液固界面上蛋白质迁移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质分离纯化是重组蛋白生产的瓶颈,高效液相色谱(high performance liquidchromatography,HPLC)是分离和纯化蛋白,特别是制备规模上的最有效的方法,也是制药工业中一种基本的分析和制备工具。蛋白质的性质与小分子不同,分离过程中,不仅会因分子大小的巨大差别,而且还会因分子构象发生的变化,使两者在色谱中保留行为存在很大差别。基于分离介质功能团和蛋白质的性质不同,优化分离操作参数是费时且耗财的过程。不同的样品中多肽,蛋白,小分子在色谱中的保留行为差别很大,所以,研究蛋白质在色谱中的保留行为规律对于色谱分离的条件优化和保留分子机理的研究有重要意义。本文研究内容分为5部分:
     文献综述:现有的描述蛋白色谱保留模型都是从小分子的色谱保留模型发展而来,在预测蛋白保留时间方面存在很大偏差。对现有的描述溶质色谱保留模型进行综述。共引用文献148篇,其中近三年的文献占到16%。
     以疏水色谱柱为例,研究蛋白质在疏水色谱(hydrophobic interactionchromatography,HIC)固定相界面上的迁移规律,对其保留时间和洗脱剂浓度、进样时间等之间关系进行研究。首次发现梯度洗脱中,蛋白质在分子构象基本不发生变化的条件下,其保留时间可分为不随进样时间变化的直线部分和随进样时间变化的开始迁移部分,并首次提出蛋白质在色谱中不连续迁移的概念。通过对该过程的自由能变化计算发现,对于同一根色谱柱,各种蛋白从开始迁移到完全洗脱的自由能变化为一定值,该自由能变化的大小与所使用的色谱柱有关。最后利用大分子在HIC中的保留行为规律,进行大小分子的分离和缓冲溶液交换理论研究。
     研究反相色谱(reversed phase liquid chromatography,RPLC)乙腈-水体系中,在蛋白质分子结构会发生变化,甚至变性的条件下,研究了流速对分离度和迁移的影响。结果发现:RPLC中小分子溶质的迁移速度随流速变化大,蛋白质类大分子溶质迁移随流速变化小。且溶质的相对保留值与流速之间存在双对数线性关系。
     研究了4根商品弱阴离子交换(weak-anion exchange chromatography,WAX)柱中存在的疏水相互作用机理。发现尽管存在的疏水作用强度不同,但是WAX中存在HIC机理是一个普遍现象。从分子机理上对该现象进行了解释,利用计量置换理论(stoichiometric displacement theory,SDT)对该现象进行了验证。
     利用WAX柱中存在HIC机理进行了在线单柱二维液相色谱分离纯化工业α-淀粉酶,并进行在线缓冲溶液交换。与单独的商品HIC柱进行比较发现,在线单柱二维分离纯化效果要远优于单独的HIC效果。
The purity and separation of recombinant proteins are the technical bottleneck in down-stream technology of biotechnology. High performance liquid chromatography (HPLC) is the best way for purifying and separating the proteins, especially in preparative scale, it is also an important analytical tool in pharmaceutical industry. Due to the distinction of proteins and small molecular mass, the retention character of proteins during separation process by HPLC is quite different from that of small solutes. The changes in the molecular conformation of proteins during this process may change and bring in more difficulties. So it is important to optimize the separation parameter and to understand molecular mechanism of protein retention. Besides thermodynamic factors, the migration rule of solute involving in dynamic factors is the other important thing for this optimization. The thesis is to investigate the latter instance. The thesis contains five parts as follow:
     From the recent development of protein retention model was reviewed. When the retention mode of small solutes is employed for the prediction of protein retention, a great deviation occurs. This fact indicates that some problems scientists have net been found yet. 148 references were cited, the recent 3 years references account for 16%.
     Take hydrophobic interaction chromatography (HIC) column as an example, the migration rule of proteins on the interface between the stationary phase of HIC and mobile phase was investigated. It is firstly found that during gradients elution and the molecular conformation of proteins remains invariance, proteins retention is independent of the injection time until to a specific value for each protein. Thus, the retention of protein can be separated two parts: protein almost does not move as mobile phase strength is weaker than a certain value and protein starts to migrate until it is eluted out. In the latter instance, a quantitative relationship between the protein migration and the mobile phase composition was found. Based on this fact, a new concept of proteins discontinuous migration is firstly proposed.
     For reversed phase liquid chromatography (RPLC), using acetonitrile-water as mobile phase, when proteins were separated under the condition of molecular conformation of proteins changes, even denature, the foregoing discontinuous migration was also found. Small solutes were found to move faster than proteins when velocity of mobile phase increase, and also found a log-log linear relationship between relative retention time and flow-rate.
     Four commercial weak-anion exchange chromatography (WAX) columns were tested whether HIC retention exists, or not. The experimental result indicates that the existence of HIC mechanism in all of WAX column is a universal phenomenon, i.e., each of WAX column has a mixed-retention mode of WAX and HIC, although the extent is different. The phenomenon was explained by molecule mechanism and the stoichiometric displacement theory (SDT) was used to test this phenomenon.
     The HIC mechanism existed in WAX was used to on-line two-dimensional liquid chromatography using a single column (2DLC-1C) to separate industryα-amylase firstly, and buffer exchange was carried out also with on-line manner. Compared to commercial HIC, the purity efficiency of 2DLC-1C is superior to either a single HIC column, or a WAX IEC column.
引文
[1]Geng X.D.,Wang L.L.Liquid chromatography of recombinant proteins and protein drugs[J].Journal of Chromatography B,2008,V866(1-2):133-153
    [2]安代志,郭长江.代谢组学与营养学研究[J].生理科学进展,2007,38(3):277-279
    [3]Jandera P.,Petranek L.,Kuerova M.Characterisation and prediction of retention in isocratic and gradient-elution normal-phase high-performance liquid chromatography on polar bonded stationary phases with binary and ternary solvent systems[J].Journal of Chromatography A,1997,V791(1-2):1-19
    [4]Horvath C.,Melander W.,Molnar I.Solvophobic interactions in liquid chromatography with nonpolar stationary phases[J].Journal of Chromatography,1976,V125(1):129-156
    [5]Thom(a|¨) C.,Krause I.,Kulozik U.Precipitation behaviour of caseinomacropeptides and their simultaneous determination with whey proteins by RP-HPLC[J].International Dairy Journal,2006,V16(4):285-293
    [6]Schweizer M,Chevalot I.,Blanchard E,et al.Prediction of short peptides composition by RP-HPLC coupled to ESI mass spectrometry[J].Food Chemistry,2007,V105(4):1606-1613
    [7]Mu W.,Zhang D.,Xu L.,et al.Activity assay of His-tagged E.coli DNA photolyase by RP-HPLC and SE-HPLC[J].Journal of Biochemical and Biophysical Methods,2005,V63(2):111-124
    [8]Thompson P.E.,Hearn M.T.W.A simple and inexpensive sample-handling method for the semi-preparative RP-HPLC of polypeptides and non-polar peptide derivatives:pre-adsorption of samples[J].Journal of Biochemical and Biophysical Methods,1995,V30(2-3):153-161
    [9]Aguilar M.I.,Mougos S.,Boublik J.,et al.High-performance liquid chromatography of amino acids,peptides and proteins CⅩⅩⅤⅢ.Effect of D-amino acid substitutions on the reversed-phase high-performance liquid chromatography retention behaviour of neuropeptide Y[18-36]analogues[J].Journal of Chromatography,1993,V646(1):53-65
    [10]Hodges R.S.,Zhu B.,Zhou N.E.,et al.Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability[J].Journal of Chromatography A,1994,V676(1):3-15
    [11]Wilce M.C.J.,Aguilar M.I.,Hearn M.T.W.High-performance liquid chromatography of amino acids,peptides and proteins:CⅩⅩⅡ.Application of experimentally derived retention coefficients to the prediction of peptide retention times: studies with myohemerythrin[J].Journal of Chromatography A, 1993,V632(l-2): 11-18
    
