毕赤酵母表达重组蛋白生产工艺关键技术及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巴斯德毕赤酵母(P. pastoris)表达系统是目前应用最广的真核表达系统之一,己有近1000种异源蛋白利用该系统获得了成功表达,市场前景广阔。但是,虽然已有三十余年的应用历史,对毕赤酵母发酵工艺的优化研究始终未取得突破性进展。发酵是一种间歇性稳态的生物学过程,涉及基因组、蛋白质组和代谢组等水平的显著改变。因此,从组学水平上对发酵过程的内在变化进行展示,找到引导稳态间迁移的核心基因、蛋白或小分子底物,可能有助于深度优化发酵工艺。然而,目前关于毕赤酵母重组表达菌株发酵工艺过程的转录组学研究鲜有开展。
     本论文采用自主设计的基因芯片,试图通过筛查与毕赤酵母发酵工艺重要时间节点密切相关的关键基因,深入研究影响发酵工艺和目的蛋白表达水平的内在因素,为该经典发酵工艺的进一步优化提供数据基础和全新视角。
     为实现上述研究目标,本论文主要按照如下实验方案开展了研究工作:
     1.毕赤酵母发酵工艺模型的构建:
     选择研究背景清晰、发酵工艺成熟的GS115毕赤酵母菌株作为表达载体,成功构建出能够稳定表达reFIP-vvo和rHSA的重组表达菌株。通过中试工艺的对比研究,发现rHSA重组菌株的发酵过程更具标志性,生物规律节点非常明确,故选作理想模型进行后续转录组学研究。
     2.毕赤酵母基因芯片的制备:
     使用GeneMark方法预测GS115毕赤酵母基因组中外显子,经多步筛查、验证和优化等步骤自主设计出包含5040个基因的GS115毕赤酵母基因芯片,并完成了芯片的标准化和制备工作。
     3.毕赤酵母发酵工艺的基因芯片分析:
     采用自主设计的基因芯片,对毕赤酵母发酵工艺中的重要环节进行了转录组学水平的研究,重点了关注碳源置换和甲醇诱导两个生物学过程。另外,鉴于氧分子在该发酵工艺中的主导作用,本研究还采用了构建氧化还原功能树的全新分析手段,特别关注了氧化还原功能相关的基因在好氧代谢流漂移当中的作用。
     通过上述实验内容的开展,本论文主要获得了如下研究结果:
     1.本研究设计并制备了毕赤酵母GS115菌株表达谱芯片,填补同领域国内外空白,为毕赤酵母在其他领域的转录组学研究提供了重要的研究工具。
     2.研究发现在限制性碳源置换阶段,碳源饥饿这个传统的工艺环节可能并不必要,甚至可能有害。分析依据为:a.碳源饥饿造成转录调控功能受到较大抑制,菌体产生严重应激反应;b.甘油补加阶段即检测到目的蛋白表达,表明AOX1可能受到甘油的诱导。因此,使用甘油/甲醇混合补料可能更为科学,即逐渐增加甲醇的比例以实现完全替换,而且这种连续、渐变的工艺过程也更加符合发酵工程的原理。
     3.筛选到两个可能主导好氧-厌氧代谢漂移的核心基因,即PAS_chr2-1_0582和PAS_chr3_0845。其中,PAS_chr2-1_0582可能是毕赤酵母中调节和控制有氧代谢的最重要转录因子之一。而PAS_chr3_0845可能通过呼吸电子传递链的子功能辅助了厌氧与好氧代谢之间的漂移。对两者的深入研究可能有助于深度优化毕赤酵母发酵工艺,提高目的蛋白的表达水平。
     本论文利用了自主设计的毕赤酵母基因表达谱芯片对甲醇诱导毕赤酵母重组表达外源蛋白的发酵工艺进行了研究,在转录组学水平上充分地展示了在限制性碳源置换和甲醇诱导表达重组蛋白两个生物学过程以及在好氧代谢漂移中发挥重要作用的功能及核心基因,并对经典的发酵工艺环节与毕赤酵母细胞内生命活动变化之间的关系进行了系统地分析,为该经典发酵工艺的进一步优化提出了方向。
Pichia pastoris expression system is currently the most widely used eukaryoticexpression systems, nearly1,000kinds of heterologous proteins have been expressedusing this system, which has a broad market prospect. However, although with anapplication history of more than30years, no breaktrough has been achived in theoptimization study of Pichia fermentation process. Fermentation is an intermittentsteady biological process involving significant changes in the genome, proteome andmetabolome levels. Therefore, the display of internal changes during fermentationprocess at genomics levels to find the core genes, proteins or small moleculesubstrates leading the steady-state migration, may help to optimize the fermentationprocess. However, few transcriptome studies have been conducted on the Pichiafermentation process.
