黄海冷水团及邻近海域小型底栖动物多样性及其环境效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年夏季对黄海冷水团及邻近海域共48个站位的小型底栖动物组成、丰度和生物量,以及环境因子进行了科考研究。所调查站位的小型底栖动物平均丰度达2194±1598 inds./10cm~2,其中北黄海17个站位平均丰度为3408±1578inds./10cm~2,南黄海31个站位平均丰度为1529±1121 inds./10cm~2。调查站位平均生物量为1839±1289μg dwt/10cm~2,其中北黄海站位平均生物量为2760±1340μg dwt/10cm~2,南黄海平均生物量为1335±902μg dwt/10cm~2。在分选出的共18个小型底栖动物类群中,丰度上均以自由生线虫占绝对优势,达总量的88%,且在南(88.3%)、北黄海(87.7%)基本无差异。在生物量上,同样以自由生线虫贡献最多(42%),多毛类居次(22%),其他生物量较多的还有桡足类(13%)和甲壳类幼体(12%)。在小型底栖动物的垂直分布上,分布于沉积物表层0-2cm的小型底栖动物占79%,次表层2-5cm占17%,最底层5-8cm仅占4%。统计分析表明研究站位小型底栖动物丰度和生物量与沉积物叶绿素a、有机质含量、中值粒径显著或极显著正相关,与水深呈极显著负相关,此外小型底栖动物生物量与沉积物粉砂粘土含量显著负相关。
     同年秋季搭载开放航次对黄海5个站位、东海3个站位、南海2个站位的小型底栖动物组成、丰度和生物量,以及环境因子进行了调查研究。对三个海域小型底栖动物的比较研究发现,平均丰度以黄海最高,达2132±946 inds./10cm~2,东海次之,为1954±2047 inds./10cm~2,而南海仅156±56 inds./10cm~2;三海域的平均生物量依次为2193±1148μg dwt/10cm~2、1865±1555μg dwt/10cm~2和212±22μg dwt/10cm~2。在分选出的共14个小型底栖动物类群中,丰度上均以自由生线虫占绝对优势,分别占总量的85%、89%、85%。在生物量上,黄海以自由生线虫贡献最多(33%),多毛类居次(18%);东海二者比例相近(约37%),而南海则以多毛类占绝对优势(56%),线虫居次(25%)。在小型底栖动物的垂直分布上,三个海区差异较大:分布于沉积物表层0-2cm的小型底栖动物在黄海高达90%,东海仅46%,在南海为63%。统计分析表明,本研究站位小型底栖动物丰度与沉积物中的叶绿素a及脱镁叶绿素a含量和底温呈显著正相关,与水深呈显著负相关。该结果与本航次之后在广东湛江和海南以东的南海海域开展的908调查结果形成了鲜明对照,后者的小型底栖动物及线虫丰度与沉积物中有机质含量呈显著正相关,与水深呈显著负相关,表明近海受人类干扰影响较大。
     本文利用微宇宙实验方法,来确定不同浓度梯度的Cu、Pb以及Cu/Pb混合重金属污染物对青岛湾小型底栖动物(主要是线虫)的影响。加入污染物后,分别在1、3、7、14、21天进行取样分析。结果显示,Cu和Cu/Pb混合高浓度实验单元组的线虫丰度除在第21天有较明显减少外,在整个实验周期内基本没有变化,分析可能系高浓度Cu的固定作用从而使小型底栖动物无法腐烂降解造成的。同一时间尺度上,各重金属污染物实验单元的线虫丰度均高于(或接近于)空白对照组,较高浓度的重金属污染物实验单元的线虫丰度高于(或接近于)较低浓度重金属污染物实验单元,Cu/Pb混合低浓度实验单元的线虫丰度高于同一时间尺度Cu低浓度和Pb低浓度实验单元。推测是由于采样点的线虫群落中存在对Cu和Pb的耐受种或者“机会种”造成的。
Jiadong Wang(Marine Biology)
     Directed by Profs.Yanli Lei and Kuidong Xu
     Meiofaunal group composition,abundance,biomass and environmental parameters were investigated based on samples collected from 48 stations in the Yellow Sea(from 31°N to 39°N,120°E to 125°E) in June 2007.Mean abundance of meiofauna in the 48 sampling stations was 2194±1598 inds./10cm~2,with 3408±1578 inds./10cm~2 in the 17 sampling stations in the north Yellow Sea and 1529±1121 inds./10cm~2 in the other 31 sampling stations in the south Yellow Sea.Mean meiofaunal biomass of the 48 sampling stations was 1839±1289μ.g dwt/10cm~2,with 2760±1340μg dwt/10cm~2 in the north Yellow Sea stations and 1335±902μ.g dwt/10cm~2 in the south Yellow Sea stations.Among the 18 main meiofaunal groups sorted,free-living nematodes were the most abundant and contributed 88%to the total meiofaunal abundance,the percentage of nematodes of total meiofaunal abundance in the north Yellow Sea(87.7%) and the south Yellow Sea(88.3%) were similar. Nematodes contributed to 42%of the total biomass in the Yellow Sea,followed by polychaetes(22%),copepods(13%) and nauplii(12%).The investigation on the vertical distribution of meiofauna suggested that about 79%of the total meiofauna occurred in 0-2 cm depth in the Yellow Sea,17%in 2-5 cm depth,while only 4%in 5-8 cm depth.Statistical analyses showed that the abundance and biomass of total meiofauna were(markedly) significantly positively correlated to the concentrations of chlorophyll a and organic matter in the sediments and median diameter of sediments but significantly negatively correlated to the water depth,the biomass of total meiofauna was significantly negatively correlated to(silt and clay)%of the sediments.