    [12] Aguilar M. I., Hearn M. T. W. High-resolution reversed-phase high-performance liquid chromatography of peptides and proteins[J]. Methods in Enzymology, 1996,V270:3-26
    
    [13] Fausnaugh J. L., Kennedy L. A., Regnier F. E. Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins[J]. Journal of Chromatography,1984,V317:141-155
    
    [14] Naeem H. A., Sapirstein H. D. Ultra-fast separation of wheat glutenin subunits by reversed-phase HPLC using a superficially porous silica-based column Journal of Cereal Science, 2007,V46(2):157-168
    
    [15] Guo D., Mant C. T., Taneja A. K., et al. Prediction of peptide retention times in reversed-phase high-performance liquid chromatography I. Determination of retention coefficients of amino acid residues of model synthetic peptides[J]. Journal of Chromatography,1986, V359:499-518
    
    [16] Guo D., Mant C. T., Taneja A. K., et al. Prediction of peptide retention times in reversed-phase high-performance liquid chromatography II. Correlation of observed and predicted peptide retention times factors and influencing the retention times of peptides[J].Journal of Chromatography, 1986,V359:519-532
    
    [17] Hearn M. T. W., Grego B. High-performance liquid chromatography of amino acids, peptides and proteins: XL. Further studies on the role of the organic modifier in the reversed-phase high-performance liquid chromatography of polypeptides. Implications for gradient optimization[J]. Journal of Chromatography, 1983,V255:125-136
    
    [18] Geng X. D., Regnier F. E. Retention model for proteins in reversed-phase liquid chromatography[J]. Journal of Chromatography, 1984, V296:15-30
    
    [19] Geng X., Regnier F. E. Stoichiometric displacement of solvent by non-polar solutes in reversed-phase liquid chromatography[J]. Journal of Chromatography, 1985,V332:147-168
    
    [20] Quarry M. A., Stadalius M. A., Mourey T. H., et al. General model for the separation of large molecules by gradient elution: Sorption versus precipitation[J]. Journal of Chromatography, 1986, V358:1-16
    
    [21] Stadalius M. A., Quarry M. A., Mourey T. H., et al. Conventional chromatographic theory versus "critical" solution behavior in the separation of large molecules by gradient elution[J]. Journal of Chromatography, 1986, V358:17-37
    
    [22] Jaulmes A., Vidal-Madjar C. Split-peak phenomenon in nonlinear chromatography. 1. A theoretical model for irreversible adsorption[J]. Analytical Chemistry, 1991,V63(11):1165-1174
    [23]Cavazzini A.,Bardin G,Kaczmarski K.,et al.Adsorption equilibria of butyl- and amylbenzene on monolithic silica-based columns[J].Journal of Chromatography A,2002,V957(2):111-126
    [24]Regnier F.E.,The role of protein structure in chromatographic behavior[J].Science,1987,V238(4825):318-323
    [25]Velayudhan A.,M.R.Ladisch.Role of the modulator in gradient elution chromatography[J].Analytical Chemistry,1991,V63(18):2028-2032
    [26]Fallah M.Z.E.,Guiochon G.Gradient elution chromatography at very high column loading:effect of the deviation from the Langmuir model on the band profile of a single component[J].Analytical Chemistry,1991,V63(20):2244-2252
    [27]McMormick R.M.,Karger B.L.Distribution phenomena of mobile-phase components and determination of dead volume in reversed-phase liquid chromatography[J].Analytical Chemistry,1980,V52(14):2249-2257
    [28]Boardman N.K.,Partridge S.M.Separation of neutral proteins on ion- exchange resins[J].Biochemical Journal,1955,V59(4):543-522
    [29]Heam M.T.W.,Aguilar M.I.High-performance liquid chromatography of amino acids,peptides and proteins:LⅩⅩⅢ.Investigations on the relationships between molecular structure,retention and band-broadening properties of polypeptides separated by reversed-phase high-performance liquid chromatography[j].Journal of Chromatography,1987,V397:47-70
    [30]Meek J.L.,Rossetti Z.L.,Factors affecting retention and resolution of peptides in high-performance liquid chromatography[J].Journal of Chromatography,1981,V211:15-28
    [31]耿信笃.计量置换理论及应用[M].北京:科学出版社,2004
    [32]Wagner G,Regnier F.E.Rapid chromatofocusing of proteins[J].Analytical Biochemistry,1982,V126(1):37-43
    [33]Pepaj M.,Wilson S.R.,Novotna K.Two-dimensional capillary liquid chromatography:pH Gradient ion exchange and reversed phase chromatography for rapid separation of proteins[J].Journal of Chromatography A,2006,V1120(1-2):132-141
    [34]Unger K.K.,Porous Silica[M].Amsterdam,Elsevier,1979:15-17
    [35]Kennedy G.J.,Knox J.H.Performance of packings in high perfprmance liquid chromatograhy supports[J].Journal of Chromatographic Science,1972,V10:549-556
    [36]Barder T.J.,Wohlman P.J.,Thrall C.,et al.Fast chromatography and nonporous silica[J].LC-GC,1997,V15(10):918-926
    [37] J.J. Kirkland. Superficially porous silica microspheres for the fast high-performance liquid chromatography of macromolecules[J]. Analytical Chemistry, 1992,V64 (11): 1239-1245
    
    [38] Issaeva T., Kourganov A., Unger K. Super-high-speed liquid chromatography of proteins and peptides on non-porous Micra NPS-RP packings[J]. Journal of Chromatography A,1999, V846 (1-2) 13-23
    
    [39] J.J. Kirkland. Controlled surface porosity supports for high speed gas and liquid chromatography[J]. Analytical Chemistry, 1969,V41(1) 218-220
    
    [40] Kirkland J. J., DeStefano J. J. Controlled surface porosity supports with chemically-bonded organic stationary phases for gas and liquid chromatography[J]. Journal of Chromatographic Science, 1970,V8(6):309-314
    
    [41] Al-Bokari M., Cherrak D., Guiochon G. Determination of the porosities of monolithic columns by inverse size-exclusion chromatography [J]. Journal of Chromatography A,2002,V975(2):275-284
    
    [42] Hjerten S., Liao J., Zhang R. High-performance liquid chromatography on continuous polymer beds[J]. Journal of Chromatography, 1989,V473:273-275
    
    [43] Tennikova T.B., Belenki B.G.i, Svec F. High-performance membrane chromatography. A novel method of protein separation [J]. Journal of Liquid Chromatography & Related Technologies, 1990,V13(1):63-70
    
    [44] Merhar M., Podgornik A., Barut M., et al. Methacrylate monoliths prepared from various hydrophobic and hydrophilic monomers - structural and chromatographic characteristics.[J]. Journal of Separation Science,2003,26(3-4):322-330
    
    [45] Zou H, Huang X., Ye M., et al. Monolithic stationary phases for liquid chromatography and capillary electrochromatography[J]. Journal of Chromatography A, 2002,V954(1-2):5-32
    
    [46] Siouffi A., Silica gel-based monoliths prepared by the sol-gel method: facts and figures[J]. Journal of Chromatography A, 2003,V1000(1-2):801-818
    
    [47] Hilder E. F., Svec F., Fréchet J. M. J., Development and application of polymeric monolithic stationary phases for capillary electrochromatography[J]. Journal of Chromatography A, 2004,V1044(1-2):3-22
    
    [48] Urban J., Jandera P., Ku(?)erováZ., et al. A study of the effects of column porosity on gradient separations of proteins[J]. Journal of Chromatography A, 2007, V1167(1):63-75
    
    [50] Jandera P. Gradient elution in liquid column chromatography-prediction of retention and optimization of separation[J]. Advances in Chromatography, 2005,V43:1-108.
    
