有色冶炼石灰中和净化废水生物制剂深度处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有色重金属冶炼行业一直是我国污染大户,其产生废水量大,重金属种类多,含量高。目前我国95%以上有色重金属废水均采用石灰中和法处理,处理后中和净化废水中含有大量的钙离子及微量的重金属离子,其直接排放造成了重金属资源的流失、水资源浪费,并成为饮用水源最大的安全隐患之一。开展有色中和净化废水的深度处理技术研究对解决水资源危机、促进有色行业的可持续发展具有重要意义。
     针对石灰中和净化废水的深度净化问题研制了新型生物制剂B,提出并开发了“生物吸附—脱钙”深度处理新工艺。以城市生活污水厂的剩余活性污泥为主体,根据石灰中和净化水中金属离子的特性,通过添加调整因子H对其进行改性、调整,使其富含高效特异功能菌群,制得生物制剂B。生物制剂B对低浓度的铜、锌、镉、铅离子具有较好的吸附能力,去除率分别达到96.47%,80%,90%,50%。优化了生物制剂B处理重金属废水的工艺条件,最佳工艺条件为:温度25℃,反应1h,pH值8-10。生物制剂用量对Cu~(2+)和pb~(2+)的去除影响不大,对Zn~(2+)和Cd~(2+)的影响较大,温度对生物制剂B去除重金属的影响并不显著,Cu~(2+)、Zn~(2+)、Cd~(2+)和pb~(2+)四种重金属离子的去除都与pH呈现抛物线关系。生物制剂B对Cu~(2+)表现出优先去除。
     复配了深度净化-可控脱钙的生物制剂B和人造沸石体系。生物制剂B与沸石的复合系统对于工业高浓度Ca~(2+)废水具有很强的处理能力,单位沸石处理钙离子量达到21.71mg/g。优化了实验室工艺参数,结果表明Ca~(2+)的去除率随着固液比的增加而升高,对于初始Ca~(2+)浓度为801.6mg/L的废水,固液比为3:100时,去除率达到80.38%,升温有利于钙离子的去除,当pH值高于11.49时,去除率突增。反应时间达到50min时,吸附平衡。人造沸石的红外光谱图表明脱钙过程主要是化学吸附。
     复配了深度净化-可控脱钙的生物制剂B和碳酸钠体系。优化了此复配体系处理高钙废水的工艺参数,处理初始钙离子浓度为643.20mg/L的株冶石灰中和净化水,碳酸钠的投加浓度为1.75g/L时,可使剩余钙离子浓度降为81.60mg/L,满足回用的要求。当初始pH值在5-7之间变化时,钙离子去除率基本上不变,当初始pH值高于8时,钙离子去除率随着pH值的升高而升高。温度升高会促进钙离子的去除,最适搅拌速度为125r/min,反应时间为30min。优化了生物制剂B脱除低浓度重金属离子及K_2CO_3废液和Na_2CO_3废液深度脱钙的扩试工艺条件,并进行了连续试验,深度净化水后出水重金属铜、铅、锌、镉离子浓度完全达到了《生活饮用水水源水质标准》(CJ3020—93),可实现“零排放”。32m~3/h石灰中和净化水深度处理的运行费用为0.84元/m~3,1000m~3/h石灰中和净化水深度处理的运行费用为0.53元/m~3。
     建立了生物制剂B对重金属离子的吸附模型。在单一重金属体系中,生物制剂B对铜、铅、锌、镉三种重金属离子的吸附符合Freundlich模型。采用Zeta电势表征了渣的沉降过程,用生物制剂B和Na_2CO_3废液体系处理中和净化水时无需加入PAM也可以获得同样好的沉降效果。采用XRD、IR等现代测试手段分析了生物制剂B处理重金属离子及深度脱钙的机理。在废水中分别投加两种废液后沉降的主要晶体物质都是CaCO_3,由IR图可知生物制剂B中存在有-C=O、-OH,从而可以推测存在羧基,-OH中的氧原子未共用的电子与重金属离子发生化学吸附。由于吸附重金属离子以及废水碱性环境的作用,吸收峰强度和峰的位置发生了变化,进一步表明生物制剂自身或其代谢产物可能与废水中的金属离子、钙离子发生了吸附、配合、沉淀或离子交换等作用。
     针对生物制剂B深度处理后的净化水进行了回用可行性探讨,从中试连续试验获得的生物制剂深度净化水水质与生产水水质比较来看,净化水中各重金属离子浓度均优于冶炼厂现在使用的生产水,只有钙离子浓度略高。在使用低钙净化水替代生产水后,最初阶段其电解锌溶液的平均钙离子浓度为489.17mg/L,是可以允许的浓度,微量重金属元素也不会对冶炼系统产生影响,有机物的油含量非常低,不会对生产系统产生影响,理论上讲可以实现100%回用。
Wastewater produced from the nonferrous metal factories contained a lot kinds of metals with high concentrations. The lime-neutralization is used to treat the wastewater in almost 95% of the factories. The effluent contains high cadcium and micro heavy metals, it causes the waste of both metal resources and water resources, and influences the safety of drinking water. It is of importance to study on the novel technique for deeply treatment of lime-neutralization-purified wastewater to resolve water resource crisis and improve sustainable development of non-ferrous industry.
