磁场重联中的Hall电流效应及地球磁尾通量绳结构的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Simulation Studies on the Hall Current Effect in the Magnetic Reconnection and Magnetic Flux Rope Structures in the Magnetotail
  • 作者:杨红昂
  • 论文级别:博士
  • 学科专业名称:空间物理
  • 学位年度:2006
  • 导师:金曙平
  • 学科代码:070802
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2006-05-01
摘要
磁场重联是磁能转化为等离子体动能和热能的有效机制,也是日地能量耦合系统中的基本过程。研究表明广义欧姆定律中的非电阻项对于磁场重联动力学具有重要影响。本文以多步隐格式为基础,发展形成具有良好精度与稳定性的USTC Hall MHD格式,应用该格式研究磁场重联中的Hall电流效应。现分章介绍如下:
     第三章研究具有不同特征尺度的驱动重联过程,考察Hall电流效应对于初始电流片厚度L_c与离子惯性长d_i之比(L_c/d_i)的依赖关系。对于电流片厚度与离子惯性长相比拟,即L_c/d_i≤1.0的算例,数值结果展示了Hall MHD重联的特征:具有短电流片的单X线准稳态重联在均匀低电阻等离子体中得以实现,在重联X中性线附近,Hall电流产生了平面外磁场分量B_y的四极结构。重联达稳态后,X中性线处的重联率(?)A/(?)t|_(st)大于0.11.L_c/d_i>1.0的算例结果表明,随着L_c/d_i增大,Hall电流效应减弱,Hall MHD重联逐渐过渡为电阻MHD重联
     本文第四章研究具有不同等离子体β值(β为等离子体热压与磁压之比)的HallMHD重联过程。结果表明在引导场B_(y0)=0时,重联动力学由Hall效应控制,各向同性电子压强梯度项是可以忽略的。并且磁分界线以及对应的B_y,四极结构的夹角随β增大而明显增大,当β>2.0时,B_y,等值线图中出现具有相反极性的小结构。模拟结果表明,随着等离子体β增大,电子速度的变化比离子速度的要大的多,电子与离子运动的解耦在大于d_i的尺度内发生。由电子和离子相对运动产生的反向电流导致在出流区B_y等值线图中小结构的出现,与此相对应,B_y分量剖面图呈波形变化。Cluster Ⅱ卫星在地球磁层高β外极尖区探测到的波活动增强可能与本文模拟发现的磁场重联中的Hall效应有关。
     Wind,Cluster和Polar卫星分别在地球磁尾和磁层顶探测到了等离子体密度降低,本文第五章研究磁场重联中的密度降低。在d_i/L_c≥1.0的算例中,Hall MHD重联准稳态的数值结果,不仅展示了沿着磁分界线的密度降低,也展示了X中性线附近的低密度区。具有不同Hall效应的数值实验证明,磁重联中的密度降低是具有强Hall效应(d_i/L_c≥1.0,亦即初始电流片厚度与离子惯性长相比拟)算例所特有的性质。并且,沿着磁分界线的密度降低对应于磁压增强的区域.对于d_i/L_c=2.0的算例,密度ρ沿z的剖面图与Cluster探测基本相符,位于分界线的密度降低与K_H/ρ(J×B)_z~z曲线的峰值和谷值相对应,表明Hall效应对于沿磁分界线的密度降低层的形成起了重要作用。将
Magnetic reconnection is an effective mechanism for converting magnetic energy into kinetic and thermal energies of plasma, and plays an essential role in the energy coupling system between the Sun and the Earth. Recent research has indicated that the non-resistivity terms in the generalized Ohm's law have important effects on the reconnection dynamics. In this thesis, the Hall effect in magnetic reconnection is investigated using an USTC Hall MHD scheme with an adequate computational accuracy and numerical stability, which was derived from multi-step implicit scheme.