    [51] Pomazal K., Prohaska C., Steffan I. Hydrophobic interaction chromatographic separation of proteins in human blood fractions hyphenated to atomic spectrometry as detector of essential elements[J].Journal of Chromatography A,2002,V960(1-2):143-150
    [52]Diogo M.M.,Ribeiro S.,Queiroz J.A.,et al.Scale-up of hydrophobic interaction chromatography for the purification of a DNA vaccine against rabies[J].Biotechnology Letters,2000,22(17):1397-1400
    [53]Lienqueo M.E.,Mahn A.,Salgado J.C.,et al.Current insights on protein behaviour in hydrophobic interaction chromatography[J].Journal of Chromatography B,2007,V849(1-2):53-68
    [54]Asenjo J.A.,Andrew B.A.Is there a rational method to purify proteins? From expert systems to proteomics[J].Journal of Molecular Recognition,2004,V17(3):236-247
    [55]Kennedy L.A.,Kopacoewicz W.,Regnier F.E.Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic-interaction mode[J].Journal of Chromatography,1986,V359:73-84
    [56]Rassi Z.E.,Horvath C.Tandem columns and mixed-bed columns in high-performance liquid chromatography of proteins[J].Journal of Chromatography A,1986,V359:255-264
    [57]柯从玉,耿信笃.活性蛋白液相色谱快速分离新方法[J].科学通报,2008,V53(5):614-616
    [58]Geng X.D.,Ke C.Y.,Chen G.,et al.On-line separation of native proteins by two-dimensional liquid chromatography using a single column[J].Journal of Chromatography A,2009,V1216(16):3653-3562
    [59]Despa F.,Berry R.S.The Origin of long-range attraction between hydrophobes in water[J].Biophysical Journal,2007,V92(2):373-378
    [60]Kaliszan K,Foks H.The relationship between the RM values and the connectivity indexes for pyrazine carbothioamide derivatives[J].Chromatographia,197.7,V10(7):346-349
    [61]Kaliszan R.Correlation between the retention indexes and the connectivity indexes of alcohols and methyl esters with complex cyclic structure[J].Chromatographia,1977,V10(9):529-531
    [62]Michotte Z.,Massart D.L.Molecular connectivity and retention indexes[J].Journal of Pharmaceutical Sciences,1977,V66(11):1630-1632
    [63]Kaliszan,R.Quantitative structure-chromatographic retention relationships[M].New York:Wiley,1987
    [64]Smith,R.M.Retention and selectivity in liquid chromatography[M].Amsterdam:Elsevier,1995
    [65]Jurs,P.C.Computer software applications in chemistry,2nd ed.[M].New York:Wiley, 1996
    
    [66] Forgacs E., Cserhati T. Molecular bases of chromatographic separations[M]. Boca Raton, FL: CRC Press, 1997
    
    [67] Jinno K. Chromatographic separations based on molecular recognition[M]. New York: Wiley, 1997
    
    [68] Dorsey, J. G.; Khaledi, M. G. Hydrophobicity estimations by reversed-phase liquid chromatography : Implications for biological partitioning processes[J]. Journal of Chromatography A, 1993, V656(1-2):485-499
    
    [69] Karelson M., Lobanov V. S., Katritzky, A. R. Quantum-chemical descriptors in QSAR/QSPR studies[J]. Chemical Reviews, 1996,V96(3), 1027-1043
    
    [70] R. Kaliszan, Structure and retention in chromatography: A chemometric approach, Amsterdam: Harwood Academic, 1997
    
    [71]. Kaliszan R., Straten M. A., Markuszewski M.., et al. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure-retention relationships[J]. Journal of Chromatography A, 1999,V855(2):455-486
    
    [72] Massart D. L., Vandeginste B. G. M., Deming S. N., et al. Chemometrics: A Textbook[M]. Amsterdam. Elsevier,1988
    
    [73] Jackson P. T., Schure M. R., Weber T. P., et al. Intermolecular interactions involved in solute retention on carbon media in reversed-phase high-performance liquid chromatography[J]. Analytical Chemistry, 1997,V69(3):416-425
    
    [74] Li J., Carr P. W. Characterization of polybutadiene-coated zirconia and comparison to conventional bonded phases by use of linear solvation energy relationships[J]. Analytica Chimica Acta, 1996,V334(3):239-250
    
    [75] Valko K., Bevan C., Reynolds D. Chromatographic hydrophobicity index by fast-gradient RP-HPLC: A high-throughput alternative to log P/log D[J]. Analytical Chemistry, 1997,V69(11):2022-2029
    
    [76] J.H. Park, M.D. Jang, D.S. Kim, P.W. Carr, Solvatochromic hydrogen bond donor acidity of aqueous binary solvent mixtures for reversed-phase liquid[J]. Journal of Chromatography, 1990, V513:107-116
    
    [77] Katritzky A. R., Petrukhin R., Tatham D., et al. Interpretation of quantitative structure-property and -activity relationships[J]. Journal of Chemical Information and Computer Sciences, 2001, V41(3):679-685
    
    [78] Montana M. P., Pappano N. B., Debattista N. B., et al. High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling[J]. Chromatographia, 2000,V51(11-12):727-735
    
    [79] Sutter, J. M.; Peterson, T. A.; Jurs, P. C. Prediction of gas chromatographic retention indices of alkylbenzenes[J]. Analytica Chimica Acta, 1997, V342(2-3):113-122
    
    [80] Loukas Y. L. Artificial neural networks in liquid chromatography: efficient and improved quantitative structure-retention relationship models[J]. Journal of Chromatography A, 2000, V904(2): 119-129
    
    [81] Mazza C. B., Sukumar N., Breneman C. M., et al. Prediction of protein retention in ion-exchange systems using molecular descriptors obtained from crystal structure[J]. Analytical Chemistry, 2001,73(22):5457-5461
    
    [82] Song M. H., Breneman C. M., Bi J. B., et al. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression[J]. Journal of Chemical Information and Computer Sciences, 2002, V42(6): 1347-1357
    
    [83] Meek, J. L. Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition[J]. Proceedings of the National Academy of Sciences of the United States of America, 1980, V77(3): 1632-1636.
    