     For the deeply purification of the lime-purified water the bio-formulation B was made and reserached, and the technique of "biological adsorption-decalcification" was put forward. Based on the properties of heavy metals in purified water, after characterization and adjustment using addition agent H, bio-formulation B is designed and developed with the main composition of the waste activated sludge from municipal sewage treatment plant, which contained a lot of functional bacteria with high efficiency. The technological conditions of treatment of heavy metal containing wastewater with lower concentration were optimized, which is 25℃, pH value 8-10, reacting for 1h, and no significant effect of temperature has been observed in the test, while other factors exerted important influence on the sorption process. Little effect of dosage of activated sludge on the adsorption of Cu~(2+), more effects on the adsorption of Zn~(2+) and Cd~(2+) have been observed. It was also researched that the heavy metal ion adsorption was a parabolic relationship with pH. The Cu~(2+) is removed firstly.
     The system of bio-formulation B and artificial zeolites was used to removing the calcium from wastewater. Effects of parameters such as pH value, temperature, reaction time and sorption duration on removal rate of Ca~(2+) and pH value were studied in detail. The results indicate that solid-to-liquid ratio is an important factor on the removal of Ca~(2+), still pH value and temperature have obvious influences on the process, reaction time has little effect on removal rate of Ca~(2+) after reacting for 10 min. The removal rate of Ca~(2+) increases with increasing the solid-to-liquid ratio at 25℃, initial pH value 8.04, reacting for 1 h., 80.38% of the initial Ca~(2+) amount (solutions containing 801.6mg/L) is removed under the condition of solid-to-liquid ratio 3: 100, the terminal concentration is 157.31mg/L. The increase in temperature is advantageous to removal of Ca~(2+), the removal rate of Ca~(2+) rises from 77.30% to 90.71% with the temperature enhancing from 20℃to 45℃. Removal rate of Ca~(2+) reaches 74.96% in 10min with lengthening reaction time, also the removal rate slowly rises. The effect of pH value on removal of Ca~(2+) is complicated. The compound of artificial zeolite and waste activated sludge plays the role of better buffer effect on pH change, terminal pH value is between 6.5-8.5, being satisfied with the national discharge standard. According to the IR of artificial zeolite, the Ca~(2+) is removed by chemical biosorption.
     The system of bio-formulation B and Na_2CO_3 used to deeply purification-decalcification controlled freely was combined. Biosorption behaviors of heavy metal ions, such as Cu~(2+), Cd~(2+) and Zn~(2+), were carried out using waste activated sludge as adsorption material, and effects of parameters, such as pH value, temperature, reaction time and sorption duration, were studied in details. The results indicate that the removal rates of Cu~(2+), Zn~(2+), Cd~(2+), Pb~(2+) with low concentration are 96.47%, 80%, 90%, 50% respectively adsorbed by waste activated sludge. The optimum conditions were obtained through experiment with the heavy metal removing and decalcification using bio-formulation B and Na_2CO_3 individually. Under the optimum conditions the continuous experiments were carried on, the concentration of Cu~(2+), Pb~(2+), Zn~(2+), Cd~(2+), and Ca~(2+) can satisfy the Water Quality Standard for Drinking Water Sources(CJ3020-93). The reusing-rate reached to 100%, or realized zero draining. The operating cost was 0.84yuan/m~3 under the scale of 32m~3/h, the operating cost only was 0.53yuan/m~3 under the scale of 1000m~3/h.