    In the driven reconnection process with various scales the effect of Hall current is studied numerically in chapter 3. In the cases with L_c/d_i≤1.0 (L_c is the half-thickness of initial current sheet layer, d_i is the ion inertial length), the features of Hall MHD reconnection are shown as follows: a quasi-steady single X-line reconnection is obtained, the B_y component with a quadrupolar structure is generated and the maximum reconnection rate is larger than 0.11. For the cases with L_c/d_i>1.0, the effect of Hall current on the reconnection dynamics weakens and Hall MHD reconnection is gradually transformed into resistive MHD reconnection as L_c/d_i increases.
    Magnetic reconnection with various plasma β (the ratio of plasma pressure to the magnetic pressure) is studied numerically in chapter 4. It is demonstrated by the comparing studies that the reconnection dynamics is controlled by the Hall effect and the effect of scalar electron pressure gradient is negligible in the generalized Ohm's law for the cases with a zero guide field (i.e., B_(y0)=0 at t=0). It is also found that the openness of the magnetic separatrices and associated quadrupolar B_y structure is enlarged as β increases. When β>2.0 fine structures of B_y contours with reversed sign emerge. The numerical results indicate that the variations in electron velocity V_e are greater than those in ion velocity V_i and the decoupling of electron and ion occurs in a larger scale lengths than d_i as β increases. Clearly, the reversed current, which is associated with the relative motion between electrons and ions, generates the fine structures of B_y contours in the outflow region. Then the corresponding profile of B_y component exhibits a wave signature. Enhanced wave activities observed during a Cluster crossing of the high-β exterior cusp region might be related to the Hall effects of magnetic reconnection shown in the present simulation.
    The density depletions were detected by Wind, Cluster and Polar spacecrafts in the
引文
Aydemir, A. Y., Nonlinear studies of m=1 modes in high-temperature plasmas, Physics of Fluids B, 4, 3469-3472, 1992.
    Aydemir, A. Y., Driven reconnection in a quadrupole cusp field, Phys. Plasmas., 12, 080, 706, 2005.
    Bhattacharjee, A., Z. W. Ma, and X. Wang, Recent developments in collisionless reconnection theory: Applications to laboratory and space plasmas, Phys. Plasmas., 8, 1829-1839, 2001.
    Birn, J., and M. Hesse, Geospace environmental modeling (gem) magnetic reconnection challenge: resistive tearing, anisotropic pressure and hall effects, J. Geophys. Res., 106, 3737, 2001.
    Birn, J., J. F. Drake, M. A. Shay, B. N. Rogers, R. E. Denton, M. Hesse, M. Kuznetsova, Z. W. Ma, A. Bhattacharjee, A. Otto, and P. L. Pritchett, Geospace environmental modeling (gem) magnetic reconnection challenge, J. Geophys. Res., 106, 3715, 2001.
    Biskamp, D., Magnetic reconnection via current sheets, Phys. Fluids, 29, 1520, 1986.
    Biskamp, D., Magnetic Reconnection in Plasmas, Cambridge University Press, Cam-bridge, 2000.
    Biskamp, D., E. Schwarz, and J. F. Frake, Ion-controlled collisonless magnetic reconnection, Phys. Rev. Lett., 75, 3850 - 3853, 1995.
    Biskamp, D., E. Schwarz, and J. Drake, Two-fluid theory of coilisionless magnetic reconnection, Phys. Plasmas, 4, 1002, 1997.
    Buchner, J., and J.-P. Kuska, Numerical simulation of three-dimensional reconnection due to the instability of collisionless current sheets, Advances in Space Research, 19. 1817-1822, 1997.
    Burkhart, G. R., J. F. Drake, and J. Chen, Magnetic reeonnection in collisionless plasmas: Prescribed fields, J. Geophys. Res., 95, 18,833, 1990.
    Courant, R., K. Friedrichs, and H. Lewy, On the partial difference equations of mathe- matical physics, IBM Journal, 11, 215-234, 1967, english translation of the original work "Uber die partiellen Differenzengleichungen der Mathematischen Physik", Math. Ann,, 100, 32-74, 1928.