    [84] Palmblad M., Ramstr(o|¨)m M., Markides K. E., et al. Prediction of chromatographic retention and protein identification in liquid chromatography/mass spectrometry[J]. Analytical Chemistry, 2002,V74(22):5826-5830
    
    [85] Palmblad M.,; Ramstrom M., Bailey C. G., et al. Protein identification by liquid chromatography-mass spectrometry using retention time prediction[J]. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,2004,V803(1):131-135
    
    [86] Baczek, T.; Wiczling, P.; Marszatt, M.; Heyden, Y. V.; Kaliszan, R. Prediction of peptide retention at different HPLC conditions from multiple linear regression models[J]. Journal of Proteome Research, 2005,V4(2):555-563
    
    [87] Kaliszan R., Baczek T., Cimochowska A., et al. Prediction of high-performance liquid chromatography retention of peptides with the use of quantitative structure-retention relationships[J].Proteomics, 2005,V5(2):409-415.
    
    [88] Sanz-Nebot V., Toro I., Barbosa J. Prediction of retention behaviour and evaluation of pK_a values of peptides and quinolones in liquid chromatography[J]. Journal of Chromatography A, 2001, V933(1-2):45-56
    
    [89] Petritis K., Kangas L. J., Ferguson P. L., et al. Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses[J]. Analytical Chemistry, 2003, 75(5): 1039-1048
    
    [90] Yoshida T. Calculation of peptide retention coefficients in normal-phase liquid chromatography[J]. Journal of Chromatography A, 1998,V808(1-2): 105-112
    
    [91] Yoshida T., Okada T. Prediction of peptide retention times in normal-phase liquid chromatography with only a single gradient run[J]. Journal of Chromatography A, 1999,841(1):19-32
    
    [92] Agatonovic-Kustrin S., Zecevic M., Zivanovic L. Use of ANN modelling in structure-retention relationships of diuretics in RP-HPLC[J]. Journal of Pharmaceutical and Biomedical Analysis, 1999, V21(1):95-103
    
    [93] Tham, S. Y.; Agatonovic-Kustrin, S. Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives[J]. Journal of Pharmaceutical and Biomedical Analysis, 2002,V28(3-4):581-590
    
    [94] Ruggieri F., D'Archivio A. A., Carlucci G., et al. Application of artificial neural networks for prediction of retention factors of triazine herbicides in reversed-phase liquid chromatography[J]. Journal of Chromatography A, 2005,V1076(1-2): 163-169
    
    [95] Jalali-Heravi M., Garkani-Nejad Z. Prediction of electrophoretic mobilities of sulfonamides in capillary zone electrophoresis using artificial neural networks[J]. Journal of Chromatography A, 2001,V927(1-2):211-218
    
    [96] Jalali-Heravi M., Garkani-Nejad Z. Prediction of electrophoretic mobilities of alkyl- and alkenylpyridines in capillary electrophoresis using artificial neural networks[J]. Journal of Chromatography A, 2002, V971(1-2):207-215
    
    [97] Sugimoto M., Kikuchi S., Arita M., Soga T.,et al. Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks[J]. Analytical Chemistry, 2005,V77(1):78-84
    
    [98] Hammer C. L., Small G. W., Combs R. J., et al. Artificial neural networks for the automated detection of trichloroethylene by passive fourier transform infrared spectrometry[J].Analytical Chemistry, 2000, V72(7):1680-1689
    
    [99] Jalali-Heravi M, Fatemi M. H. Prediction of thermal conductivity detection response factors using an artificial neural network[J]. Journal of Chromatography A,2000,V897(1-2):227-235
    
    [100] Aires-de-Sousa J., Hemmer M. C., Gasteiger J. Prediction of thermal conductivity detection response factors using an artificial neural network[J]. Analytical Chemistry,2002,V74(1-2):80-90
    [101] Muzikar, M.; Havel, J.; Macka, M. Capillary electrophoresis determinations of trace concentrations of inorganic ions in large excess of chloride: Soft modelling using artificial neural networks for optimisation of electrolyte composition[J]. Electrophoresis,2003,V24(12-13):2252-2258
    
    [102] Strittmatter E. F., Kangas L. J., Petritis K., et al. Application of peptide LC retention time information in a discriminant function for peptide identification by tandem mass spectrometry [J]. Journal of Proteome Research, 2004, 3 (4): 760-769
    
    [103] Kawakami T., Tateishi K., Yamano Y., et al. Protein identification from product ion spectra of peptides validated by correlation between measured and predicted elution times in liquid chromatography/mass spectrometry[J]. Proteomics 2005, V5(4):856-864
    
    [104] Norbeck, A. D.; Monroe, M. E.; Adkins, J. N.; Anderson, K. K.;Daly, D. S.; Smith, R. D. The utility of accurate mass and LC elution time information in the analysis of complex proteomes. Journal of the American Society for Mass Spectrometry, 2005, V16(8): 1239-1249
    
    [105] Shinoda K., ugimoto M., Yachie N., et al. Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the escherichia coli proteome using artificial neural networks[J]. Journal of Proteome Research, 2006, V5 (12):3312-3317
    
    [106] Nesvizhskii A. I., Keller A, Kolker E.,et al. A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry[J]. Analytical Chemistry, 2003,V75(17):4646-4658
    
    [107] Cargile B. J., Bundy J. L., Freeman T. W., et al. Gel based isoelectric focusing of peptides and the utility of isoelectric point in protein identification[J]. Journal of Proteome Research, 2004, V3(1): 112-119
    
    [108] Krokhin O. V., Ying S., Cortens J. P., et al. Use of peptide retention time prediction for protein identification by off-line reversed-phase HPLC-MALDI MS/MS [J]. Analytical Chemistry, 2006, V78( 17): 6265-6269
    
    [109] Krokhin, O. V. Sequence-specific retention calculator, algorithm for peptide retention prediction in ion-pair RP-HPLC: Application to 300- and 100-A pore size C18 sorbents[J]. Analytical Chemistry, 2006,V78(22):7785-7795
    
    [110] Spicer V., Yamchuk A., Cortens J., et al. Sequence-specific retention calculator. A family of peptide retention time prediction algorithms in reversed-phase HPLC: Applicability to various chromatographic conditions and columns[J]. Analytical Chemistry,2007,V79(23):8762-8768
    
    [111] Snyder R., Dolan J. W. The linear-solvent-strength model of gradient elution[J]. Advances in Chromatography, 1998, V38:115-187
    
