兰坪低品位氧化铅锌矿矿冶新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在查阅大量文献与资料的基础上,论述了锌金属生产的发展趋势,提出了进一步重点研究低品位氧化矿的重要意义。随着世界经济的快速发展,特别是中国经济的高速运转,对锌金属的需求量逐年增长。2005年全球精炼金属锌的产量为1022.6万吨,2005年中国锌产量达到271万多吨,占世界总产量的26.3%,居世界第一位。2006年世界锌金属的需求以4.30%继续增长。由于锌精矿资源的不断枯竭和对锌金属需求的不断增加、产能的不断扩大,造成供求矛盾的加剧。因此,世界各国对低品位氧化矿提取技术的研究越来越重视,因此,研究低品位氧化锌矿具有现实和长远意义。
     本论文详细介绍了目前国内外处理氧化锌矿的一些工艺方法,它们分别是硫化-胺法、硫化-黄药法、脂肪酸类捕收剂及氧化锌矿的其它浮选方法。
     本论文针对云南兰坪金顶矿区低品位氧化矿的矿石储藏量大、品位低、矿石性质复杂、难以选别的特点,在前人大量研究的基础上,查阅大量文献与资料,进行了较为详细的各种矿石形态和各种条件下的试验研究。在所进行的重介质选矿分离试验研究、灰岩型矿石浮选试验研究、砂岩型矿石浮选试验研究、灰岩与砂岩型混合矿石直接浮选试验研究、灰岩与砂岩型混合矿石压力热溶硫化试验研究中,最有效、最具有研究价值和发展前途的就是灰岩与砂岩型混合矿石压力热溶硫化试验研究。
     灰岩与砂岩型混合矿石压力热溶硫化试验研究具有创新和工艺的新颖性,结合了冶炼和选矿工艺,适应处理云南兰坪金顶矿区各类低品位氧化矿的矿石,无需特别的磨矿、脱泥工序,在180℃左右温度和3.OMP压力和硫化时间为180分钟的条件下,可以达到硫化率90%以上和硫化锌回收率80%以上的好指标。而且。该方法还具有生产工艺简单、容易操作、控制,预处理过程无任何有害气体和物质产生,是比较符合节能、环保清洁生产、循环经济的要求。
     重介质选矿仅适用于灰岩型氧化矿,采用摇床重选可以有效脱去钙,对硫化锌精矿的品位除某些粒级可以达到22%品位以外,其余均达不到冶·炼所需要的精矿品位,说明兰坪金顶矿采用重选摇床选别对处理矿石的适应性差,不能满足生产的需要。还需要进一步探索新的矿冶方法。
     灰岩型矿石浮选试验结果表明,由于氧化矿硫化困难,需要采用加温和添加大量的硫化剂-硫化钠和辅助捕收剂-氧锌灵,大大增加了生产成本,而且工艺流程长,复杂,需采取先浮选硫化锌后氧化锌和脱泥的工艺,实际生产中难以操作控制。
     砂岩型矿石浮选试验结果与灰岩型矿石浮选试验结果类似,也需要采用加温和添加大量的硫化剂-硫化钠和辅助捕收剂-氧锌灵,大大增加了生产成本,而且工艺流程长,复杂,需采取先浮选硫化锌后氧化锌和脱泥的工艺,实际生产中难以操作控制。因此也需要探索新的工艺方法。
     灰岩与砂岩型混合矿石直接浮选试验结果表明,欲获得较好的指标,必须选用较多品种药剂,而且使用量较大,因此可能为以后工业生产增加了生产成本,对企业经济效益不利。由于灰岩型与砂岩型混合矿石性质复杂,虽然能对硫化铅、硫化锌、氧化锌等进行有效回收,但所使用药剂的品种较多、采用的工艺流程长,特别是氧化矿脱泥量大,实际生产操作中难以控制,因此,此方法对如何处理混合矿石仍然有局限性,还需进一步探索对混合矿石较为适应的工艺技术。
     本论文还对各种形态的矿石粒级进行了研究,研究结果表明,对选矿指标来说,矿石粒级对浮选指标有一定的影响,但对含泥量较大的矿石来说,粒级越小,锌在矿泥的损失越大,对浮选指标不利。
     探索出对云南兰坪金顶矿区大量堆存的低品位氧化矿进行处理的工艺方法,不仅有助于企业经济效益的发展,而且对世界上处理低品位的氧化矿也是重大贡献,对资源的综合利用具有划时代的意义。因此,有必要继续加大对处理低品位氧化矿的研究力度和资金的投入。
In this paper, based on lots of literatures, discuss the future development trends for the zinc production and expounded the importance of the further study of low-grade oxide ores. With the rapid development of the world economy, especially the high-speed operation of the China's economy, the demand for zinc metal increased every year. In 2005, the global outputs of refined zinc were 10.226 million tons. Meanwhile, china's outputs were more than 2.71 million tons, which were4.30% of the global capacity and the biggest one in the world. In 2006, the demand for zinc metal was continue to be increased in the rate of 4.26% all over the world. As the depletion of zinc concentrate resources and the increase in demand for zinc metal and the expansion of production capacity, the contradiction between supply and demand was aggravated. Therefore, the studies about extraction metals from low-grade oxide ores had been given more and more attention by researchers all over the world.