     The adsorption model of the heavy metal ions by bio-formulation was built. In single heavy metal ion system, the sorption process of Cu~(2+)、Zn~(2+) and Cd~(2+) are in accordance with Freundlich model. According to the Zeta potential during the process of lime-purified effluent using bio-formulation B and Na_2CO_3 waste liquid, there was the same precipitation effect without PAM. The mechanism of treatment of heavy metals and decalcification by bio-formulation B were researched by the modern test and analytical method, such as XRD, IR and so on. The reaction product was mainly crystalline solid CaCO_3 both using two kinds of waste liquid. It has been identified that there are a lot of functional groups and chemical bonds, such as -C=O, -OH, existing in the bio-formulation B. Because of the adsorption of heavy metal and the alkaline media of wastewater, their peaks intension and positions changed. During the treatment of lime-purified water, the heavy metals were deeply removal through the functions of adsorption, complexing, precipitaion, ion-exchange by the bio-formulation B and its metabolite. The Ca~(2+) was removed with addition of Na_2CO_3, and the concentration of Ca~(2+) could be controlled freely.
     The water reusing research was carried out, according to the water quality comparison between the bio-formulation deeply treatment purified water and the common using water, the bio-formulation deeply treatment purified water just a little high of cadcium, in the first stage the average concentration will be about 489.165mg/L in the zinc electrolyte. There is no negative effluent of the existence of heavy metals, and the organic substance is too little to influence the smelting system, so the deeply treatment water can be reused 100%.
引文
[1] 秦蓓蕾.论水资源的可持续开发利用[J].水利科技与经济,2006,2,12(2):71-72
    [2] 刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利水电出版社,2001
    [3] 刘翰朝.我国21世纪水资源挑战与节水型社会经济模式的探讨.水利与建筑工程学报,2006,6,4(2):73-77
    [4] 陈志恺.中国水资源的可持续利用问题[J].水文,2003,23(1):1-5
    [5] 徐运忠,吴国玺.我国水资源特点及开发利用[J].河南教育学报,2002,11(1):27-29
    [6] 康绍忠.新的农业科技革命与21世纪我国节水农业的发展[J].干旱地区农业研究,1998,6(1):11-17
    [7] 董辅祥,董欣东编著.城市与工业节约用水理论[M].中国建筑工业出版社,2000
    [8] 霍俊山,蔡晓梅,张国梁编.排水工程[M].中国建筑工业出版社,1988
    [9] 董玉川主编.城市与工业节约用水手册[M].化学工业出版社,2002
    [10] 陈小红.工业中水回用的可行性探讨[J].应用能源技术,2006,(4):33-36
    [11] Stoica, Anca-Iulia.Analytical studies on the pollution of Arges River[J].Critical Reviews in Analytical Chemistry,1999,29(3): 243-247
    [12] Cotman M.,Slovenia Zagorc-Koncan J.,Drolc A..Study of impacts of treated wastewater to the Krka river[J].Water Science and Technology,2001,44(6):47-54
    [13] 廖自基.微量元素的环境化学及生物效应[M].北京:中国环境出版社,1985
    [14] 常学秀,文传浩,王焕校.重金属污染与人体健康[M].云南环境科学,2000,19(1):59-61.
    [15] 史黎蔽.铬化合物的健康效应(综述)[J].中国环境卫生,2003,6(1-3):125-129
    [16] 纪柱.铬的健康、安全、环境指南[J].铬盐工业,2003,(2):1-41
    [17] 陈红,叶兆杰,方士.不同状态MnO_2对废水中As的吸附性能研究[J].中国环境科学,1998,18(2):126-130
    [18] 刘淼,董德明.光催化法处理电镀含铬废水的研究[J].吉林大学学报(自然科学版),1998,33(4):98-102
    [19] 盂祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000:80-83