    [112] Haber P., Baüczek T., Kaliszan R., et al. Computer simulation for the simultaneous optimization of any two variables and any chromatographic procedure[J].Journal of Chromatographic Science,2000,V38(9):386-392
    [113]Kaliszan R.,Wiczling P.,Markuszewski M.J.pH gradient reversed-phase HPLC[J].Analytical Chemistry,2004,V76(3):749-760
    [114]王利娟,杨更亮,刘二东,等.蛋白质在反相高效液相色谱梯度洗脱条件下保留时间的预测[J].离子交换与吸附,2006,22(2):120-125
    [115]Lienqueo M.E,Mahn A.V,Asenjo J.A.Mathematical correlations for predicting protein retention time in hydrophobic interaction chromatography[J].Journal of Chromatography A,2002,V978(1-2):71-79
    [116]Berman H.M,Westbrook J.,Feng Z.,et al.The protein data bank[J].Nucleic Acids Research,2000,V28(1):235-342
    [117]Mahn A.,Asenjo J.A.Prediction of protein retention in hydrophobic interaction chromatography[J].Biotechnology Advances,2005,V23(5):359-368
    [118]Snyder L.R.,Stadalius M.A.,Horvath Cs.High-performance liquid chromatography-advances and perspectives[M].New York:Academic Press,1986,V4:193-318
    [119]Kopaciewiez W.,Rounds M.A.,Fausnaugh J.,et al.Retention model for high-performance ion-exchange chromatography[J].Journal of Chromatography,1983,V266:3-21
    [120]Anderson D.J.,Walters R.R.Affinity chromatographic examination of a retention model for macromolecules[J].Journal of Chromatography,1985,V331:1-10
    [121]Geng X.D,Guo L.,Chang J.Study of the retention mechanism of proteins in hydrophobic interaction chromatography[J].Journal of Chromatography,1990,V507(1):1-23
    [122]Rounds M.A.,Regnier F.E.Evaluation of a retention model for high-performance ion-exchange chromatography using two different displacing salts[J].Journal of Chromatography A,1984,V283:37-45
    [123]Drager R.R.,Regnier F.E.Application of the stoichiometric displacement model of retention to anion-exchange chromatography of nucleic acids[J].Journal of Chromatography A,1986,V359:147-155
    [124]Drager R.R.,Regnier F.E.Retention mechanism of lactate dehydrogenase in anion-exchange chromatography[J].Journal of Chromatography A,1987,V406:237-246
    [125]Jandera P.,Churacek J.Gradient elution in liquid chromatography:Ⅱ.Retention characteristics(retention volume,band width,resolution,plate number) in solvent-programmed chromatography — theoretical considerations[J].Journal of Chromatography,1974,V91:223-235
    [126]Zhang C.,Glatz C.E.Applicability of the stoichiometric displacement model to description of the retention behavior of charged-fusion proteins during fast protein liquid chromatography[J].Journal of Chromatography A,2005,V1069(1):113-118
    [127]Hearn M.T.W.,RegnierF.,Wehr C.T.American Laboratory,1982,V14(10):18-39
    [128]Regnier.F.E.HPLC of proteins,peptides,and polynucleotides[J].Analytical Chemistry,1983,V55(13):1298A-1306A
    [129]Snyder L.R.,Stadalius M.A.,Quarry M.A.Gradient elution in reversed-phase HPLC-separation of macromolecules[J].Analytical Chemistry,1983,V55(14):1412A-1430A
    [130]Tennikov M.B.,Gazdina N.V.,Tennikova T.B.,et al.Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins[J].Journal of Chromatography A,1998,V798(1-2):55-64
    [131]Belenkii B.G,Podkladenko A.M.,Kurenbin O.I.,et al.Peculiarities of zone migration and band broadening in gradient reversed-phase high-performance liquid chromatography of proteins with respect to membrane chromatography[J].Journal of Chromatography,1993,V645(1):1-15
    [132]Dolan J.W.,Snyder L.R.,Djordjevic N.M.,et al.Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time:I.Peak capacity limitations[J].Journal of Chromatography A,1999,V857(1-2):1-20
    [133]Hayakawa K.,Hirano M,Yoshikawa K.,et al.Journal of Chromatography A,Separation of phenylthiohydantoin-amino acids by temperature-controlled reversed-phase high-performance liquid chromatography[J].Journal of Chromatography A,1999,V846(1-2):73-82
    [134]Purcell A.W.,Zhao G.L.,Aguilar M.I.,et al.Comparison between the isocratic and gradient retention behaviour of polypeptides in reversed-phase liquid chromatographic environments[J].Journal of Chromatography A,1999,V852(1):43-57
    [135]Horvath C.S.,Lipsky S.R.Peak capacity in chromatography[J].Analytical Chemistry,1967,V39(14):1893
    [136]Neue U.D.,Carmody J.L.,Cheng Y.F.,et al.Design of rapid gradient methods for the analysis of combinatorial chemistry libraries and the preparation of pure compounds.Advances in Chromatography,2001,V41:93-136
    [137]Bushey M.M,Jorgenson J.W.Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography/capillary zone electrophoresis[J].Analytical Chemistry,1990,V62(10):161-167
    [138]Xu X.,Lan J.,Korfmacher W.A.Rapid LC/MS/MS method development for drug discovery[J].Analytical Chemistry,2005,V77(19):389A-394A
    [139]Moore R.M.,Waiters R.R.Protein separations on reversed-phase high-performance liquid chromatography minicolumns[j].Journal of Chromatography,1984,V317:119-128
    [140]张养军,李翔,耿信笃.生物大分子液相色谱分离中色谱柱长与柱径比的优化研究[J].分析化学,2002,30(5),544-547
    [141]李翔,张养军,耿信笃.半制备型色谱柱与色谱饼性能的比较[J].2002,20(2):133-136
    [142]姚文兵,吴丹,耿信笃.分析型色谱饼对人血清白蛋白的快速纯化[J].色谱2004,22(2):121-123
    [143]李瑛,白泉,陈刚,王骊丽.疏水型色谱饼对人血清蛋白质组学样品的快速分离与制备[J].色谱,2008,26(3):331-334
    [144]Stoll D.R.,Li X.P.,Wang X.L.,et al.Fast,comprehensive two-dimensional liquid chromatography[J].Journal of Chromatography A,2007,1168(1-2):3-43
    [145]Guiochon G.The limits of the separation power of unidimensional column liquid chromatography[J].Journal of Chromatography A,2006,1126(1-2):6-49
    [146]Liu W.C.,Yang Q.G.,Regnier F.Toward chromatographic analysis of interacting protein networks[J].Journal of Chromatography A,2008,V1178(1-2):24-32
    [147]Nomura S.I.,Inamori K.I.,Muta T.,et al.Purification and characterization of human soluble CD14 expressed in Pichia pastoris[J].Protein Expression and Purification,2003,V28(2):310-320
    [148]K.Schriebl,Evelyn T.,Christine L.,et al.Biochemical characterization of rhEpo-Fc fusion protein expressed in CHO cells[J].Protein expression and purification,2006,V49(2)265-275
    [1] Manzke O., Tesch H., Diehl V., et al. Single-step purification of bispecific monoclonal antibodies for immunotherapeutic use by hydrophobic interaction chromatography[J]. Journal of Immunological Methods, 1997,V208(1)65-73
    
    [2] O'Connor K. C., Ghatak S., Stollar B. D. Use of hydrophobic interaction chromatography to separate recombinant antibody fragments from associated bacterial chaperone protein GroEL[J]. Analytical Biochemistry, 2000,V278(2):239-241
    
    [3] Kvassman J. O., Shore J. D. Purification of human plasminogen activator inhibitor (PAI-1) from Escherichia coli and separation of its active and latent forms by hydrophobic interaction chromatography[J]. Fibrinolysis, 1995,V9(4):215-221
    
    [4] Diogo M. M., Queiroz J. A., Monteiro G. A., et al. Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography[J]. Biotechnology and Bioengineering, 2000,V68(5):576-583
    
    [5] Diogo M. M., Queiroz J. A., Monteiro G. A., et al. Separation and analysis of plasmid denatured forms using hydrophobic interaction chromatography[J]. Analytical Biochemistry, 1999, V275(1):122-124
    
    [6] Queiroz J. A., Tomaz C. T., Cabral J. M. S. Hydrophobic interaction chromatography of proteins[J]. Journal of Biotechnology, 2001,V87(2): 143-159
    
    [7] Passarinha LA., Bonifácio M.J., Soares-da-Silva P., et al. A new approach on the purification of recombinant human soluble catechol-O-methyltransferase from an Escherichia coli extract using hydrophobic interaction chromatography[J]. Journal of Chromatography A, 2008,V1177(2):287-296
    
    [8] Thrash M.E., Pinto N.G. Encyclopedia of analytical chemistry[M]. New York: Wiley, 2002:7259-7263
    