     In this study, we tried to use the self-designed gene chips to screen the key genesclosely related to the important time node during the Pichia fermentation process,digging the internal factors affecting the fermentation process and the proteinexpression levels, in order to provide the optimization of the fermentation processwith classic data base and a new perspective.
     To achieve the research goals, the study was carried out according to following work:
     1. The construction of Pichia fermentation process mode:GS115yeast strain was selected as the expressing vector because of the clearbackground and well-established fermentation technologies. Two recombinant strains were successfully constructed and were available for stably expression ofreFIP-vvo or rHSA. In comparison study during the pilot scale fermentation test,therHSA strain exhibited a stable growth curve with an more obvious trend which wasidentical to the typical characteristics of methanol inducible expression system.Therefore, the final selection of rHSA GS115was chosen for the transcriptomestudy using gene chips.
     2. Preparation of Pichia microarray:GeneMark method was used for predicting GS115Pichia genome exon, aftermulti-step screening, validation and optimization steps, we independently designed aGS115Pichia microarray contains5040genes, and completed the standardization andpreparation work.
     3. Microarray analysis of Pichia fermentation process:As it was explained above, we designed a microarray independently. The microarraywas used to investigate the transcriptomics related to the key points in the classicfermentation of Pichia pastoris in this study. The study focused on two biologicalprocesses induced by carbon source replacement and methanol-induce expression.Furthermore, concerning the importance of oxygen molecules in fermentation, therole of the oxidation-reduction-related genes were specified in the aerobic metabolicflux drift by using a new tool of building the redox function trees.
     This study obtained three main results as follow:
     1. We designed and prepared the Pichia GS115microarray, which filled with blank inthe fields at home and abroad, thus provides an important research tool on thetranscriptome study of Pichia in various areas.
     2. It was found that the transcriptional regulation changed most significantly in the phase of limiting carbon replacement. In this phase, the biological function oftranscription, translation, protein/nucleic acid synthesis were strongly inhibited.Moreover, the rHSA protein can be barely detected in the glycerol-feeding phase,indicating that AOX1may be induced by glycerol consistent with the recent findings.These results suggest that the traditional carbon starvation may be unnecessary andharmful to the cells. As suggested by a number of scholars recently, the glycerol/methanol mixed feeding process is more scientific. The gradual increasing proportionof additional methanol is used for the final completely replacement. This process canavoid the extreme stress during the fermentation process, and is consistent with theprinciples of the gradient fermentation design.
     3. Two core genes, namely PAS_chr2-1_0582and PAS_chr3_0845, which possiblyled to aerobic-anaerobic metabolic drift was screened out. PAS_chr2-1_0582may beone of most important transcription factors in Pichia aerobic metabolism regulationand control. PAS_chr3_0845possibly assists the drift between anaerobic and aerobicmetabolism through sub-function of auxiliary respiratory electron transport chain.In-depth study of the two may help to optimize the Pichia fermentation process,enhancing the expression of target proteins.
     In this study, the use of the microarray enabled us to investigate and demonstrate thekey genes and functions in the aerobic metabolism drift and the two biologicalprocesses, limiting carbon source replacement and methanol-induce expression,using the transcriptomic approach. The key points in the classic fermentation processof Pichia pastoris were also systematically analyzed. This study shed lights onfurther optimization of the classic fermentation process.
引文
[1] Tolner B, Smith L, Begent RH, Chester KA: Production of recombinant protein in Pichiapastoris by fermentation.Nature protocols2006,1:1006-1021.
    [2] Carbone A, Madden R: Insights on the evolution of metabolic networks of unicellulartranslationally biased organisms from transcriptomic data and sequence analysis.Journal ofmolecular evolution2005,61:456-469.
    [3] Rossouw D, Olivares-Hernandes R, Nielsen J, Bauer FF: Comparative transcriptomicapproach to investigate differences in wine yeast physiology and metabolism duringfermentation.Applied and environmental microbiology2009,75:6600-6612.