    [20] 雷国园.重金属离子吸附剂的研究进展[J].国外金属矿选矿,2000,10:2-6
    [21] 李门楼.改性硅藻土处理含锌电镀废水的研究[J].湖南科技大学学报(自然科学版),2004,19(3):81-84
    [22] 李虎杰,田煦,易发成.活化沸石对Pb~(2+)吸附性能研究[J].非金属矿,2001,24(2): 49-51
    [23] 黄继国,张永祥.G T-铁氧体法处理含铬废水实验研究[J].长春科技大学学报,2000,30(1)
    [24] 汤兵,张俊浩.铁氧体法处理含Zn~(2+)、Ni~(2+)废水研究[J].环境保护科学,2002,28(109):12-15
    [25] 魏拯枢.铁氧体法处理含铬废水工艺条件探讨[J].化工环保,1998,18(1):76-80
    [26] 欧阳纶,高念平.用酸洗废水合成铁氧体净化电镀废水研究[J].环境化学,1984,3(6)
    [27] 王军民.含重金属废水的处理技术进展[J].水处理技术,1996(1):14-15
    [28] Yun C. H.,Sirkar K. K..Hollow fiber, solvent extraction removal of toxic heavy metals from aqueous[J].waste streams. Ind. Chem. Res., 1993, 32(6): 1186-1195
    [29] Ruppert M,Draxler J.,Marr R. Liquid-membrane perme-, ation and its experiences in pilot-plant and industrial scale. [J].Separation Science and technology,1988,23(12): 1659-1666
    [30] Guha A. K.,Sirkar K. K.. Heavy Metal Removal and. Recovery by Contained Liquid Membrane Permeator[J]. Aiche Journal, 1994,40(7): 1223-1237
    [31] 董晓雯,肖振业,梁玻琪.电化学法综合利用废杜镁丝[J].环境科学,1998,19(1):58-61
    [32] 彭长宏,颜蓉,唐谟堂.石灰处理共沉淀废水的研究[J].工业水处理,2002,5,22(05):21-23
    [33] 刘剑彤,肖邦定,陈珠金.曝气混凝一体法去除碱性废水中砷的研究[J].中国环境科学,1997,17(2):184-187
    [34] 毛银海,郭泽林.氧化钙二段中和沉淀法处理铜矿酸性废水的应用与改造[J].给水排水,2003,29(5):46-50
    [35] 陈仕安.铀水治厂废水治理的主要技术、措施与展望[J].铀矿冶,1998,17(4):263-266
    [36] TIEN-Yungjchu.Active versus passive water quality monitoring programs for wasterwater discharge[J].WPCF, 1978,50(9):2234-2236
    [37] 刘志刚.石灰中和法处理含重金属离子酸性废水[J].江西冶金,2003,12,23(6):109-110
    [38] 彭新平.株洲冶炼厂总废水处理后回用扩大试验研究[J].湖南有色金属,2001,2,17(01):35-37
    [39] 李卫红.有色冶炼重金属废水回用研究[J].工业安全与环保,2002,11,28(11):14-17
    [40] 许国强,曾光明,殷志伟等.铜冶炼厂总废水处理后净化水回用水质稳定处理试验研究[J].湖南有色金属,2001,9,17(5):27-31
    [41] 许春生,高艳玲,吕炳南.生物粉末活性炭微过滤法对废水回收的利用[J].哈尔滨商业大学学报(自然科学版),2004.12,20(6):710-714
    [42] 李标.生物活性炭技术在水处理中的应用研究进展[J].安徽农业科学,2005,33(4):705-707
    [43] 车荣睿.离子交换法治理含铬废水进展[J].水处理技术,1987,13(6):324-326
    [44] 周定,杨硕林.新型螫合树脂—木屑柠檬酸酯的合成及其应用[J].环境化学,1984(6):30-33
    [45] 罗道成,易平贵,陈安国等.腐植酸树脂对电镀废水中重金属离子的吸附[J].材料保护,2002,35(4):54-56
    [46] Boyd G.E.,Adamson A.W., Myers Jr. L.S..The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites Ⅱ Kinetics[J].Journal of the American Chemistry Society,1947,69(10):2836-2848
    [47] 陈文森,陈炳稳.两性离子交换树脂对含锌废水的处理[J].化工时刊,2004,18(1):47-48
    [48] 吴开芬,李书申.聚醚砜超滤膜的研究[J].环境化学,1993,12(6):449-455
    [49] Szpakowska M, Nagy O B. Influence of physico-chemical control and of membrane composition on the coupled transport of copper(Ⅱ) ions through bulk liquid membrane[J].Journal of Membrane Science, 1998, 147:207-215
    [50] 吴玲玲,刘淑秀.聚砜酰胺超滤膜及其应用[J].水处理技术,1983,9(1):22-24
    [51] Yi ChuHuang, BacehelorB. Et al. Cross flow surfactant based ultrafiltration of heavy metal for wastewater treatment[J].Sep.Sci.Technol, 1994, 29(15):89-93
    [52] Ruey-Shin Juang,Chwei-Huang Chiou. Journal of Membrane Science 2001,187,119-127
    [53] S. Ghizellaoui, S.Taha, et al. Softening of Hamma drinking water by nanofiltration and by lime in the presence of heavy metals[J].Desalination,2004, 171,133-138
    [54] Catherine A.Eiden, etal. Chitosan[J].Journal of Applied Polymer Science,1980, (25):1587-1599