     Meiofaunal group composition,abundance,biomass and environmental parameters obtained from 10 sampling stations in the Yellow Sea,East China Sea and South China Sea(from 17°N to 20°N,109°E to 112°E) were investigated from
     September to October in 2007.Mean abundance of meiofauna in the three sea areas was 2132±946 inds./10cm~2,1954±2047 inds./10cm~2 and 156±56 inds./10cm~2, respectively.Mean meiofaunal biomass in the three sea areas was 2193±1148μg dwt/10cm2、1865±1555μg dwt/10cm~2 and 212±22(μg dwt/10cm~2,respectively. Among the 14 main meiofaunal groups sorted,free-living nematodes were the most abundant and contributed 85%,89%and 85%,respectively,to the total meiofaunal abundance in the three sea areas.However,the biomass contribututed by dominant meiofaunal groups were different among the three sea areas.Nematodes contributed to 33%of the total biomass in the Yellow Sea,followed by polychaetes.In the East China Sea nematodes and polychaetes have the similar contributions(37%),while in the South China Sea polychaetes contributed to 56%of the total biomass.The investigation on the vertical distribution of meiofauna suggested that about 90%,46% and 63%,respectively,of the total meiofauna occurred in 0-2cm depth in the three sea areas.Statistical analyses showed that the abundances of total meiofauna and dominant groups were significantly positively correlated to the concentrations of chlorophyll a and phaeophytin a in the sediments and benthic water temperature but negatively correlated to the water depth.Our results were different from the study carried out in the 908-Cruise,where the abundances of total meiofauna and nematodes were only positively correlated to organic matter,indicating the sampling stations in 908-Cruise were more impacted by human activities than those of the present cruise.
     Meanwhile,a microcosm experiment was conducted to determine the effects of copper and lead(and mixture) heavy metals on meiofaunal groups,which were investigated on the day 1,3,7,14 and 21 after the heavy metals were incubated.The results showed that there was not obvious change on the abundance of nematodes in the treatments of high dose of Cu and the mixture of Cu and Pb treatments except on the 21st day.We suggest that at high dose levels the metals acted as preservatives such that nematodes died but were not decomposed.At the same sampling time,the abundance of nematodes in all treatments was higher than(or equal to) that in the control treatments,the abundance of nematodes in higher dose metals treatments was higher than that in lower dose treatments.Furthermore,the abundance of nematodes in low dose of mixture of Cu and Pb treatments was higher than that in low dose of Cu and low dose of Pb treatments.This is possibly due to the tolerance of some nematodes to metal pollution.