    [4] Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S: A comparativetranscriptomic, fluxomic and metabolomic analysis of the response of Saccharomycescerevisiae to increases in NADPH oxidation.BMC genomics2012,13:317.
    [5] Ratnakumar S, Hesketh A, Gkargkas K, Wilson M, Rash BM, Hayes A, Tunnacliffe A,Oliver SG: Phenomic and transcriptomic analyses reveal that autophagy plays a major rolein desiccation tolerance in Saccharomyces cerevisiae.Molecular bioSystems2011,7:139-149.
    [6] Syriopoulos C, Panayotarou A, Lai K, Klapa MI: Transcriptomic analysis of Saccharomycescerevisiae physiology in the context of galactose assimilation perturbations.MolecularbioSystems2008,4:937-949.
    [7] Toyotome T, Watanabe A, Kamei K:[Recent progress in the study of fungal virulencefactors and identification of new targets of anti-fungal drug using proteomic andtranscriptomic analysis].Nihon rinsho Japanese journal of clinical medicine2008,66:2255-2260.
    [8] Wang TY, Chen HL, Lu MY, Chen YC, Sung HM, Mao CT, Cho HY, Ke HM, Hwa TY,Ruan SK, et al: Functional characterization of cellulases identified from the cow rumenfungus Neocallimastix patriciarum W5by transcriptomic and secretomicanalyses.Biotechnology for biofuels2011,4:24.
    [9] Wu G, Nie L, Zhang W: Integrative analyses of posttranscriptional regulation in the yeastSaccharomyces cerevisiae using transcriptomic and proteomic data.Current microbiology2008,57:18-22.
    [10] Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, Vu H, Tu Z, Brem RB, Bumgarner RE, SchadtEE: Stitching together multiple data dimensions reveals interacting metabolomic andtranscriptomic networks that modulate cell regulation.PLoS biology2012,10:e1001301.
    [11] Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, BrinkrolfK, Goesmann A, Szczepanowski R, et al: High-quality genome sequence of Pichia pastorisCBS7435.Journal of biotechnology2011,154:312-320.
    [12] Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM: Design ofimproved membrane protein production experiments: quantitation of the hostresponse.Protein science: a publication of the Protein Society2005,14:1729-1740.
    [13] GP Cereghino, JM Cregg:Applications of yeast in biotechnology: protein production andgenetic analysis. Curr Opin Biotechnol1999,10:422
    [14] D Maloney, Yeasts in Kirk-Othmer Encyclopedia of Chemical Technology4thEdition25,761.Interscience-Wiley,1998, ISBN0-471-52694-0
    [15] JJ Heinisch, CP Hollenberg:Yeasts in Biotechnology Second, Completely Revised Edition,469. Vol.1, H Sahm(ed.). VCH Verlagsgesellschaft,1993, ISBN3-527-28337-4
    [16]王谨,李天增,才学鹏:甲醇酵母表达外源基因的研究近况.中国兽医科技2003,33(7):34-38
    [17] Cos O, Ramon R, Montesions JL, et al: Operational strategies, monitoring and control ofheterologous protein production in the methylotrophic yeast Pichia pastoris under differentpromoters:a review. Microb Cell Fact2006,5:17
    [18]张伍魁,范清林,宋礼华:毕赤酵母表达系统在外源基因表达中的研究进展及应用.中国生物工程杂志2006,26(1):87-91
    [19]娄瑞娟,罗利龙,张霞,张瑞刚,宋水山:巴斯德毕赤酵母表达系统的研究进展和前景展望.生物学杂志2010.5:73-76
    [20] Staley CA, Huang A, Nattestad M, et al: Analysis of the5' untranslated region (5'UTR) ofthe alcohol oxidase1(AOX1) gene in recombinant protein expression in Pichia pastoris.Gene2012,496(2):118-127.
    [21] Clare JJ, Rayment FB, Ballantine SP, et a1: High-level expression of tetarus toxin fragmentC in Pichia pasteris strains containing multiple tandem integrations of the gene.Biotechnology1991,9(5):445-460
    [22] Werten MW, vanden Bosch TJ, Wind RD: High-yield secretion of recombinant gelatins byPichia pastoris,Yeast1999,15(11):1087-1096
    [23] Hasslacher, M, Schall M, Hayn M., Bona R:High-Level Intracellular Expression ofHydroxynitrile Lyase from the Tropical Rubber Tree Hevea brasiliensisin Microbial Hosts,Protein Expression and Purification1997,11(1):61-71
    [24]覃晓琳,刘朝奇,郑兰英.信号肽对酵母外源蛋白质分泌效率的影响.生物技术2010,20(3):95-98.