    Cui, H. L.,(崔海龙)地球磁层等离子体团及通量绳结构的形成与发展研究,Ph.D. thesis,中国科学技术大学,2006.
    Cui, H. L., and S.P, Jin, (崔海龙,金曙平)地球磁尾中不同类型磁结构的磁螺度演化特征,地球物理学报,45,149-159,2002.
    Deng, X., and H. Matsumoto, Rapid magnetic reconnection in the earth's magnetosphere mediated by whistler waves, Nature, 410,557, 2001.
    Dorelli, J. C., Effects of hall electric fields on the saturation of forced antiparallel magnetic field merging, Phys. Plasmas., 10, 3309-3314, 2003.
    Drake, J. F., Magnetic Reconnection: A Kinetic Treatment, in Physics of the Magnetopause, edited by P. Song, B. U. O. Sonnerup, and M. F. Thomsen, pp. 155-+, American Geophysical Union, 1995.
    Drake, J. F., Magnetic explosions in space, Nature, 410,525-526, 2001.
    Drake, J. F., D. Biskamp, and A. Zeiler, Breakup of the electron current layer during 3-D collisionless magnetic reconnection, Geophys. Res. Lett., 24,, 2921-2924, 1997.
    Dungey, J. M., Interplanetry magnetic field and the auroral zones, Phy. Rev. Lett., 6, 47, 1961.
    Dungey, J. W., Noise-free neutral sheet, in Pwceedings of an International Workshop in Space Plasma, vol. Ⅱ, p. 15, Eur. Space Agency Spc. Publ., ESA SP-285, 1988.
    Elphic, R. C., C. T. Russell, C. A. Cattell, K. Takahasi, and S. J. Bame, ISEE-1 and 2 observations of magnetic flux ropes in the magnetotail - FTEs in the plasma sheet?, Geophys. Res. Lett., 13,648-651, 1986.
    Fairfield, D. H., On the average configuration of the geomagnetic tail, J. Geophys. Res., 84, 1950-1958, 1979.
    Fitzpatrick, R., Scaling of forced magnetic reconnection in the hall-magnetohydrodynamic taylor problem, Phys. Plasmas., 11, 937-946, 2004.
    Fu, Z. F., and Y. Q. Hu,空间等离子体数值模拟,(傅竹风,胡友秋)安徽科学技术出版社,1995.
    Giovanelli, R. G., A theory of chromospheric flares, Nature, 158, 81-, 1946.
    Grasso, D., F. Pegoraro, F. Porcelli, and F. Califano, Hamiltonian magnetic reconnection, Plasma Phys. Controlled Fusion, 41, 1497-1515, 1999.
    Harris, E. G., On a plasma sheath separating regions of oppositely directed magnetic field, Nuovo Cimento Soc. Ital. Fis. A-D, 23, 115, 1962.
    Hesse, M., and J. Birn, Magnetic reconnection in the magnetotail current sheet for varying cross-tail magnetic field, Geophys. Res. Lett., 17, 2019-2022, 1990.
    Hesse, M., and D. Winske, Hybrid simulations of collisionless reconnection in current sheets, J. Geophys. Res., 99, 11,177-11,192, 1994.
    Hesse, M., J. Birn, M. M. Kuznetsova, and J. Dreher, A simple model of core field generation during plasmoid evolution, J. Geophys. Res., 101, 10,797-10,804, 1996.
    Hesse, M., K. Schindler, J. Birn, and M. Kuznetsova, The diffusion region in collisionless magnetic reconnection, Phys. Plasmas, 6, 1781-1795, 1999.
    Hesse, M., J. Birn, and M. Kuznetsova, Collisionless magnetic reconnection: Electron processes and transport modeling, J. Geophys. Res., 106, 3721, 2001.