引文
1.蔡立哲.海洋底栖生物生态学和生物多样性研究进展.厦门大学学报,2006,45(Z2):83-89.
    2.蔡立哲,邹朝中.深圳河口福田泥滩海洋线虫的种类组成及季节变化.生物多样性,2000,8(4):385-390.
    3.蔡立哲,李复雪.厦门潮间带泥滩和虾池小型底栖动物类群的丰度.台湾海峡,1998,17(1):91-95.
    4.陈兴群,陈其焕,庄亮钟.南海中部叶绿素a分布和光合作用及其与环境因子的关系.海洋学报,1989,11(3):349-355.
    5.党宏月,黄勃,张志南.青岛湾有机质污染潮间带底栖生物研究Ⅱ.小型底栖动物生态特点.海洋科学集刊,1996,37:91-101.
    6.杜永芬,徐奎栋,孟昭翠,王家栋.南海小型底栖动物生态学的初步研究.海洋与湖沼,2009,印刷中
    7.范士亮,刘海滨,张志南,邓可,袁伟.青岛太平湾砂质潮间带小型底栖生物丰度和生物量的研究.中国海洋大学学报,2006,36(3):98-104.
    8.方少华,吕小梅,张跃平,蔡立哲,毕华生.台湾海峡小型底栖生物数量的分布.海洋学报,2000,22(6):136-140.
    9.高爱根,王春生,杨俊毅,王自磐,何德华.中国多金属结核开辟区东、西两小区小型底栖动物的空间分布.东海海洋,2002,20(1):28-34.
    10.贺志鹏.南黄海重金属的演变特征及控制因素.中国科学院研究生院博士学位论文,2008,P.45-46.
    11.黄勇.南黄海小型底栖动物生态学和海洋线虫分类学研究.中国海洋大学博士学位论文,2005.P.1-52.
    12.黄勇,张志南,刘晓收.南黄海冬季自由生活海洋线虫群落结构的研究.海洋与湖沼,2007,38(3):199-205.
    13.华尔,张志南,张艳.长江口及邻近海域小型底栖生物丰度和生物量.生态学报,2005,25(9):2234-2242.
    14.季如宝,张志南.14C 示踪法测定养虾池小型底栖动物对底栖硅藻的摄食.青岛海洋大学学报,1994,24(总83):199-205.
    15.柯翎.4种重金属离子对秀丽小杆线虫急性毒性研究.厦门大学学报,2004,43(Z):133-135.
    16.李玉,俞志明,曹西华,宋秀贤.重金属在胶州湾表层沉积物中的分布与富集.海洋与湖沼,2005,36(6):580-589.
    17.林岿璇,张志南,王睿照.东、黄海典型站位底栖动物粒径谱研究.生态学报,2004,24(2):241-245.
    18.林秀春,蔡立哲,金亮.湄洲湾灵川贝类养殖滩涂小型底栖动物数量研究.台湾海峡,2007,26(2):290-294.
    19.刘昌岭,朱志刚,贺行良,张波,夏宁..重铬酸钾氧化-硫酸亚铁滴定法快速测定海洋沉积物中有机碳.岩矿测试,2007,26(3):205-208.
    20.刘晓收.南黄海鳀鱼产卵场小型底栖动物生态学研究.中国海洋大学硕士研究论文,2005,P.49-50.
    21.刘晖,吴以平,高尚德,张志南.即墨养虾场虾病爆发前期底质中叶绿素的变化.海洋湖沼通报,1998,1:65-69.
    22.吕瑞华,朱明远.山东近岸水域的初级生产力.黄渤海海洋,1992,1O(1):42-47.