    [55] Yoshihide Kawamura, et al. Breakthrough Curve for Adsorption of Mercury on Polyaminated Highly Porous Chitosan Beads[J].Wat.Sci.Tech, 1997,35(7):97-105
    [56] 王振东,李琼,余会堂等.壳聚糖对含Hg~(2+)、Bi~(2+)废水的吸附研究[J].武汉科技学院学报,2001,4(2):6-11
    [57] 周永国,齐印阁,杨越冬等.脱乙酰甲壳质回收处理含铜废水[J].环境保护科学,1994,20(3):10-12
    [58] 周永国,畅越冬,齐印阁等.壳聚糖处理含重金属离子废水的研究[J].河北农业技术师范学院学报,1996,10(2):25-28
    [59] Inoue Katsutoshi, Ohto Keisuke, Yoshizuka Kazuharu.Adsorption behaviors of some metal ions on chitosan modified with EDTA-type ligand[J].Bunseki Kagaku, 1995,44(4):283-287
    [60] 陈伟,林友文,罗红斌等.羧甲基壳聚糖吸附铜离子性能研究[J].福建环境,2000,17(5):9-11
    [61] Inoue Katsutoshi, Yoshizuka Kazuharu, Iwasaki Mineto, etal. Chemically modified chitosans as metal ion adsorbents[P]. JP04166236A2, 1992
    [62] 陈天,汪士新.利用壳聚糖为絮凝剂回收工业废水中蛋白质、染料以及重金属离子[J].江苏环境学,1996(1):45
    [63] 曲荣君等.多胺交联纤维素树脂的合成及吸附性能(Ⅺ)[J].林产化学与工业,1997,17(3):19-24
    [64] 曲荣君等.多胺赘合树脂的合成及其对Ag(Ⅰ)的吸附[J].材料研究学报,1999,13(1):51-57
    [65] Kratochvil,D., Pimentel, P.F., Volesky, B.Removal of Trivalent Chromium by Seaweed Biosorbent[J].Department of Chemical Engineer,2002
    [66] B. volesky, D., Pimentel, I.Prasetyo. Cadmium Removal in a Biosorption Clumn [J].Biotechnology Bioengineering, 1994,43(11); 1010-1015
    [67] Ayla ozer, Dursun Ozer, Gulbeyi Dursun, Serpil Bulak. Cadmium (Ⅱ) Adsorption on Cladophra Crispata in Batch Stirred Reactors in Sedes[J].Water Management, 1999,19:233-240
    [68] Jose T., Matheickal, Qiming Yu ect. Biosorption of Cadmium(Ⅱ) from Aqueous Solutions by Pre-treated Biomass of Marine Alga Durvillaea Potatorum[J].Wat.Res, 1999,33(2):335-342
    [69] Schiewer S., Fourest E. Chong K. H. and Volesky B. In: Jerez C. A. Vargas T.,Toledo H. and Wiertz J. V. eds, Biohydrometallurgical Processing: Proceeding of the International Biohydrometallurgy Symposium, Santiago: University of Chile, 1995
    [70] M.M.Figueira, B. Volesky K. Azarian and V. S. T. Ciminelli. Multimetal biosorption in a column using Sargassum biomass. In: R. Amils, A.Ballester eds. Biohydrometallurgy and the Environment Toward the Mining of the 21st Century[J],Part B, Amsterdam. Lausanne. New York. Oxford.Shannon.Singapore. Tokyo:Elsevier, 1999.503-511
    [71] Ray H. Crist,Karl Oberholser, et al.Nature of bonding between metallic ions and algal cell walls[J].Environ.Sci.Technol., 1981,15(10): 1212-1217
    [72] 朱一民,周东琴,魏德洲.pb~(2+)的吸附特性[J].东北大学学报(自然科学版),2003,10,24(10):978-981
    [73] 周东琴,朱一民,魏德洲.啤酒酵母菌体对工业废水中重金属离子Pb~(2+),Zn~(2+)的生物吸附规律[J].东北大学学报(自然科学版),2004,9,25(9):911-913
    [74] 李明春,姜恒.酵母菌对重金属离子吸附的研究[J].菌物系统,1998,17(4):367-373
    [75] 李清彪,吴涓,杨宏泉.白腐真菌菌丝球形成的物化条件及其对铅的吸附[J].环境科学,1999,20(1):33-38
    [76] Prakasham R.S., Merrie J. S., Sheela R.. Biosorption of chromium (VI) by free and immobilized Rhizopus arrhizus[J]. Environmental Pollution, 1999, 104(3):421-427
    [77] JK. Fredrickson. Reduction of Fe(Ⅲ), Cr(Ⅵ), U(Ⅵ) and Tc (Ⅶ) by Deinococcus radiodurans R1[J]. Applied Environmental Microbiology, 2000, 66(4):2006-2010
