus. Virol, 1977, 83: 313-321.
    Friesen B, H Rubin. Some physicochemical and immunological properties of an avian leukosis virus (RIF). Virol, 1961, 15: 387-396.
    Frisby DP, Weiss RA, Roussel M, et al. The distribution of endogenous chicken retrovirus sequences in the DNA of galliform birds does not coincide with avian phylogenetic relationships. Cell, 1979, 17: 623-634.
    Fujita DJ, Chen YC, Friis RR, et al. RNA tumor viruses of pheasants: characterization of avian leukosis subgroups F and G. Virol, 1974, 60: 558-571.
    Fung YKT, Crittenden LB, Kung HJ. Orientation and position of avian leucosis virus DNA relative to the cellular oncogene c-mycin B-lymphoma tumors of highly susceptible 1515x chickens. J Virol, 1982, 44: 742-746.
    Fung YKT, Lewis WG, Kung HJ, et al. Activation of the cellular oncogene c-erbB by LTR insertion: molecular basis for induction of erythro blastosis by avian leucosis virus.Cell,1983, 33: 357-368.
    Gavora JS, U Kuhnlein, LB Crittenden, et al. Endogenous viral genes: association with reduced egg production rate and egg size in white leghorns. Poult Sci, 1991, 70: 618-623.
    Gilden RV. The molecular biology of animal viruses, 1977, p.435-542.
    Gingerich E, Porter R E, Lupiani B, et al. Diagnosis of myeloid leukosis induced by a recombinant avian leukosis virus in commercial white leghorn egg laying flocks. Avian Dis, 2002, 46(3): 745-748.
    Gong M, Semus HL, Bird KJ. Differential selection of cells with proviral c-myc and c-erbB integrations after avian leukosis virus infection. J Virol. 1998, 72 (7): 5517-5525.
    Guo W, Winistorfer SC, Stoltzfus CM. Selective inhibition of splicing at the avian sarcoma virus src 3 splice sits by direct-repeat posman-scriptional elements. J Virol, 2000, 74: 8513-8523.
    Hanafusa T, Hanafusa H, Metroka CE, et al. Pheasant virus: New class of ribodeoxyvirus. Proc Natl Acad Sci, 1976, 63: 401-413.
    Hanafusa T, Hanafusa H. Isolation of leukosis-type virus from pheasant embryo cells: possible presence of viral genes in cells. Virol, 1973, 51: 247-251.
    Hertig C, Coupar BE, Gould AR, et al. Field and vaccine strains of fowl pox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus. Virol, 1997, 235: 367-376.
    Himly M, Foster DN, Bottoli I, et al. The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virol, 1998, 248: 295-304.
    Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc. Natl. Acad. Sci. U. S. A. 1990a, 87: 1556-1560.
    Hu WS, Temin HM. Retroviral recombination and reverse transcription. Science, 1990b, 250: 1227-1233.
    Hughes SH, JJ Greenhouse, CJ Petropoulos, et al. Adaptor plasmids simplify the insertion of foreign DNA into helper independent retroviral vectors. J Virol, 1987, 61: 3004-3012.
    Hunt HD, Lee LF, Fosetr D. A genetically engineered cell line resistant to Subgroup J avianleukosis virus infection (C/J). Virol, 1999, 264: 205-10.
    Hunter E. Amino-terminal amino acid sequence of p10, the fifth major gag polypeptide of avian sarcoma and leukosis virus. J Virol, 1983, 45: 885-888.
    J Sambrook, E F Fritsch, T Maniatis著.金东雁,黎孟枫等译.分子克隆实验指南.第二版.北京:科学出版社, 1996.
    Johnson JA, W Heneine. Characterization of endogenous avian leukosis viruses in chicken embryonic fibroblast substrates used in production of measles and mumps vaccines. J Virol, 2001, 75: 3605-3612.
    Kawamura H, T Wakabayashi, S Yamaguchi, et al. Inoculation experiment of Marek’s disease vaccine contaminated with a reticuloendotheliosis virus. Natl. Inst. Anim. Health Q (Tokyo). 1976, 16: 135-140.