    [25]周则迅,袁汉英,何炜:乙肝病毒表面抗原SA-28融合基因在酵母中的组成型表达.复旦学报(自然科学版)2000,39(3):264-268
    [26] Choi BK, Bobrowicz P, Davidson RC, et al: Use of combinatorial genetic libraries tohumanize N-linked glycosylation in the yeast Pichia pastoris, E Proc Natl Acad Sci USA2003,100:5022-5027
    [27]陆永超,蒋琳:毕赤酵母高效表达策略概述.微生物学免疫学进展2013,1:70-76
    [28] Siegei Rs. Methylotroyphic yeast Pichia pastour produced in high-cell-densityfermentation with high cell yields as vehicle for recomhimant protein production.Biotechnology and Bioegineering1989,34:403-404
    [29] Macauley Patrick S, Fazenda ML, McNeil B, et al: Heterologous protein production usingthe Pichia pastoris expression system.Yeast2005,22(4):249-270
    [30]李英华,白俊杰:鲤鱼生长激素在毕赤酵母中的表达.中国生物化学与分子生物学报2001,4:488-491
    [31]段聚宝:硫氧还蛋白在毕赤酵母中的分泌表达.军事医学科学院院刊1998, l:34-34.
    [32]邢震荡兰,张红卫:血小板生成素在毕赤酵母中的表达.山东大学学报(自然科学版)x2001,l:90-94
    [33]孙瑛,李辉,田方曦,.钟文陷:毕赤酵母表达重组人白细胞介素11的连续培养研究.中国生物工程杂志2003,2:92-100
    [34] Scorer CA, Buckholz RG, Clare JJ, et al: The intracellular production and secretion ofHIV-1envelope protein in the methylotrophic yeast Pichia pastoris. Gene1993.136:111-119
    [35]李柏志:蛋白酶缺陷型毕赤酵母重组表达人血白蛋白中试工艺的研究.吉林大学博士论文.2012
    [36] E Stoppok, K Buchholz: Sugar-Based Raw Materials for Fermentation Applications inBiotechnology2nd Edition,5. Vol.6, M Roehr(ed.). VCH-Wiley,1996, ISBN3-527-28316-1
    [37] JD Troostembergh: Starch-Based Raw Materials for Fermentation Applications inBiotechnology2nd Edition,31. Vol.6, M Roehr(ed.). VCH-Wiley,1996, ISBN3-527-28316-1
    [38] R Greasham: Media for Microbial Fermentations in Biotechnology Second, CompletelyRevised Edition,127. Vol.3, G Stephanopoulos(ed.). VCH Verlagsgesellschaft,1993, ISBN3-527-28313-7
    [39] M Reuss: Oxygen Transfer and Mixing: Scale-Up Implications in Biotechnology Second,Comepletely Revised Edition,185. Vol.3, G Stephanopoulos(ed.). VCH Verlagsgesellschaft,1993, ISBN3-527-28313-7
    [40] Stanislav P: High level expression of human enteropeptidase light chain in Pichia pastoris.Journal of Biotechnology2011,156(1):67-75.
    [41] S Sengha: Fermentation in Kirk-Othmer Encyclopedia of Chemical Technology4th Edition10,361. Interscience-Wiley,1994, ISBN0-471-52678-9
    [42] T Imanaka: Strategies for Fermentation with Recombinant Organisms in BiotechnologySecond, Completely Revised Edition,283. Vol.3, G Stephanopoulos(ed.). VCHVerlagsgesellschaft,1993, ISBN3-527-28313-7
    [43] T Yamana, S Shimizu: Fed-Batch Techniques in Microbial Processes. Adv. Biochem. Eng.Biotechnol1984,30,147
    [44] Demain: Mleroblal biotechnology. Trends in biotechnology2000,18(1):26-31
    [45] Dale C, Allen A, Fogerly S, Pichia pastoris: a eukaryotle system for the large-scaleProduction of biopharmaceuticals.Biopharm1999,11:36-42
    [46] Invitrogen. Mult-copy Pichia Expresson Kit (VersonE).Catalogno.k1750-01
    [47]聂东宋,梁宋平,李敏:外源蛋白在巴氏毕赤酵母中高效表达的策略.吉首大学学报(自然科学版)2001,22(3):40-44
    [48]邹小兵,乐国伟,张必武等:影响毕赤酵母表达外源蛋白的因素.生物技术2002,12(4):45-46
    [49] McAdams HH, Shapiro L: Circuit simulation of genetic networks. Science1995;269:650-6.