     The treatment technologies of low-grade zinc oxide ores were studied in detail in this paper. These technologies were sulphidization-ammonium method、sulphidization-xanthate flotation method、fatty acid flotation collectors and other flotation method of zinc oxide respectively.
     On the basis of the characters of the zinc oxide ores from Yunnan Lanping Jinding mine, which were rich in reserves but low in grade、complicated in properties and difficult in recycling, the effects of various minerals at different conditions are experimentally studied based on lots of published literatures and other previous works. On the experimental studies of the heavy-media separation、the limestone-type ores flotation、the sandstone-type ores flotation、the limestone-type and sandstone-type mixed ores direct flotation、the limestone-type and sandstone-type mixed ores pressure-treatment thermal-dissolved-sulfur, the most effective and promising study was the limestone-type and sandstone-type mixed ores pressure-thermally dissolved-sulfation process.
     The experimental studies of the limestone-type and sandstone-type mixed ores pressure-treatment thermal-dissolved-sulfur process which combined with smelting and beneficiation processes. Was innovative and novel. It was suitable to deal with low-grade ores from Yunnan Lanping Jinding mine. Meanwhile, it didn't need the procedure of milling and desliming. The optimum technological conditions were as follows:a temperature of about 180℃、a pressure of 3.0Mpa and a curing time of about three hours. Under these conditions, the curing efficiency was above 90% and the recovery ratio of zinc sulphide was over 80%. Furthermore, this method had advantages of a simple procedure and operation、without any harmful gas and solid waste in pretreatment procedure, which met the requirement of energy-saving、environment-friendly and recycling economy.
     The heavy-media separation process was only fit for limestone-type oxides. Though the calcium can be effectively removed, the zinc sulfuration concentrate except a small quantity of particles can't reach the grade of 22% by table gravity separation. It was shown that this process was not very good for treating the ores from Lanping Jinding mine and it can't satisfy the demands of production. Thereby, a further research of mining and metallurgy was needed to be done.
     It was difficult to vulcanize the oxides on the limestone-type ores flotation. The result indicated that it was necessary to rise in temperature and to add a great deal of curing agents such as sodium sulphide and auxiliary collectors such as zinc white, which had a long and complicated process and increased the production cost. The flotation of zinc sulphide was the first step then was the flotation of zinc oxide, and the procedure of desliming was needed, which was difficult to control in the real production.
     The result of the sandstone-type ores flotation was similar to that of limestone-type ores. It was necessary to rise in temperature and to add a great deal of curing agents such as sodium sulphide and auxiliary collectors such as zinc white, which had a long and complicated process and increased the production cost. The flotation of zinc sulphide was the first step then was the flotation of zinc oxide, and the procedure of desliming was needed, which was difficult to control in the real production. Therefore, a further research of mining and metallurgy was also need to be done.
     The result of limestone-type and sandstone-type mixed ores direct flotation indicated that various and vast chemicals was needed to achieve the advantageous aim, which would increase the production cost in the future. Although the lead sulphide、zinc sulphide and zinc oxide etc can be effectively recovered, it needed excessive chemicals and a long process, especially the desliming of oxide ores would produce large numbers of residue. It was also difficult to control in the real production. Hence, this process still had shortage to treat with the mixed ores. Adaptive technologies to fit the mixed ores were needed to be further investigated.
     Ores with different diameters were also researched in this paper. It was shown that the diameters of ores affected the flotation result. The percentage loss of zinc in the ores with much mud increased with the decrease of the ores diameters, which was not favorable for flotation.
     It was not only beneficial for the development of the corporation, but also an important contribution for the world to treat with the low-grade oxides. Meanwhile, it was of great significance for the comprehensive use of resources. It was necessary to continue to research the low-grade oxides and increase input funds.