    Hones, E. W. J., D. N. Baker, S. J. Bame, and W. C. Feldman, Structure of the magnetotail at 220 re and its response to geomagnetic activity, Geophys. Res. Lett., 11, 5-7, 1984.
    Horiuchi, R., and T. Sato, Particle simulation study of collisionless driven reconnection in a sheared magnetic field, Phys. Plasmas., 4, 277-289, 1997.
    Hu, Y. Q., A multistep implicit scheme for time-dependent 2-dimensional magnetohy-drodynamic flows, J. Comput. Phys., 84,441, 1989.
    Huba, J. D., Hall Magnetohydrodynamics - A Tutorial, in Space Plasma Simulations, edited by J. Biichner, C. T. Dum, and M. Scholer, pp. 166-192, Springer, New York, 2003.
    Huba, J. D., Hall magnetic reconneetion: Guide field dependence, Phys. Plasmas., 12, 012, 322, 2005.
    Huba, J. D., and L. I. Rudakov, Hall magnetic reconnection rate, Phys. Rev. Lett., 93, 175, 003, 2005.
    Ieda, A., S. Machida, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, and S. Kokubun, Statistical analysis of the plasmoid evolution with Geotail observations, J. Geophys. Res., 103, 4453-4466, 1998.
    Jin, S.-P., and W.-H. Ip, Two-dimensional compressible magnetohydrodynamic simulation of the driven reconnection process, Phys. Fluids, 3, 1927-1936, 1991.
    Jin, S. P., X. P. Hu, H. L. Cui, Z. X. Liu, Z. Y. Pu, and B. Wilken,地球磁尾两种不同类型磁结构形成机理,科学通报,46,109-113,2001a.
    Jin, S. P., X. P. Hu, Q. G. Zong, S. Y. Fu, B. Wilken, and J. Buchner, A 2.5 dimensional mhd simulation of ultiple-plasmoid-like structures in the course of a substorm, J. Geophys. Res., 106, 29,807-29, 830, 2001b.
    Jin, S. P., H. A. Yang, and X. G. Wang, Hall effect and fine structures in magnetic reconnection with high plasma β, Phys. Plasmas, 12, 042,902, 2005.
    Karimabadi, H., D. Krauss-Varban, N. Omidi, and H. X. Vu, Magnetic structure of the reconnection layer and core field generation in plasmoids, J. Geophys. Res., 104, 12, 313-12, 326, 1999.
    Karimabadi, H., D. Krauss-Varban, J. D. Huba, and H. X. Vu, On magnetic reconnection regimes and associated three-dimensional asymmetries: Hybrid, Hall-less hybrid, and Hall-MHD simulations, J. Geophys. Res., 109, 9205-+, 2004.
    Khotyaintsev, Y., A. Vaivads, Y. Ogawa, B. Popielawska, M. Andre, S. Buchert, P. Decreau, B. Lavraud, and H. Reme, Cluster observations of high-frequency waves in the exterior cusp, Ann. Geophys., 22, 2403, 2004.
    Kivelson, M. G., C. F. Kennel, R. L. McPherron, C. T. Russell, D. J. Southwood, R. J. Walker, K. K. Khurana, P. J. Coleman, C. M. Hammond, and V. Angelopoulos, The Galileo Earth encounter-Magnetometer and allied measurements, J. Geophys. Res., 98, 11,299-11, 318, 1993.
    Kleva, R. G., J. F. Drake, and F. L. Waelbroeck, Fast reconnection in high temperature plasmas, Phys. Plasmas., 2, 23-34, 1995.
    Krauss-Varban, D., and N. Omidi, Large-scale hybrid simulations of the magnetotail during reconnection, Geophys. Res. Lett., 22, 3271-3274, 1995.
    Kuznetsova, M. M., M. Hesse, and D. Winske, Collisionless reconnection supported by nongyrotropic pressure effects in hybrid and particle simulations, J. Geophys. Res., 106, 3799, 2001.