    Kim Y, Gharaibeh SM, Stedman NL, et al. Comparison and verification of quantitative competitive reverse transcription polymerase chain reaction (QC-RT-PCR) and real time RT-PCR for avian leukosis virus subgroup J. J Virol, 2002 , 102 (1-2): 1-8.
    Kung HJ, Boerkel, Coffin JM. Retroviral mutagenesis of cellular oncogene: a review with insights into the mechanism of insertional activation. Curr Top Mirobiol Immunol. 1991, 171: 1-25.
    Landman WJ, Wilgen JL, Koch G, et al. Avian leukosis virus subtype J in ovo-infected specific pathogen free broilers harbour the virus in their feathers and show feather abnormalities. Avian Pathol, 2001, 30 (6): 675-684.
    Lupiani B, Hunt H, Silva R, et al. Identification and characterization of recombinant subgroup J avian leukosis viruses (ALV) expressing subgroup A ALV envelope. Virol, 2000, 276: 37-43.
    Lupiani B, Pandiri AR, Mays J. Molecular and biological characterization of a naturally occurring recombinant subgroup B avian leukosis virus with a subgroup J-like long terminal repeat. Avian Dis, 2006, 50: 572-578.
    Mayer L, Sauter M, Racz A, et al. Analmost-intact human endogenous retrovirus K on human chromosome 7. Nat Genetic, 1999, 21 (3): 257 -258.
    Mays JK, Pandiri AR, Fadly AM. Susceptibility of various parental lines of commercial white leghorn layers to infection with a naturally occurring recombinant avian leukosisvirus containing subgroup B envelope and subgroup J long terminal repeat. Avian Dis, 2006, 50: 342-347.
    Morgan HR. Avian leukosis-sarcoma virus antibodies in wildfowl, domestic chickens, and man in Kenya. Proc Soc Exp Biol Med, 1973, 144:1-4.
    Nakamura K, Ogiso M, Tsukamoto, et al. Lesions of bone and bone marrow in myeloid leucosis occurring naturally in adult broiler breeders. Avian Dis, 2000, 44(1): 215-221.
    Neiman PE. Retrovirus-induced B cell neoplasia in the bursa of Fabricius. Adv Immun, 1994, 56: 467-84.
    Neumann U, Berrocal A, Fadly AM. Morphological evidence for avian leukosis virus (ALV) subgroup J avian myelocytomatosis observed in broiler parent flocks in Costa Rica.
    Proceedings of the International Symposium on ALV-J and other avian retroviruses. Germany: Rauischolzhauzen, 2000, 181-183.
    Pandiri AR, Gimeno IM, Reed WM, et al. Distribution of viral antigen gp85 and provirus in various tissues from commercial meat-type and experimental White Leghorn Line 0 chickens with different subgroup J avian leukosis virus infection profiles. Avian Pathol, 2008, 37 (1): 7-13.
    Pandiri AR, Reed WM, Mays JK, et al. Influence of strain, dose of virus, and age at inoculation on subgroup J avian leukosis virus persistence, antibody response, and oncogenicity in commercial meat-type chickens. Avian Dis, 2007, 51 (3): 725-732.
    Payne LN, AE Holmes, K Howes, et al. Further studies on the eradication and epizootiology of lymphoid leukodid virus infection in a commercial strain of chickens. Avian Pathol, 1982, 11: 154-162.
    Payne LN, AM Gillespie, K Howes. Myeloid leukaemogenicity and transmission of the HPRS-103 strain of avian leukosis virus. Leukemia, 1992, 6: 1167-1176.
    Payne LN, AM Gillespie, K Howes. Unsuitability of chicken sera for detection of exogenous ALV by the group-specific antigen ELISA. Vet Rec, 1993, 132: 555-557.
    Payne LN, Brown SR, Bumstead K, et al. A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol, 1991, 72: 801-807.
    Payne LN, Fadly AM. Leucosis/sarcoma group in diseases of poultry (10th ed).Iowa State University Press. 1997, 414-446.
    Payne LN, GiliesPie AM, Howes K. Recovery of acutely transforming viruses from myeloid leueosis induced by HPRS-103 strain of avian leukosis virus. Avian Dis, 1993, 37: 438-450.