    [9] Fausnaugh J. L., Kennedy L. A., Regnier F. E. Comparison of hydrophobic-interaction and reversed-phase chromatography of proteins[J]. Journal of Chromatography A,1984,V317:141-155
    
    [10] To B. C. S., Lenhoff A. M. Hydrophobic interaction chromatography of proteins: I. The effects of protein and adsorbent properties on retention and recovery[J]. Journal of Chromatography A, 2007/V1141(2): 191-205
    
    [11] Haimer E., Tschelieessnig A., Hahn R., et al. Hydrophobic interaction chromatography of proteins Ⅳ: Kinetics of protein spreading[J]. Journal of Chromatography A,2007,V1139(1):84-94
    
    [12] Lienqueo M.E., Mahn A., Asenjo J.A. Mathematical correlations for predicting protein retention times in hydrophobic interaction chromatography[J]. Journal of Chromatography A,2002,V978(1-2):71-79
    
    [13] Lin F.Y., Chen W.H., Ruaan R.C., et al. Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: effects of ligand chain length, density and the amount of bound protein[J]. Journal of Chromatography A, 2000,V872(1-2):37-47
    
    [14] Lin F. Y., Chen W. H., Hearn M. T. W. Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: Effects of Salts, Hydrophobicity of the Sorbent, and Structure of the Protein[J]. Analytical Chemistry, 2001,V73(16):3875-3883
    
    [15] Dias-Cabral A. C., Ferreira, A. S. Phillips J.et al. The effects of ligand chain length, salt concentration and temperature on the adsorption of bovine serum albumin onto polypropyleneglycol-Sepharose[J]. Biomedical Chromatography, 2005,V19(8):606-616
    
    [16] Kato Y., Nakamura K., Kitamura T., et al. Separation of proteins by hydrophobic interaction chromatography at low salt concentration[J]. Journal of Chromatography A,2002, V971(1-2): 143-149
    
    [17] Karger B. L., Blanco R. The effect of on-column structural changes of proteins on their HPLC behavior[J]. Talanta, 1989,V36(1-2):243-248
    
    [18] Goheen S. C., Gibbins B. M. Protein losses in ion-exchange and hydrophobic interaction high-performance liquid chromatography[J]. Journal of Chromatography A,2000,V890(1):73-80
    
    [19] Jones T. T., Fernandez E. J. α-Lactalbumin tertiary structure changes on hydrophobic interaction chromatography surfaces[J]. Journal of Colloid and Interface Science,2003,V259(1)27-35
    
    [20] Wu S. L., Figueroa A., Karger B. L. Protein conformational effect in hydrophobic interaction chromatography : Retention characterization and the role of mobile phase additives and stationary phase hydrophobicity[J]. Journal of Chromatography,1986,V371:3-27
    