    [50] Collins FS: Ahead of schedule and under budget: The Genome Project passed its fifthbirthday. Proc Natl Acad Sci1995;92:10821-3.
    [51] Nowak R: Entering the postgenome era. Science1995;270:368-71.
    [52] Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expressionpatterns with a complementary DNA microarray. Science1995;270:467-70.
    [53] Chen JJW, Wu R, Yang PC, et al: Profiling expression patterns&isolating differentiallyexpressed genes by cDNA microarray system with colorimetry detection. Genomics1998;51:313-24.
    [54] Fodor SPA: Massively parallel genomics. Science1997;277:393-5.
    [55] Lockhart DJ, Dong H, Byrne MC, et al: Expression monitoring by hybridization tohigh-density oligonucleotide arrays. Nat Biotechnol1996;14:1675-80.
    [56] MacBeath G, Schreiber SL: Printing proteins as microarrays for high-throughput functiondetermination. Science2000;289:1760-3.
    [57] Kononen J, Bubendorf L, Kallioniemi A, et al: Tissue microarrays for high-throughputmolecular profiling of tumor specimens. Nat Med1998;4:844-7.
    [58] Anderson RC, Su X, Bogdan GJ, et al: A miniature integrated device for automatedmultistep genetic assays. Nucleic Acids Res2000;28:e60.
    [59] DeRisi J, Penland L, Brown PO, et al: Use of a cDNA microarray to analyze geneexpression patterns in human cancer. Nat Genet1996;14:457-60.
    [60] Chen JJW, Peck K, Hong, TM, et al: Global analysis of gene expression in invasion by alung cancer model. Cancer Res2001;61:5223-30.
    [61] Hong TM, Yang PC, Peck K, et al: Profiling the down stream genes of tumor suppressorPTEN in lung cancer cells by cDNA microarray. Am J Respir Cell Mol Biol2000;23:355-63.
    [62] Chen HW, Chen JJW, Tzeng CR, et al: Global analysis of differentially expressed genes inearly gestational decidua and chorionic villi using a9,600human cDNA microarray. MolHum Reprod2002;8:475-84.
    [63] Afshari CA, Nuwaysir EF, Barrett JC: Application of complementary DNA microarraytechnology to carcinogen identification, toxicology, and drug safety evaluation. Cancer Res.1999;59:4759-60.
    [64] Debouck C, Goodfellow PN: DNA microarrays in drug discovery and development. NatGenet1999;21(1Suppl):48-50.
    [65] Scherf U, Ross DT, Waltham M, et al: A gene expression database for the molecularGenomics and Proteomics pharmacology of cancer. Nat Genet2000;24:236-44.
    [66] Golub TR, Slonim DK, Tamayo P, et al: Molecular classification of cancer: class discoveryand class prediction by gene expression monitoring. Science1999;286:531-7.
    [67] Yeoh EJ, Ross ME, Shurtleff SA, et al: Classification, subtype discovery, and prediction ofoutcome in pediatric acute lymphoblastic leukemia by gene expression profiling. CancerCell2002;1:133-43.
    [68] The Arabidopsis Genome Initiative: Analysis of the genome sequence of the floweringplant Arabidopsis thaliana. Nature2000;408:796-815.
    [69] Yu J, Hu S, Wang J, et al: A draft sequence of the rice genome (Oryza sativa L. ssp.indica). Science2002;296:79-92.
    [70] Iyer VR, Eisen MB, Ross DT, et al: The transcriptional program in the response of humanfibroblasts to serum. Science1999;283:83-7.
    [71] Tamayo P, Slonim D, Mesirov J, et al: Interpreting patterns of gene expression withself-organizing maps: methods and application to hematopoietic differentiation. Proc NatlAcad Sci USA1999;96:2907-12.
    [72] Wang,D: Carbohydrate microarrays. Proteomics2003;3:2167-75.
    [73] Yan PS, Chen CM, Shi H, et al: Dissecting complex epigenetic alterations in breastcancer using CpG island microarrays. Cancer Res2001;61:8375-80.