    Laval, G. R., R. Pellat, and M. Vuillemin, Instabilities electromagnetiques des plasmas sans collisions, Plasma Phys. Controlled Nucl. Fusion Res., 2, 259, 1966.
    Lee, L. C., The magnetopause: A tutorial review, in Physics of Space Plasmas, edited by T. Chang, G. B. Crew, and J. P. Jasperse, p. 33, Cambridge, MA, 1990.
    Lee, L. C., and Z. F. Fu, Multiple X line reconnection. I-A criterion for the transition from a single X line to a multiple X line reconnection, J. Geophys. Res., 91, 6807-6815, 1986.
    Levy, R. H., H. E. Petschek, and G. L. Siscoe, Aerodynamic aspects of the magnetospheric flow, AIAA J., 2, 2065, 1964.
    Li, Y.,S. P. Jin, H. A. Yang, and S. L. Liu,具有不同等离子体β值的hall mhd重联中的低频波研究,空间科学学报,2006,已投寄.
    Lin, Y., and L. C. Lee, Reconnection layers in two-dimensional magnetohydrodynamics and comparison with the one-dimensional riemann problem, Phys. Plasmas, 8, 3131, 1999.
    Lin, Y., and D. W. Swift, A two-dimensional hybrid simulation of the magnetotail reconnection layer, J. Geophys. Res., 101, 19,859-19, 870, 1996.
    Lottermoser, R.-F., M. Scholer, and A. P. Matthews, Ion kinetic effects in magnetic reconnection: Hybrid simulations, J. Geophys. Res., 103, 4547-4560, 1998.
    Lui, A. T. Y., Characteristics of the cross-tail current in the earth's magnetotail, in Magnetospheric currents: Chapman Conference, Geophysical Monograph 28, edited by T. A. Potemra, pp. 158-+, Washington, DC, 1984.
    Ma, Z. W., and A. Bhattacharjee, Fast impulsive reconnection and current sheet intensification due to electron pressure gradients in semi-collisional plasmas, Geophys. Res. Left., 23, 1673-1676, 1996.
    Ma, Z. W., and A. Bhattacharjee, Sudden enhancement and partial disruption of thin current sheets in the magnetotail due to Hall MHD effects, Geophys. Res. Lett., 25, 3277-3280, 1998.
    Ma, Z. W., and A. Bhattacharjee, Hall magnetohydrodynamics reconnection: the geospace environmental modeling challenge, J. Geophys. Res., 106, 3773, 2001.
    Ma, Z. W., A. Otto, and L. C. Lee, Core magnetic field enhancement in single X line, multiple X line and patchy reconnection, J. Geophys. Res., 99, 6125-6136, 1994.
    Ma, Z. W., C. S. Ng, X. Wang, and A. Bhattacharjee, Dynamics of current sheet formation and reconnection in two-dimensional coronal loops, Phys. Plasmas, 2, 3184, 1995a.
    Mandt, M. E., R. E. Denton, and J. F. Drake, Transition to whistler mediated magnetic reconnection, Geophys. Res. Lett., 21, 73-76, 1994.
    Moldwin, M. B., and W. J. Hughes, Plasmoids as magnetic flux ropes, J. Geophys. Res., 96, 14,051-+, 1991.
    Moldwin, M. B., and W. J. Hughes, On the formation and evolution of plasmoids - A survey of ISEE 3 Geotail data, J. Geophys. Res., 97, 19,259-19,282, 1992.
    Moldwin, M. B., and W. J. Hughes, Observations of Earthward and tailward propagating flux rope plasmoids: Expanding the plasmoid model of geomagnetic substorms, J. Geophys. Res., 99, 183-198, 1994.
    Mozer, F. S., S. D. Bale, and T. D. Phan, Evidence of diffusion regions at a subsolar magnetopause crossing, Phys. Rev. Lett., 89,015,002, 2002.