    [21] Jungbauer A., Machold C., Hahn R. Hydrophobic interaction chromatography of proteins: Ⅲ. Unfolding of proteins upon adsorption[J]. Journal of Chromatography A,2005,V1079(1-2):221-228
    [22]Purcell A.W.,Aguilar M.I.,Hearn T.W.High-performance liquid chromatography of amino acids,peptides,and proteins.123.Dynamics of peptides in reversed-phase high-performance liquid chromatography[J].Analytical Chemistry,1993,V65(21):3038-3047
    [23]Geng X.D.,Regnier F.R.Retention model for proteins in reversed-phase liquid chromatography[J].1984,V296:15-30
    [24]Geng X.D.,Regnier F.R.Stoichiometric displacement of solvent by non-polar solutes in reversed-phase liquid chromatography[J].Journal of Chromatography A,1985,V332:147-168
    [25]Kunitani M.,Johnson D.,Snyder L.R.Model of protein conformation in the reversed-phase separation of interleukin-2 muteins[J].Journal of Chromatography A,1986,V371:313-333
    [26]Valko K.,Snyder L.R.,Glajch J.L.Retention in reversed-phase liquid chromatography as a function of.mobile-phase composition[J].Journal of Chromatography A,1993,V656(1-2):501-520
    [27]Geng,X.D.Guo L.A.,Chang J.H.Study of the retention mechanism of proteins in hydrophobic interaction chromatography[J].Journal of Chromatography A,1990,V507:1-23
    [28]Dill,K.A.,Dominant forces in protein folding[J].Biochemistry,1990,V29(31):7133-7155.
    [29]Jennissen H.P.Evidence for negative cooperativity in the adsorption of phosphorylase b on hydrophobic agaroses[J].Biochemistry,1976,V15(26):5683-5692
    [30]Ochoa J.L.Hydrophobic(interaction) chromatography[J].Biochimie 1978,V60(1):1-15
    [31]Privalov P.L.,Gill S.J.Stability of protein structure and hydrophobic interaction[j].Advances in Protein Chemistry,1988,V39:191-234
    [32]Murphy K.P.,Privalov P.L.,Gill S.J.Common features of protein unfolding and dissolution of hydrophobic compounds[J].Science,1990,V247(4942):559-561.
    [33]Makhatadze G.I.,Privalov P.L.Energetics of protein structure[J].Advances in protein chemistry,1995,V47:307-425
    [34]Dandliker,W.B.,Alonso,R.,Saussure,V.A.et al.The effect of chaotropic ions on the dissociation of antigen-antibody complexes[J].Biochemistry,1967,V6(5):1460-1467
    [35]Van Oss,C.J.,Good,R.J.,Chaudhury,M.K.Nature of the antigen-antibody interaction.Primary and secondary bonds:optimal conditions for association and dissociation[J].Journal of Chromatography,1986,V376:111-119.
    [36]耿信笃.反相高效液相色谱中溶质保留过程的热力学研究Ⅰ.柱相比,吉氏自由能变及其分量,吸附和解吸附自由能变[J].化学学报,1995,53:369-375
    [37]王斐.生物大分子在短柱上的保留行为[D].西安:西北大学,2007
    [38]Murphy R..E.,Schure M.R.,Foley J.P.Effect of Sampling Rate on Resolution in Comprehensive Two-Dimensional Liquid Chromatography[J].Analytical Chemistry,1998,V70(8) 1585-1594
    [39]Ma S.,Chen L.X.,Luo G.A.,et al.Off-line comprehensive two-dimensional high-performance liquid chromatography system with size exclusion column and reverse phase column for separation of complex traditional chinese medicine qingkailing injection[J].Journal of Chromatography A,2006,V1127(1-2):207-213
    [40]Jandera P.,Fischer J.,Lahovska H.,et al.Two-dimensional liquid chromatography normal-phase and reversed-phase separation of(co)oligomers[J].Journal of Chromatography A,2006,V1119(1-2):3-10
    [41]Dugo P.,Kumm T.,Crupi M.L.,et al.Comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection in the analyses of triacylglycerols in natural lipidic matrixes[J].Journal of Chromatography A,2006,V1112(1-2):269-275.
    [42]Opiteck G.J.,Lewis K.C.,Jorgenson J.W.,et al.Comprehensive online LC/LC/MS of proteins[J].Analytical Chemistry,1997,V69(8):1518-1524
    [43]Opiteck G.J.,Ramirez S.M.,Jorgenson J.W.,et al.Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping[J].Analytical biochemistry,1998,V258(2):349-361
    [44]M.M.Bushey,J.W.Jorgenson,Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins[J].Analytical Chemistry,1990,V62(2):161-167
    [45]Holland H.A.,Jorgenson J.W.Separation of nanoliter samples of biological amines by a comprehensive two-dimensional microcolumn liquid chromatography system[J].Analytical chemistry,1995,V67(18):3275-3283
    [46]Wagner K.,Miliotis T.,Marko-Varga G.,et al.An automated on-line multidimensional HPLC system for protein and peptide mapping with integrated sample preparation[J].Analytical Chemistry,2002,V74(4):809-820
    [47]Asenjo J.A.,Andrew B.A.Is there a rational method to purify proteins? From expert systems to proteomics[J].Journal of Molecular Recognition,2004,V17(3):236-247
    [48]Lienqueo M.E.,Mahn A.,Salgado J.C.,et al.Current insights on protein behaviour in hydrophobic interaction chromatography[J].Journal of Chromatography B,2007,V849(1-2):53-68
    [1]袁黎明,制备色谱技术及应用[M].北京:化学工业出版社,2005:6-10
    [2]Huang X.,Qin F.,Chen X.,et al.Short columns with molecularly imprinted monolithic stationary phases for rapid separation of diastereomers and enantiomers[J].Journal of Chromatography B,2004,V804(1):13-18
    [3]Guillaume Y.C.,Perrin F.X.,Guinchard C.,et al.Separation in slalom chromatography:Stretching and velocity dependence[J].Analytical Chemistry 2002,V74(6):1217-1222
    [4]Perrin F.X.,Masuyer C.C.,Truong T-T.,et al.Supercoiled circular DNA and protein retention in non-equilibrium chromatography:Temperature and velocity dependence:testimony of a transition[J].Journal of Chromatography A,2002,V950(1-2):281-285
    [5]Hirabayashi J.,Kasai K.Effects of DNA topology,temperature and solvent viscosity on DNA retardation in slalom chromatography[J].Journal of Chromatography A,2000,893(1):115-122
    [6]Venema E.,Kraak J.C.,Poppe H.,et al.Packed-column hydrodynamic chromatography using 1-μm non-porous silica particles[J].Journal of Chromatography A,1996,V740(2):159-167
    [7]Peyrin E.,Guillaume Y.C.,Grosseta C.,et al.Mobile-phase-viscosity dependence on DNA separation in slalom chromatography[J].Journal of Chromatography A,886(2000) 1-7
    [8]耿信笃,计量置换理论及应用[M].北京:科学出版社,2004:79
    [9]Tennikov M.B.,Gazdina N.V.,Tennikova T.B.,et al.Effect of porous structure of macroporous polymer supports on resolution in high-performance membrane chromatography of proteins[J].Journal of Chromatography A.1998,V798(1-2):55-64
    [10]Belenkii B.G.,Podkladenko A.M.,Kurenbin O.I.,et al.Peculiarities of zone migration and band broadening in gradient reversed-phase high-performance liquid chromatography of proteins with respect to membrane chromatography[J].Journal of Chromatography A,1993,V645(1):1-15
    [11]白泉,耿信笃.反相液相色谱中计量置换线性参数logI的热力学特征[J].色谱,2000,18(3):189-193
    [12]Felinger A.Molecular dynamic theories in chromatography[J].Journal of Chromatography A,2008,V1184(1-2):20-41
    [13]Larman J.P.,DeStefano J.J.,Goldberg A.P.,et al.Separation of macromolecules by reversed-phase high-performance liquid chromatography:Pore-size and surface-area effects for polystyrene samples of varying molecular weight[J].Journal of Chromatography A,1983,V255:163-189
    [14]Hearn M.T.W.,Grego B.High-performance liquid chromatography of amino acids,peptides and proteins:ⅩⅩⅦ.Solvophobic considerations for the separation of unprotected peptides on chemically bonded hydrocarbonaceous stationary phases[J].Journal of Chromatography,1981,V203:349-363.
    [15]Regnier F.E.High-performance liquid chromatography of biopolymers[J].Science,1983,V222(4621):245-252
    [16]Snyder L.R.,Stadalius M.A.,Quarry M.A.Gradient elution in reversed-phase HPLC-separation of macromolecules[J].Analytical Chemistry,1983,V55(14):1412A-1430A
    [17]Liu T.,Geng X.D.The Separation Efficiency of Biopolymers with Short Column in Liquid Chromatography[J].Chinese Chemical Letters,1999,V10(3):219-222
    [1]Kennedy L.A.,Kopacoewicz W.,Regnier F.E.Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic-interaction mode[J].Journal of Chromatography,1986,V359:73-84
    [2]Rassi Z.E.,Horvath C.Tandem columns and mixed-bed columns in high-performance liquid chromatography of proteins[J].Journal of Chromatography,1986,V359:255-264
    [3]柯从玉,耿信笃.活性蛋白液相色谱快速分离新方法[J].科学通报,2008,53(5):614-616
    [4]Geng X.D.,Ke C.Y.,Chen G.,et al.On-line separation of native proteins by two-dimensional liquid chromatography using a single column[J].Journal of Chromatography A,2009,V1216(16):3653-3562
    [5]Despa F.,Berry R.S.The Origin of Long-Range Attraction between Hydrophobes in Water[J].Biophysical journal,2007,V92(2):373-378
    [6]Carr P.W.,Martire D.E.,Snyder L.R.Revisionist look at solvophobic driving forces in reversed-phase liquid chromatography.Journal of Chromatography A,1993,V656(1-2):113-133
    [7]Gallant S.R.,Vunnum S.,Cramer S.M.Optimization of preparative ion-exchange chromatography of proteins:linear gradient separations[J].Journal of Chromatography A,1996,V725(2):295-314
    [8]Rounds M.A.,Regnier F.E.Evaluation of a retention model for high-performance ion-exchange chromatography using two different displacing salts[J].Journal of Chromatography,1984,V283:37-45
    [9]Velayudhan A.,Horvath C.On the stoichiometric model of electrostatic interaction chromatography for biopolymers[J].Journal of Chromatography A,1986,V367:160-162
    [10]Roth C.M.,Unger K.K.,Lenhoff A.M.Mechanistic model of retention in protein ion-exchange chromatography[J].Journal of Chromatography A,1996,V726:45-56
    [11]J(o|¨)nsson B.,Stahlberg J.Colloids and Surfaces B:Biointerfaces,1999,V14(1-4):67-75
    [12]Staahlberg J.,Joensson B.,Horvath C.Theory for electrostatic interaction chromatography of proteins[J].Analytical Chemistry,1991,V63(17):1867-1874
    [13]Staahlberg J.,Joensson B.,Horvath C.Combined effect of coulombic and van der Waals interactions in the chromatography of proteins[J].Analytical Chemistry,1992,V64 (24):3118-3124
    
    [14] Bruch T., Graalfs H., Jacob L., Freeh C. Influence of surface modification on protein retention in ion-exchange chromatography. Evaluation using different retention models[J]. Journal of Chromatography A, 2009,1216(6):919-926
    
    [15] Alpert A. J., Andrews P. C., Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)-silica[J]. Journal of Chromatography, 1988,V443:85-96
    
    [16] Hearn M. T. H., Hodder A. N., Wang F. W., et al. High-performance liquid chromatography of amino acids, peptides and proteins: CXI. Retention behaviour of proteins with macroporous tentacle-type anion exchangers[J]. Journal of Chromatography A,1991,V548:117-126
    
    [17] P. DePhillips, A.M. Lenhoff, Pore size distributions of cation-exchange adsorbents determined by inverse size-exclusion chromatography[J]. Journal of Chromatography A,2000,V883(1-2):39-54
    