    [74] K, K., YAMASHITAA, and YAMAoKAK, Isolation and characterization of a newimmunomodulatory Protein,ling zhi-8(LZ-8),from Ganoderma lueidium. The Journal ofBiological Chemistry1989.264(1):472-478.
    [75] L, K.J., H.C. I, and L.R. H, A new fungal immunomodulatory protein,FIP-fve isolated fromthe edible mushroom,Flammulina velutipes and its complete amino acid sequence. Eur JBiochem,1995.228(2):244-249.
    [76] C, H.H., H.C. I, and L.R. H, Fip-vvo,a new fungal immunomodulatory protein isolated fromVovariella volvacea. Biochem J,1997.332(2):557-565.
    [77] WH, L., H.C. H, and H.C. I, Dimerization of the N-terminal amphipathicα-helix domain ofthe fungal immunomodulatory protein from Ganoderma tsugae(Fip-gts)defined by a yeasttwo-hybrid system and site-directed mutagenesis. The Journal of Biological Chemistry,1997.272(32):20044-20048.
    [78] F, S., C. PJ, and H. KY, Purification,cloning,and functional characterization of a novelimmunomodulatory protein from Antrodia camphorata(Bitter Mushroom)that exhibitsTLR2-dependent NF-kappaB activation and M1polarization within murine macrophages. JAgric Food Chem,2009.57(10):4130-4141.
    [79] X, Z., X. M, and H. F, Genomic cloning and characterization of a FIP-gsi gene encoding afungal immunomodulatory protein from Ganoderma sinense. Int J Med Mushrooms,2009.11(1):77-86.
    [80] Wu M-Y, Hsu M-F, Huang C-S et al. A2.0Structure of GMI, a Member of the FungalImmunomodulatory Protein Family from Ganoderma microsporum.. ProteinCrystallography,2007:II-132.
    [81] Zhou X, Xie M, Hong F et al. Genomic Cloning and Characterization of a FIP-gsi GeneEncoding a Fungal Immunomodulatory Protein from Ganoderma sinense Zhao et al.(Aphyllophoromycetideae). International Journal of Medicinal Mushrooms2009,11(1):77-86.
    [82] Li F, Wen H, Zhang Y et al. Purification and characterization of a novel immunomodulatoryprotein from the medicinal mushroom Trametes versicolor. Science China-Life Sciences,2011,54(4):379-385.
    [83]文磊,郑有顺.灵芝-8一种新的免疫调节蛋.国外医学中医中药分册1998,20(1):13.
    [84] Jiunn-Liang Ko, Chyong-Ing Hsu et al. A new fungal immunomodulatory protein, FIP-fveisolated from the edible mushroom,Flammulina velutipes and its complete amino acidsequence. European Journal of Biochemistry,1995,228:244.
    [85]林忠平,白杰英,李彦舫.真菌免疫调节蛋白(FIP)结构与功能研究.辽宁师范大学学报(自然科学版)2006,29(1):83-87.
    [86] Wang X-F, Li Q-Z, Bao T-W et al. In vitro rapid evolution of fungal immunomodulatoryproteins by DNA family shuffling.Applied Microbiology and Biotechnology2013,97:2455–2465
    [87]周选围,李奇璋,林娟:编码草菇真菌免疫调节蛋白的基因序列.200910047782.3.[P].2009-08-19.
    [88] Xilin S, Wei H, Sijia X, Fei S: Extracellular Expression and Efficient Purification of aFunctional Recombinant Volvariella volvacea Immunomodulatory Protein (FIP-vvo) usingPichia pastoris system. Protein Expression and Purification2014,94:95-100
    [89] Curry S, Mandelkow H, Brick P, Franks N: Crystal structure of human serumalbumin.Nature Structural&Molecular Biology1998,5:827-836
    [90] Kang H A, Choi E S,Hong W K, et al: Proteolytic stability of recombinant human serumalbumin secreted in the yeast Sacchar omyces cerevisiae.Appl Microbiol Biotechnol2000,53(5):575-582
    [91] Kaoru K, Shnobu K, Tomoshi O: Highlevel expression of recombinant human serumalbumin from the methylotro phica yeast Pichia pastoris with minimal protease productionand activation. Journal of Bioscience and Bioengineering2000,89(1):45-61
    [92]赵翔,霍克克,李育阳,等:毕赤酵母的密码子用法分析.生物工程学报2000,16(3):308-312.