    [78] Fujie Koichi, Hu HongYing, Huang Xia. Optimal operation of bioreactor system developed for the treatment of chromate wastewater using Enterobacter cloacae HO-1 [J]. Water Science and Technology, Biofouling, 1996,34:173-182
    [79] Song Y.-Ch., Piak B.-Ch., Shin H.-S.. Influence of electron donor and toxic materials on the activity of sulfate reducing bacteria for the treatment of electroplating wastewater[J]. Water Science and Technology, 1998,38, 187-194
    [80] Robles, LC Aller, AJ. Immobilized bacterial cells as bio-sorbents for toxic elements[J].Quimica Analittca, 1996,15 (1): 21-31
    [81] Wang Jianmin, Huang C. P., Huang H. E., et al. Effects of dissolved organic matter and pH on heavy metal uptake by sludge particulates exemplified by copper and nickel:three variable model[J].Wat. Environ. Res., 1999,71:139-147
    [82] Volesky B., Holan Z. R..Biosorption of heavy metals[J].Biotechnology Progress,1995,11:235-250
    [83] Chang Duk, Kensuke f.,Ghosh S.. Stimulation of actived sludge cultures for enhanced heavy metal removal[J].Water Environment Research,1999,67:822-827
    [84] Ferraz A. I.,Teixeira J. A.. The use of flocculation brewer's yeast for Cr~(3+) and Pb~(2+) removal from residual wastewater[J].Bioprocess Engineering, 1999,21: 431-437.
    [85] Ruchhoft, et al. Bilsorbtion of lead from aqueous solution [J]. Wat Sci&Technol. 1996, 34:1-7
    [86] A.hammaini, F.Gonzalez, et al.Simulaneous uptake of metals by activated sludge[J].Minerals Engineering,2003(16),723-729
    [87] B. W. Atkinson, F. Bux, H. C. Kasan. Bioremediation of Metal-Contaminated Industrial Effluents Using Waste Sludges[J]. Water Science Technology, 2000,34(9):9-15
    [88] 马晓航,华尧熙,叶雪明.硫酸盐生物还原法处理含锌废水[J].环境科学,1995.4:20-21
    [89] 王士龙,张虹等.用活性污泥处理含铅废水的试验研究[J].材料保护,2002,35(4):53-56
    [90] Arican Betul,Yetis Ulku. Nickel sorption by acclimatized activated sludge culture[J].Water Research,2003,37(14): 3508-3516
    [91] Bux F, Kasan H C.Assessment of wastewater treatment sludges as metal biosorbents[J].Resource and Environment Biotechnology, 1996.1:163-177
    [92] Chang D, Fukushi K,Ghosh S.Stimulation of activated sludge cultures for enhanced heavy metal removal[J]. Water Environment Research, 1995,67(5):822-827.
    [93] 王丽芹.工业用水的软化处理简析[J].化工装备技术,2005,26(4):18-19
    [94] MichaIi B., Stanislaw K.,Klaudia W.. Application of membrane techniques in a water softening process[J]. Desalination, 2002,(145):321-327
    [95] Y.Oren,V.Katz,N.C.Improved compact accelerated precipitation softening(CPAS) [J].Desalination,2001,( 139): 155-159
    [96] M.Soltanic, M.Mousavi. Application of charged menbrances in water softening: modeling and experiments in the presence of polyelectrolytes[J]. Membrance science, 1999,154:53-60
    [97] Samira Ghizellaoui a,Aissa Chibani a,Souheila Ghizellaoui. Use of nanofiltration for partial softening of very hard water[J]. Desalination, 179(2005):315-322
    [98] 孟宏伟.水质稳定剂的研究进展[J].甘肃科技,2003,19(12):73-74
    [99] 王晓伟,周柏青,李芹.低硬度循环冷却水系统硅系水质稳定剂的研究[J].工业水处理,2003,23(4):33-35
    [100] 国家环保局,《水和废水监测分析方法》编委会.水和废水监测分析方法.第三版,北京:中国环境科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700