    Payne LN, Howes K, Gilespie AM, et al. Host range of Rous sarcoma virus pseudotype RSV (HPRS-103) in 12 avian species: support for a new avian retrovirus envelope subgroup J. J Gen Virol, 1992, 73: 2995-2997.
    Payne LN, N Bumstead. Theoretical considerations on the relative importance of vertical and horizontal transmission for the maintenance of infection by exogenous avian lymphoid leukosis virus. Avian Pathol, 1982, 11: 547-553.
    Payne LN. HPRS-103: retrovirus strikes back. The emergence of subgroup J avian leucosis virus. Avian Pathol, 1998a, 27: 36-45.
    Payne LN. Retrovirus-induced disease in poultry. Poult Sci, 1998b, 77: 1204-1212.
    Pepinsky RB. Structure and processing of the p2 region of avian sarcoma and leukosis virus. J Virol, 1986, 58: 50-58.
    Peter M Chesters, Lorraine P Smith, Venugopal Nair. E (XSR) element contributes to the oncogenicity of avian leukosis virus (subgroup J). J Gen Virol, 2006, 87, 2685-2692.
    Purehase HG, Okazaki W, Vogt PK, et al. Oncogenicity of avian leukosis viruses of different subgroups and of mutants of sarcoma viruses. Infect Immun, 1977, 15 (2): 423-428.
    Purehase HG, Okazaki W, Vogt PK, et al. Oncogenicity of avian leukosis viruses of different subgroups and of mutants of sarcoma viruses. Infect Immun, 1977, 15 (2): 423-428.
    Qin A, Lee LF, Fadly AM. Development and characterization of monoclonal antibodies to subgroup J avian leukosis. Avian Dis, 2001, 45: 938-945.
    Qin AJ, Wu YP, Lucy L, et al. Development and characterization of monoclonal antibodies to avian leukosis virus subgroup J.poster in 136th American Veterinary Medicine Association annual convention New Orenh, 1999, July, 11 -14.
    Regenmortel MHV, CM Fauquet, DHL Bishop, et al. Virus Taxonomy Classification and Nomenclature of Virus. Academic Press: New York, 2000, 1162.
    Rispens B. H., Long P. A., Okazaki W., et al. The NP activation test for assay of avian leukosis/sarcoma viruses. Avian Dixenxex, 1970. 14: 738-751.
    Rong L, Edinger A, Bates B. Role of basic residues in the subgroup-determining region ofthe subgroup A avian sarcoma and leukosis virus envelope in receptor binding and infection. J Virol, 1997, 71: 3458-3465.
    Rovigatti U. G. and Astrin S. M.. Avian endogenous viral genes. Curr Top Microbiol Immunol, 1983. 103: 1-21.
    Rubin H, A Cornelius, L Fanshier. The pattern of vongenital transmission of an avian leukosis virus. Proc Natl Acad Sci USA, 1961, 47: 1058-1060.
    Rubin H, L Fanshier, A Cornelius, WF Hughes. Tolerance and immunity in chicken after congential and contact infection with an avian leukosis cirus. Virol, 1962, 17: 143-156.
    Rubin H. Genetic control of cellular susceptibility to pseudotypes of Rous sarcoma virus. Virol, 1965, 26: 270-276.
    Rup B. J., Hoelzer J. D. and Bose H. R.. Helper viruses associated with avian acute leukemia viruses inhibit the cellular immune response. Virol, 1982. 116 (1) : 61-71.
    Ryden TA, K Beemon. Avian retroviral long terminal repeats bind CCAAT/enhancer- binding protein. Mol Cell Biol. 1989, 9:1155–1164.
    Sacco MA, Howes K, Smith LP, et al. Assessing the roles of endogenous retrovirus EAV-HP in avian leukosis virus subgroup J emergence and tolerance. J Virol, 2004a, 78: 10525-10535.
    Sandelin K, T Estola. Occurrence of different subgroup of avian leukosis virus in Finnish poultry. Avian Pathol, 1974, 3:159-168.
    Sarma P. S., Turner H. C. and Huebner R. J.. An avian leukosis group-specific complement-fixation reaction. Application for the detection and assay of non-cytopathogenic leukosis viruses. Virol, 1964. 23: 313-321.