    Nagai, T., K. Takahashi, H. Kawano, T. Yamamoto, S. Kokubun, and A. Nishida, Initial GEOTAIL survey of magnetic substorm signatures in the magnetotail, Geophys. Res. Lett., 2I, 2991-2994, 1994.
    Nagai, T., I. Shinohara, M. Fujimoto, M. Hoshino, Y. Saito, S. Machida, and T. Mukai, Geotail observations of the hall current system: Evidence of magnetic reconnection in the magnetotail, J. Geophys. Res., 106, 25,929-25,950, 2001.
    Nagai, T., I. Shinohara, M. Fujimoto, S. Machida, R. Nakamura, Y. Saito, and T. Mukai, Structure of the Hall current system in the vicinity of the magnetic reconnection site, J. Geophys. Res., 108, 1-+, 2003.
    Nishida, A., T. Terasawa, M. Scholer, S. J. Bame, R. D. Zwickl, G. Gloeckler, and E. J. Smith, Quasi-stagnant plasmoid in the middle tail - A new preexpansion phase phenomenon, J. Geophys. Res., 91, 4245-4255, 1986.
    Nishida, A., T. Mukai, T. Yamamoto, S. Kokubun, and K. Maezawa, A unified model of the magnetotail convection in geomagnetically quiet and active times, J. Geophys. Res., 103, 4409-4418, 1998.
    φieroset, M., T. D. Phan, M. Fujimoto, R. P. Lin, and R. P. Lepping, In situ detection of collisionless reconnection in the earth's magnetotail, Nature, 412,414-+, 2001.
    Otto, A., Geospace environmental modeling gem) magnetic reconnection challenge: Mhd and hall mhd - constant and current dependent resistivity models, J. Geophys. Res., 106, 3751-+, 2001.
    Parker, E. N., Sweet's mechanism for merging magnetic fields lines in conducting fluids, J. Geophys. Res., 62,509-+, 1957.
    Paschmann, G., B. U. O. Sonnerup, I. Papamastorakis, N. Schopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, C. T. Russell, and R. C. Elphic, Plasma acceleration at the earth's magnetopause: Evidence for reconnection, Nature, 282, 243-246, 1979.
    Petschek, H. E., Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares, edited by N. Aeronautics and S. Administration, pp. 425-439, Washington, D. C.,, 1964, nASA Spec. Publi. SP-50.
    Phan, T. D., L. M. Kistler, B. Klecker, G. Haerendel, G. Paschmann, B. U. O. Sonnerup, W. Baumjohann, M. B. Bavassano-Cattaneo, C. W. Carlson, A. M. DiLellis, K.-H. Fornacon, L. A. Frank, M. Fujimoto, E. Georgescu, S. Kokubun, E. Moebius, T. Mukai. M. φieroset, W. R. Paterson, and H. Reme, Extended magnetic reconnection at the earth's magnetopause from detection of bi-directional jets, Nature, 404,848-850, 2000.
    Priest, E., and T. Forbes, Magnetic Reconneetion: MHD Theory and Applications, 2000.
    Priest, E. R., Solar magneto-hydrodynamics, Dordrecht, Holland; Boston: D. Reidel Pub. Co. ; Hingham,, 1982.
    Pritchett, P. L., Geospace environment modeling magnetic reconnection challenge: Sim
    ulations with a full particle electromagnetic code, J. Geophys. Res., 106, 3783-+, 2001.
    Pritchett, P. L., and F. V. Coroniti, Three-dimensional collisionless magnetic reconnection in the presence of a guide field, J. Geophys. Res., 109, 1220-+, 2004.
    Richard, R. L., R. J. Walker, R. D. Sydora, and M. Ashour-Abdalla, The coalescence of magnetic flux ropes and reconnection in the magnetotail, J. Geophys. Res., 94, 2471-2483, 1989.
    Rogers, B., and L. Zakharov, Collisionless m=1 reconnection in tokamaks, Phys. Plasmas., 3, 2411-2422, 1996.