    [93] Patil A, Chan CT, Dyavaiah M, Rooney JP, Dedon PC, Begley TJ: Translationalinfidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNAmodifications.RNA biology2012,9:990-1001.
    [94] Chen C, Huang B, Anderson JT, Bystrom AS: Unexpected accumulation of ncm(5)U andncm(5)S(2)(U) in a trm9mutant suggests an additional step in the synthesis of mcm(5)Uand mcm(5)S(2)U.PloS one2011,6:e20783.
    [95] Leihne V, Kirpekar F, Vagbo CB, van den Born E, Krokan HE, Grini PE, Meza TJ, FalnesPO: Roles of Trm9-and ALKBH8-like proteins in the formation of modified wobbleuridines in Arabidopsis tRNA.Nucleic acids research2011,39:7688-7701.
    [96] Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, Conklin DS, ZitomerRS, Begley TJ: Trm9-catalyzed tRNA modifications link translation to the DNA damageresponse.Molecular cell2007,28:860-870.
    [97] Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R: tRNAGlu wobble uridinemethylation by Trm9identifies Elongator's key role for zymocin-induced cell death inyeast.Molecular microbiology2006,59:677-688.
    [98] Wong HH, Kim YC, Lee SY, Chang HN: Effect of post-induction nutrient feeding strategieson the production of bioadhesive protein in Escherichia coli.Biotechnology andbioengineering1998,60:271-276.
    [99] Guo Meijin, Wu Kanghua, Zhuang Yingping, Chu Ju, Zhang Siliang:Studies oncharacteristics of kinetics and metabolic shiftof genetically engineered yeast Pichia pastorisinhigh-density chemostat cultivation. Acta Microbiologica Sinica2001,10:617-624.
    [100]Charoenrat T, Ketudat-Cairns M, Stendahl-Andersen H, Jahic M, Enfors SO:Oxygen-limited fed-batch process: an alternative control for Pichia pastoris recombinantprotein processes.Bioprocess and biosystems engineering2005,27:399-406.
    [101]Nagamori E, Fujita H, Shimizu K, Tokuhiro K, Ishida N, Takahashi H: Fed-batch systemfor cultivating genetically engineered yeast that produces lactic acid via the fermentativepromoter.Journal of bioscience and bioengineering2013,115:193-195.
    [102]Zimmer E, Blanchard S, Boze H, Moulin G, Galzy P: Glucose metabolism in the yeastSchwanniomyces castellii: role of phosphorylation site I and an alternative respiratorypathway.Applied and environmental microbiology1997,63:2779-2784.
    [103]Chen SL, Gutmains F: Carbon dioxide inhibition of yeast growth in biomassproduction.Biotechnology and bioengineering1976,18:1455-1462.
    [104]Chen XJ, Wang X, Butow RA: Yeast aconitase binds and provides metabolically coupledprotection to mitochondrial DNA.Proceedings of the National Academy of Sciences of theUnited States of America2007,104:13738-13743.
    [105]Lee YJ, Hoe KL, Maeng PJ: Yeast cells lacking the CIT1-encoded mitochondrial citratesynthase are hypersusceptible to heat-or aging-induced apoptosis.Molecular biology of thecell2007,18:3556-3567.
    [106]Anderson SL, Schirf V, McAlister-Henn L: Effect of AMP on mRNA binding by yeastNAD+-specific isocitrate dehydrogenase.Biochemistry2002,41:7065-7073.
    [107]Grandier-Vazeille X, Bathany K, Chaignepain S, Camougrand N, Manon S, Schmitter JM:Yeast mitochondrial dehydrogenases are associated in a supramolecularcomplex.Biochemistry2001,40:9758-9769.
    [108]Velot C, Lebreton S, Morgunov I, Usher KC, Srere PA: Metabolic effects of mislocalizedmitochondrial and peroxisomal citrate synthases in yeast Saccharomycescerevisiae.Biochemistry1999,38:16195-16204.
    [109]Zhao WN, McAlister-Henn L: Assembly and function of a cytosolic form ofNADH-specific isocitrate dehydrogenase in yeast.The Journal of biological chemistry1996,271:10347-10352.
    [110]Sandor A, Johnson JH, Srere PA: Cooperation between enzyme and transporter in the innermitochondrial membrane of yeast. Requirement for mitochondrial citrate synthase forcitrate and malate transport in Saccharomyces cerevisiae.The Journal of biologicalchemistry1994,269:29609-29612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700