    Schaefer-Klein J, I Givol, EV Barsov, et al. The ev-0 derived cell line DF-1 supports the efficient replication of avian leukosis sarcoma viruses and vectors. Virol, 1998, 248: 305-311.
    Schwartz DE, Tizard R, Gilbert W. Nucleotide sequence of Rous sarcoma virus. Cell, 1983, 32(3):853-69.
    Shioda T, Levy L, Chen Mayer C. Small amino acid change in the V3 hypervariable region of gp120 can affect the T cell line and macrophage tropism of human immunodeficiency virus type I. Proc Nati Acad Sci, 1992, 89: 9434-9438
    Smith EJ,Borjasteh J,Naughton J. The CARI gene encoding a cellular receptor specific of Subgroup B and D avian lekuosis viruses maps to the chieken tvb locus. J Virol, 1998, 72: 3501-3503.
    Spackman E, Pope CR, Cloud SS, et al. The effects of avian leukosis virus subgroup J on broiler chicken performance and response to vaccination. Avian Dis, 2003, 47 (3): 618-26.
    Spencer J. L. and Gilka F.. Role of the skin and gut in horizontal transmission of avian leukosis virus. Journal of the American Veterinary Medical Association , 1983. 183: 355.
    Spencer J. L., Crittenden L. B., Burmester B. R., et al. Lymphoid leukosis: Interrelations among virus infections in hens, eggs, embryos and chicks. Avian Dis, 1977. 21: 331-345.
    Spencer J. L., Crittenden L. B., Burmester B. R., et al. Lymphoid leukosis viruses and gs antigen in unincubated chicken eggs. Avian Pathol, 1976. 5: 221-226.
    Spencer J. L., Gilka F., Gavora J. S., et al. Distribution of group specific antigen of lymphoid leukosis virus in tissues from laying hens. Avian Dis, 1984. 28: 358-373.
    Starick E, Werner O, Schirrmeier H , et al. E st abl ishment of A Competit ive E LISA ( cELISA) System for the Detect ion of Inflenza A Virus Nucleoprot ein Antibodies and its Applicat ion to Field Sera from Diff erent Species[ J] . J Vet Med B Infect Dis Vet Public H ealth, 2006, 53( 8) : 370-375.
    Sun SH, Cui Z Z. Epidemiological and pathological studies of subgroup J avian leukosis virus infectious in chinese local yellow chicken [J ] . Avian Pathol, 2007, 36: 221-226.
    Troesch CD, PK Vogt. An endogenous virus from Lophortyx quail is the prototupe for envelope subgroup I of avian leukosis retroviruses. Virol, 1985, 143: 595-602.
    Venugopal K,Howes K,Barron G,et al.Recominat env-gp85 of HPRS-103 ( subgroup J ) avian leucosis virus: antigenitic characterization and usefulness as a diagnosis reagent[J].Avian Disease.1997,41:283-288.
    Venugopal K., Smith L.M. and Howes K.. Antigenic variants of J subgroup avian leukosis virus: sequence analysis reveals multiple changes in the env gene. J Gen Virol, 1998. 79 (4) : 757-766.
    Vogt P. K. and Ishizaki R.. Reciprocal patterns of genetic resistance to avian tumor viruses in two lines of chickens. Virol, 1965. 26: 664-672.
    Williams SM, Reed WM, Bacon LD, et al. Response of white leghorn chickens of variousgenetic lines to infection with avian leukosis virus subgroup J. Avian Dis, 2004, 48 (1): 61-67.
    Xu, B, Dong, W, Yu C, et al.Occurrence of avian leukosis virus subgroup J in commercial layerflocks in China [ J] . Avian Pathol, 2004, 33: 13-17.
    Young JA T. Avian leukosis virus receptor inetacrtions. Avina Pathol, 1998, 27: 21- 2578.
    Zachow KR, KF Conklin. CArG, CCAAT, and CCAATlike protein binding sites in avian retrovirus long terminal repeat enhancers. J Virol, 1992, 66: 1959-1970.
    Zhang Q, Zhao D, Guo H et al. Isolation and Identification of a Subgroup A Avian Leukosis Virus from Imported Meat-type Grand-parent Chickens [J]. Virologica Sinica, 2010; 25 (2): 130-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700