    23.慕芳红,张志南,郭玉清.渤海小型底栖动物的丰度和生物量.青岛海洋大学学报,2001,31(6):897-905.
    24.宁修仁,刘子琳,史君贤.渤,黄,东海初级生产力和潜在渔业生产量的评估.海洋学报,1995,17(3):72-84.
    25.孙世春.中国单针类纽虫—新记录.青岛海洋大学学报,1994,24(3):436-438.
    26.孙世春.台湾海峡纽形动物初报.海洋科学,1995,5:45-48.
    27.田胜艳.胶州湾大型底栖动物的生态学研究.硕士研究论文,2003,P.23-27.
    28.王惠卿.大连湾赤潮生物的特征.中国环境科学,1989,9(1):1-10.
    29.王家栋,类彦立,徐奎栋,孟昭翠.中国近海秋季小型底栖动物分布及与环境因子的关系研究.2009,海洋科学,印刷中
    30.王荣.荧光法测定浮游植物色素计算公式的修正.海洋科学,1986,10(5):1-5.
    31.王睿照,张志南.海洋底栖生物粒径谱的研究.海洋湖沼通报,2003,4:61-68.
    32.王诗红,张志南,吕瑞华.丁字湾潮间带日本刺沙蚕幼体对底栖微藻的摄食率.青岛海洋大学学报,2002,32(3):409-414.
    33.吴宝玲,陆华,丘建文.青岛湾排污海滩底栖动物的支序分类研究.环境科学学报,1993, 13(1):121-126.
    34.杨德渐,孙世春.海洋无脊椎动物学.青岛:青岛海洋大学出版社,1999,P.1-524.
    35.杨俊毅,王春生,刘镇盛,高爱根,王小谷.热带北太平洋深海小型底栖生物大尺度空间分布.海洋学研究,2005,23(3):23-29.
    36.张艳,张志南,黄勇,华尔.南黄海冬季小型底栖生物丰度和生物量.2007,应用生态学报,18(2):411-419.
    37.张志南.水层-底栖耦合生态动力学研究的某些进展.青岛海洋大学学报,2000,30(1):115-122.
    38.张志南,党宏月,于子山.青岛湾有机质污染带小型底栖生物群落的研究.青岛海洋大学学报,1993,23(1):83-91.
    39.张志南,谷峰,于子山.黄河口水下三角洲海洋线虫空间分布的研究.海洋与湖沼,1990,21(1):11-19.
    40.张志南,李永贵,图立红,于子山.黄河口水下三角洲及其邻近水域小型底栖动物的初步研究.海洋与湖沼,1989,20(3):197-208.
    41.张志南,林岿旋,周红,韩洁,王睿照,田胜艳.东、黄海春秋季小型底栖生物丰度和生物量研究.生态学报,2004,24(5):997-1005.
    42.张志南,慕芳红,于子山,韩洁,周红.南黄海鳀鱼产卵场小型底栖生物的丰度和生物量.青岛海洋大学学报,2002,32(2):251-258.
    43.张志南,钱国珍.小型底栖生物取样方法的研究.海洋湖沼通报,1990,4:37-42.
    44.张志南,周红.国际小型底栖生物研究的某些进展.中国海洋大学学报,2004,34(5):799-806.
    45.张志南,周红,慕芳红.渤海线虫群落的多样性及中性模型分析.生态学报,2001,21(11):1808-1814.
    46.张志南,周红,于子山,韩洁.胶州湾小型底栖生物的丰度和生物量.海洋与湖沼,2001,32(2):139-147.
    47.赵晶,吴宝铃.黄海多毛类异毛虫科初步研究.黄渤海海洋,1991,9(2):26-35.
    48.赵晶,Westheide W,吴宝铃.黄海小型砂间多毛类异触手属—新种.海洋与湖沼,1991,22(4):304-308.
    49.赵晶,Westheide W,吴宝铃.黄海砂间小型多毛类微目属—新种(多毛类:才女虫科).动物分类学报,1993,18(1):1-4.