    Rogers, B. N., R. E. Denton, J. F. Drake, and M. A. Shay, Role of dispersive waves in collisionless magnetic reconnection, Phys. Rev. Lett., 87, 195,004, 2001.
    Runov, A., R. Nakamura, W. Baumjohann, R. A. Treumann, T. L. Zhang, M. Volwerk, Z. Voros, A. Balogh, K.-H. Glaβmeier, B. Klecker, H. Reme, and L. Kistler, Current sheet structure near magnetic X-line observed by Cluster, Geophys. Res. Lett., 30, 33-+, 2003.
    Schindler, K. A., theory of the substorm mechanism, J. Geophys. Res., 79, 2803-+, 1974.
    Scholer, M., Undriven magnetic reconnection in an isolated current sheet, J. Geophys. Res., 94, 8805-+, 1989.
    Shay, M. A., The dynamics of collisionless magnetic reconnection, Ph.D. thesis, University of Maryland, 1998.
    Shay, M. A., and J. F. Drake, The role of electron dissipation on the rate of collisionless magnetic reconnection, Geophys. Res. Lett., 25, 3759-3762, 1998.
    Shay, M. A., J. F. Drake, R. E. Denton, and D. Biskamp, Structure of the dissaption region during collisionless magnetic reconnection, J. Geophys. Res., 103, 9165-+, 1998.
    Shay, M. A., J. F. Drake, B. N. rogers, and R. E. Denton, The scaling of collisionless, magnetic reconnection for large systems, Geophys. Res. Lett., 26, 2163-2166, 1999.
    Shay, M. A., J. F. Drake, B. N. Rogers, and R. E. Denton, Alfvenic collisionless magnetic reconnection and the hall term, J. Geophys. Res., 106, 3759-3772, 2001.
    Shay, M. A., J. F. Drake, M. Swisdak, and B. N. Rogers, The scaling of embedded collisionless reconnection, Phys. Plasmas., 11, 2199-2213, 2004.
    Slavin, J. A., E. J. Smith, B. T. Tsurutani, D. G. Sibeck, H. J. Singer, D. N. Baker, J. T. Gosling, E. W. Hones, and F. L. Scarf, Substorm associated traveling compression regions in the distant tail- ISEE-3 geotail observations, Geophys. Res. Lett., 11, 657-660, 1984.
    Slavin, J. A., D. N. Baker, D. H. Fairfield, J. D. Craven, L. A. Frank, R. C. Elphic, A. B. Galvin, W. J. Hughes, R. H. Manka, and E. J. Smith, CDAW 8 observations of plasmoid signatures in the geomagnetic tail- An assessment, J. Geophys. Res., 94, 15,153-15,175, 1989.
    Slavin, J. A., M. F. Smith, E. L. Mazur, D. N. Baker, E. W. Hones, T. Iyemori, and E. W. Greenstadt, ISEE 3 observations of traveling compression regions in the earth's magnetotail, J. Geophys. Res., 98, 15,425-15,446, 1993.
    Song, P., B. U. O. Sonnerup, and M. F. Thomsen, Physics of the Magnetopause, Physics of the Magnetopause, 1995.
    Sonnerup, B. U. O., G. Paschmann, I. Papamastorakis, N. Sckopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, and C. T. Russell, Evidence for magnetic field reconnection at the earth's magnetopause, J. Geophys. Res., 86, 10,049-10,067, 1981.
    Sonnerup, U. O., Magnetic field reconnection, in Solar system plasma physics. Volume 3. (A79-53667 24-46), pp. 45-108, Amsterdam, North-Holland Publishing Co., 1979.
    Stormer, H. L., Nobel Lecture: The fractional quantum Hall effect, Rev. Modern Physics, 71, 875-889, 1999.
    Sullivana, B. P., B. N. Rogers, and M. A. Shay, The scaling of forced collisionless reconnection, Phys. Plasmas., 12, 122,312, 2005.