    [18] Melander W., Horváth C., Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: An interpretation of the lyotropic series[J]. Archives of Biochemistry and Biophysics, 1977,V183(1):200-215
    
    [19] W.R. Melander, D. Corradini, C. Horvath, Salt-mediated retention of proteins in hydrophobic-interaction chromatography: Application of solvophobic theory[J]. Journal of Chromatography A, 1984,V317:67-85
    
    [20] Melander W. R., Rassi Z. E., Horváth C. Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography .Effect of salts on the retention of proteins[J]. Journal of Chromatography, 1989,V469:3-27
    
    [21] Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars[J]. Biochemistry 1982, V21:6536-6544
    
    [22] Timasheff S. N., Arakawa T. Mechanism of protein precipitation and stabilization by co-solvents[J]. Journal of Crystal Growth, 1988, V90(1-3):3 9-46
    
    [23] Arakawa T. Thermodynamic analysis of the effect of concentrated salts on protein interaction with hydrophobic and polysaccharide columns[J]. Archives of Biochemistry and Biophysics, 1986, V248(1):101-105
    
    [24] X.D. Geng, L.A. Guo, J.H. Chang, Study of the retention mechanism of proteins in hydrophobic interaction chromatography[J]. Journal of Chromatography A, 1990, V507:1-23
    
    [25] Jen S. C. D., Pinto N.G. Influence of displacer properties on displacement chromatography of proteins: A theoretical study[J]. Reactive Polymers,1993,V19(1-2):145-161
    [26]Dias-Cabral A.C.,Queiroz J.A.,Pinto N.G.Effect of salts and temperature on the adsorption of bovine serum albumin on polypropylene glycol-Sepharose under linear and overloaded chromatographic conditions[J].Journal of Chromatography A,2003,V1018(2):137-153
    [27]Lienqueo M.E.,Mahn A.,Salgado J.C.,et al.Current insights on protein behaviour in hydrophobic interaction chromatography[J].Journal of Chromatography B,2007,V849(1-2):53-68
    [28]Geng X.D.,Wang L.L.Liquid chromatography of recombinant proteins and protein drugs[J].Journal of Chromatography B,2008,V866(1-2):133-153
    [29]Geng X.D.,Wang C.Z.Protein folding liquid chromatography and its recent developments[J].Journal of Chromatography B,2007,V849(1-2):69-80
    [30]Geng X.D.,Regnier F.R.Retention model for proteins in reversed-phase liquid chromatography[J].1984,V296:15-30
    [31]Geng X.D.,Regnier F.R.Stoichiometric displacement of solvent by non-polar solutes in reversed-phase liquid chromatography[J].Journal of Chromatography A,1985,V332:147-168
    [32]D.J.Anderson,R.R.Walters,Affinity chromatographic examination of a retention model for macromolecules[J].Journal of Chromatography,1985,V331:1-10
    [33]宋正华,耿信笃.用计量置换吸附模型研究液—固色谱中的溶质保留机理[J].化学学报,1990,V48:237-241
    [34]宋正华,耿信笃.用计量置换模型研究镧系元素“四素组”效应[J].中国稀土学报,1987,5(3):63-69
    [35]Snyder L.R.,Stadalius M.A.High-performance liquid chromatography separations of large molecules:A general model.In:C.Horvath,Editor,High-Performance Liquid Chromatography—Advances and Perspectives[M].New York:Academic Press,1986,V4:195
    [36]Kunitani M.,Johnson D.,Snyder L.R.Model of protein conformation in the reversed-phase separation of interleukin-2 muteins[J].Journal of Chromatography A,1986,V371:313-333
    [37]Valko K.,Snyder L.R.,Glajch J.L.Retention in reversed-phase liquid chromatography as a function of mobile-phase composition[J].Journal of Chromatography A,1993,V656(1-2):501-520
    [38]Geng X.D.,Regnier F.E.direct evidence of stoichiometric displacement between insulin and methanol in reversed phase liquid chromatography[J].Chinese Journal of Chemistry, 2003,V21(2):181-188
    [39]Perkins T.W.,Mak D.S.,T.W.Root,et al.Protein retention in hydrophobic interaction chromatography:modeling variation with buffer ionic strength and column hydrophobicity[J].Journal of Chromatography A,1997,766(1-2):1-14
    [40]耿信笃.反相色谱中计量置换保留模型第二组线性参数j和lgφ[J].中国科学(B辑),1995,25(4):364-371
    [1]Tang J.,Gao M.,Deng C.,et al.Recent development of multi-dimensional chromatography strategies in proteome research[J].Journal of Chromatography B,2008,V866(1-2):123-132
    [2]Carr P.W.,Stoll D.R.,Li X.P.,et al.HPLC'08,May 10-16,2008,Baltimore,MD,USA,L25
    [3]Kennedy L.A.,Kopaciewicz W.,Regnier F.E.Multimodal liquid chromatography columns for the separation of proteins in either the anion-exchange or hydrophobic-interaction mode[J].Journal of Chromatography,1986,V359:73-84
    [4]Melander W.R.,Rassi Z.E.,Horvath C.Interplay of hydrophobic and electrostatic interactions in biopolymer chromatography:Effect of salts on the retention of proteins[J].Journal of Chromatography,1989,V469:3-27
    [5]Link A.J.,Eng J.,Schieltz D.M.,et al.Direct analysis of protein complexes using mass spectrometry[J].Nature Biotechnology,1999,V17(7):676-682
    [5]Jiang X.,Feng S.,Tian R.,et al.Automation of nanoflow liquid chromatography-tandem mass spectrometry for proteome analysis by using a strong cation exchange trap column[J].Proteomics,2007,7(4):528-539
    [7]Zhang K.,Wu S.,Tang X.T.,et al.A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research[J].Journal of Chromatography B,2007,V849(1-2):223-230
    [8]柯从玉,耿信笃.活性蛋白液相色谱快速分离新方法[J].科学通报,2008,53(5):614-616
    [9]Bodzon-Kulakowska A.,Bierczynska-Krzysik A.,Dylag T.,et al.Methods for samples preparation in proteomic research[J].2007,V849(1-2):1-31
    [10]刘旭东,徐岩.一种新的中温酸性α-淀粉酶的分离纯化及酶学性质[J].应用与环境生物学报,2008,14(2):235-239
    [11]邱树毅.液-液双水相萃取分离α-淀粉酶研究[J],食品科学,2000,21(9):12-14
    [12]张剑,张开诚,陈立.液-固萃取法提α-淀粉酶的研究[J],化学与生物工程,2004,25(8):39-41
    [13]张文学,杨瑞,胡承,等.白曲耐酸性α-淀粉酶的分离和纯化[J],四川大学学 报:工程科学版,2002,34(2):51-56
    [14]吴雅睿,刘建,李宇亮,等.CTAB/正丁醇/异辛烷反胶团法纯化α-淀粉酶[J].应用化工,2007,36(8):737-744
    [15]Bradford M.M.A Rapid and Sensitive Method for the Quantitation of protein utilizing the principle of protein-dye-binding[J].Analytical Biochemistry,1976,V72(1-2):248-254
    [16]李华儒,党鸿喜.色谱纯化后α—淀粉酶活性和回收率的测定[J].西北大学学报:自然科学版[J].1991,21(2):93-98
    [17]Bio-Rad Mini-proteinR Ⅱ Electrophoresis Cell操作手册

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700