    50.Atkinson C A,Joney D F,Simpson S L.Effect of overlying water pH,dissolvcd oxygen,salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments.Chemosphere,2007.69:1428-1437.
    51.Austen M C.Factors affecting estuarine meiobenthic assemblage structure:a multifactorial microcosm experiment.Journal of Experiment Marine Biology and Ecology,1989.130:167-187.
    52.Austen M C,McEvoy A J and Warwick R M.The Specificity of Meiobenthic Community Responses to Different Pollutants:Results from Microcosm Experiments.Marine Pollution Bulletin,1994,28:557-563.
    53.Austen M C,McEvoy A J.The use of offshore meiobenmic communities in laboratory microcosm experiments:response to heavy metal contamination.Journal of Experiment Marine Biology and Ecology,1997,211:247-261.
    54.Austen M C & Somerfield P J.A Community Level Sediment Biomass Applied to an Estuarine Heavy Metal Gradient.Marine Envfronmental Research,1997,43:315-328.
    55.Beyrem H,E.Mahmoudi E,Essid N,Hedfi A,Boufahja F,Aissa P.Individual and combined efiects of cadmium and diesel on a nematode community in a laboratory microcosm experiment.Ecotoxicology and Environmental Safety,2007,68:412-418.
    56.Cao W Z,Wong M H.Current status of coastal zone issues and management in China:A review.Environment Intrnafional,2007,33:985-992.
    57.Carman K R.Fleeger J W and Pomarico S M.Response of a benthic food web to hydrocarbons contamination.Limnology and Oceanography,1997,42:561-571.
    58.Coull B C.Ecology of the marine meiofauna.In:Introduction to the Stuay of Meiofauna(eds Higgins R P and Thiel H) Smithsonian Institution Press.Washington,D.C.1988,p.18-28.
    59.Coull B C.Role of meiofauna in estuarine sofl-bottom habitats.Australian Journal of Ecology.1999.24:327-343.
    60.Coull B C,Hicks G R F and Well J B J.Nematode/copepod ratios for monitoring pollution:a rebuttal.Marine Pollution Bulletin,1981,12:378-381.
    61.De Jonge V N and Bouwman L A.A simple density separation technique of quantitative isolation of meiobenthos using the colloidal silica Ludox-TM.Marine Biology,1977,42:143-148
    62.De Troch M,Van Gansbeke D and Vincx M.Resource availability and meiofauna in sediment of tropical sea grass beds:local versus global trends.Marine Environmental Research,2006,61:59-73.
    63.Fenchel T M.The ecology of micro and meiobenthos.Annua,Review of Ecology and Systematics,1978,9:99-121.
    64.Findlay S E G.Small scale spatial disrtributions of meiofauna on a mud and sandflat.Esuarine,Coasta,SelfScience,1981,12:471-484.
    65.Finlay S and Tenore K R.Effect of a free-living marine nematode(Diplolaimella chitwoodi) on detrital carbon mineralization.Marine Ecology Progress Series,1982,8:161-166.
    66.Gerlach S A.On the importance of marine meiofauna for benthos communities.Oecologia,1971-6:176-190.
    67.Gerlach S A.Attraction to decaying organisms as a possible cause for patch distribution of nematodes in a Bermuda beach.Ophelia,1977,16:151-165.
    68.Gerlach S A.Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity.Oecologia,1978,33:55-69.
    69.Giere O.Meiobenthology.Springero-Verlag.Berlin Heidelberg New York.1993,pp.328.
    70.Gyedu-Ababio T K,Baird D.Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory,microcosm experiment.Ecotoxfcology and Envoronmental Safety,2006,63:443-450.
    71.Herman P M J and Vranken G.Smdies of the life-history and energetics of marine and brackish-water nematodes.Oecologia,1988,77:457-463.
    72.Higgins R P.Thiel H.Introduction to the Study of Meiofauna.Smithsonian Institution Press,Washington DC,1988,1-488.