    Sweet, P. A., The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmic Physics, edited by B. Lehnert, pp. 123-134, Cambridge Univ. Press, New York, 1958.
    Terasawa, T., Hall current effect on tearing mode instability, Geophys. Res. Lett., 10, 475-478, 1983.
    Ueno, G., S. Ohtani, T. Mukai, Y. Saito, and H. Hayakawa, Hall current system around the magnetic neutral line in the magnetotail: Statistical study, J. Geophys. Res., 108, 1347-+, 2003.
    Vaivads, A., Y. Khotyaintsev, M. Andre, A. Retino, S. C. Buchert, B. N. rogers, P. Decreau, G. Paschmann, and T. D. Phan, Structure of the magnetic reconnection diffusion region from four-spacecraft observations, Phys. Rev. Left., 93,105,001, 2004.
    Vasyliunas, V. M., Theoretical models of magnetic field line merging. I, Reviews Geophys. and Space Physics, 13, 303-336, 1975.
    Wang,S.,and L.C.Lee,磁场重联,(王水,李罗权)安徽教育出版社,1999.
    Wang, X., and A. Bhattacharjee, Nonlinear dynamics of the m=1 instability and fast sawtooth collapse in high-temperature plasmas, Phys. Rev. Lett., 70, 1627-1630, 1993.
    Wang, X., and A. Bhattacharjee, Nonlinear dynamics of the m=1 kink-tearing instability in a modified magnetohydrodynamic model, Phys. Plasmas., 2,171-181, 1995.
    Wang, X., Z. W. Ma, and A. Bhattacharjee, Fast magnetic reconnection and sudden enhancement of current sheets due to inward boundary flows, Phys. Plasmas, 3, 2129, 1996.
    Wang, X., A. Bhattacharjee, and Z. W. Ma, Collisionless reconnection: Effects of Hall current and electron pressure gradient, J. Geophys. Res., 105, 27,633-27,648, 2000.
    Wang, X., A. Bhattacharjee, and Z. W. Ma, Scaling of collisionless forced reconnection, Phys. Rev. Lett., 87, 265,003, 2001.
    Xu, A. A., and Y. H. Tang,宇宙电动力学,(许敖敖,唐玉华)高等教育出版社,1987.
    Xu, J. L., and S. X. Jin,等离子体物理学,(徐家鸾,金尚宪)原子能出版社,1981.
    Yan, M., L. C. Lee, and E. R. Priest, Magnetic reconnection with large separatrix angles, J. Geophys. Res., 98, 7593-+, 1993.
    Yang, H.-A., and S.-P. Jin, Effects of hall current in the driven reconnection with warious scales, Chin. Phys. lett., 21, 1394-1397, 2004.
    Zhang, H., and Z. X. Liu,(张洪,刘振兴)行星际磁场北向时磁层顶区磁场重联的全球模式、空间科学学报,16,274-81,1996.
    Zhou, G., C. Cai, J. Cao, D. Wang, H. Reme, and A. Balogh,近地磁尾准无碰撞磁重联事件,空间科学学报,pp.25-33,2003.
    Zhou, G., J. Cao, D. Wang, and C. Cai,无碰撞等离子体电流片中的低频波,物理学报,53,2644-2653,2004.
    Zong, Q. G., B. Wilken, G. D. Reeves, I. A. Daglis, T. Doke, T. Iyemori, S. Livi, K. Maezawa, T. Mukai, S. Kokubun, Z.-Y. Pu, S. Ullaland, J. Woch, R. Lepping, and T. Yamamoto, Geotail observations of energetic ion species and magnetic field in plasmoid-like structures in the course of an isolated substorm event, J. Geophys. Res., 102, 11,409-11, 428, 1997.
    Zwingmann, W., J. Wallace, J. Birn, and K. Schindler, Particle simulation of magnetic reconnection in the magnetotail configuration, J. Geophys. Res., 95, 20, 877-20,888, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700