    73.Juario J V.Nematode species composition and seasonal nuctuation of a sublittoral meiofauna community in the Gerrman Bight.VerOfentichngen des Instituts far Meeresforschung Bremerhaven,1975.15:283-337.
    74.Kennedy A D and Jacoby C A.Biological indicators of marine environmental health:meiofauna - a neglected benthic component? Environmental Monitoring and Assessmennt,1999.54:47-68.
    75.Liu X S,Zhang Z N and Huang Y.Abundance and biomass of meiobenthos in the spawning ground of anchovy(Engraulis japanicus) in the southern Huanghai Sea.Acta Oceanologica Sinfca,2005,24:94-104.
    76.Mahmoudi E,Essid N,Beyrem H,Hedfi A,Boufahja E Vitiello P,Aissa P.Efiects of hydrocarbon contamination on a free living marine nematode community:Results from microcosm experiments.Marine Poffution Bulletin,2005,50:1197-1204.
    77.Mahmoudi E,Essid N,Beyrem H,Hedfi A,Boufahja F,Vitiello P,Aissa P.Individual and combined efiects of lead and zinc on a free-living marine healatode comnlunity:Results from microcosm experiments.Jouma,of Experimenta,Marine Biology and Ecology,2007.343:217-226.
    78.Margalef R.Information theory in ecologY.Genera,Systematics,1958,3:36-71.
    79.McIntyre A D.The macrofauna and meiofauna of some trophic beaches.Journal,of Zoology,1968.156:377-392.
    80.McIntyre A D.Ecology of marine meiobenthos.Bfologica,Reviews,1969,44:245-290.
    81.Metaxatos A and Ignatiades L.Seasonality of algal pigments in the sea water and interstitial water/sediment system of an eastem Mediterranean coastal area.Estuarine,Coasta,and Shelf Scfenee,2002,55:415-426.
    82.Moreno M,Ferrero T J,Gallizia I,Vezzulli L,Alberrelli G and Fabiano M.An assessment of me spatial heterogeneity of environmental disturbalice within an enclosed harbour throgh me analysis of meiofauna and nematode assemblages,Estuarine,Coatal,and Shelf Science,2008.77:565-576.
    83.Nichols J A.A simple notation technique for separating meiobenthos nematodes from fine grained sediments.Trans.Am.Microsc,1979,98:127-130.
    84.Pfannkuche O and Thiel H.Sample processing.In:Introduction to the Study of Meiofauna(eds Higgins R P and Thiel H) Smithsollian Institlltion Press.Washington,D.C,1988,p.134-145.
    85.Raffaellii D.The behaviour of the Nematode/Copepod ratio in Organic pollution studies.Marine Environmenta,Research,1987,23:135-152.
    86.Raffaelli D G and Mason C F.Pollution monitoring wim meiofauna,using the ratio of nelnatOde to copepod.Marine Pollution Bulletin,1981,12:158-163.
    87.Schwinghamer P.Extraction of living meiofauna from marine sediments by centrifugation in a silica sol-sorbital mixture.Canadian Journal of Fisheries and Aquatic Sciences.1981,38:476-478..
    88.Staton J L,Schizas N V,.Klosterhaus S L,Griffitt R J,Chandler G T,Coull B C.Effect of salinity variation and pesticide exposure on an estuarine harpacticoid copepod,Microarthridion littorale(Poppe),in the southeastern US.Journal of Experimental Marine Biology and Ecology,2002,278:101-110.
    89.Swartz R C,DitsworthG R,Schults D W,and Lamberson J O.Sediment toxicity to a marine infaunal amphipod:Cadmium and its interaction with sewage sludge.Marine Environmental Research,1986,18:133 - 153.
    90.Warwick R M.The nematode / copepod ratio and its use in pollution ecology.Marine Pollution Bulletin,1981,12:329-333.
    91.Widbom B.Determination of average individual dry weight and ash-free dry weight in different sieve fractions of marine meiofauna.Marine Biology,1984,84:101-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700