引文
1 株洲冶炼厂,锌的湿法冶炼.长沙:湖南人民出版社,1973
    2 周里一,稀散金属.北京:冶金工业出版社,1978
    3 东北工学院,锌冶金.北京:冶金工业出版社,1978
    4 徐采栋,锌冶金物理化学.上海:上海科技出版社,1979
    5 铜铅锌冶炼设计编写组,铜铅锌冶炼设计参考资料.北京:冶金工业出版社,1978
    6 赵天从,重金属冶金学(下).北京:冶金工业出版社,1981
    7 蒋汉瀛,湿法冶金过程物理化学.北京:冶金工业出版社,1984
    8 有色总公司,有色金属进展(下册)第45章,废杂金属回.收北京:冶金工业出版社,1985
    9 有色总公司,锌冶金工艺学(试用),1986
    10 蔡强主,锌合金.北京:中南工业大学出版社,1987
    11 邱竹贤,有色金属冶金学.北京:冶金工业出版社,1988
    12 钟竹前,湿法冶金过程.长沙:中南工业大学出版社,1988
    13 陈维东,国外有色冶金工厂(铅锌下册).北京:冶金工业出版社,1988
    14 日本金属学会,有色金属冶金.北京:冶金工业出版社,1988
    15 国际锌业协会2002年锌大会资料集,2002.长沙
    16 陈国发,重金属冶金学.北京:冶金工业出版社,1992
    17 彭容秋,有色金属提取冶金手册(锌镉铅铋).北京:冶金工业出版社,1992
    18 梅光贵,王德润,湿法炼锌学.长沙:中南工业大学出版社,2001
    19 徐鑫坤,魏昶,锌冶金学.昆明:云南科技出版社,1996
    20 魏昶,王吉坤,湿法炼锌理论与应用.昆明:云南科技出版社,2003
    21 2006-2010年中国铅锌行业研究与市场预测报告,2006
    22 王凤琴,国内氧化锌矿的处理方法,有色矿冶,1994,10(1)31-35
    23 陈世明、瞿开流, 兰坪氧化锌矿石处理方法探讨,云南冶金,1998,27(5) :35-38
    24 陈家镛,湿法冶金中铁的分离与应用.北京:冶金工业出版社,1991
    25 江体乾主编,化工工艺手册.上海:上海科技出版社,1992.
    26 邱竹贤,梅光贵,化学相位图在湿法冶金和废水净化中的应用.长沙中南工业大学出版社,1986
    27 Astarita G. Mass Transfer with Chemical Reactions. Elsevier Publishing Co.,1967:33-42
    28 P.A. Zielinski, K.A. Larson and A.W. Stradling. Preferential deportment of low-iron sphalerite to lead concentrates. Minerals Engineering,2000,13(4):357-363
    29 魏盛甲,铁闪锌矿与黄铁矿的分离技术进展,有色金属(选矿部分),2001(1):1-4
    30 王韩生,蔡家营铅锌矿除砷试验研究,矿产保护与利用,1994(6):12-17
    31 杨玉珠,张汉平,缅甸某锡矿脱硫降砷选矿工艺试验研究,有色金属,2002(4):8-10
    32 肖振,粤西某铅锌矿降砷的生产流程调试,有色金属,2002(3)14-18
    33 钱鑫,童雄,硫化矿除砷研究的最新进展,中国矿业,1993(5):39-42
    34 冯其明,陈建华,硫化矿浮选分离有机抑制剂研究进展,国外金属矿选矿,1998(4):12-14
    35 Mussier B. Shafer M W. Preparation and properties of cordierite hsed Glass-ceramic containing precipitated ZrO2. Am ceram Soc Bull,1985, 64(11):1459-1462
    36 Buswell A M. Nicol M J. Some Aspects of Applied Electrochemistry of the Flotation of Pyrrhotite. Journal of Applied Electrochemistry, 2002(32):1321-1329
    37 Danackwerts p V. Gas-liquid Reactions. McGraw-Hill Co.,1970:30-69
    38 周廷熙,都龙矽卡岩型锌锡多金属硫化矿的选矿工艺研究,国外金属矿选矿,1998(5):25-26
    39 朱广泽,都龙铜街铁闪锌矿的浮选研究,云南冶金,1995,25(6):24-26
    40 纪军,毒砂在硫化矿浮选中的抑制.见:选矿学术会议论文集—庆祝 张卯均教授从事矿冶事业55周年.北京:冶金工业出版社,1993
    41 丁松元,赵纯禄等,细粒嵌布的铅锌矿石浮选工艺研究。见:选矿学术会议论文集—庆祝张卯均教授从事矿冶事业55周年.北京:冶金工业出版社,1993
    42 周为吉,刘如意,含砷铅锌矿选矿工艺研究及生产实践,矿产保护与利用,1998(5):22-25
    43 许峰,铅锌矿降砷浮选试验研究,矿冶,2000(4):,15-17
    44 黄忠宝,任金菊,提高金家河选矿厂铅锌产品质量和回收率的生产实践,矿产保护与利用,1997(2):23-27
    45 任金菊,从铅锌矿石中综合回收银、镉、铁选矿工艺研究,矿产保护与利用,1997(4):13-17
    46 M.Barbaro and L. Piga. Comparison of Pb-Zn selective collectors using statistical methods. Minerals Engineering,1999,12 (4):355-366
    47 Pryor W A. Mechanisms of Sulfur Reactions. McGraw-Hill Co.,1962:11-14
    48 Lusk J., Scott S. D. and Ford C.E. Phase relationsinthe Fe-Zn-S system to 5 kbars and temperature between 325 and 150℃. Econ. Geol.,1993, 88:1880-1903
    49 Rona P.A. and Scott S.D. Preface for fl special issue on sea-floor hydrothermal mineralization:new perspectives. Econ. Geo.,1993, 88:1935-1976
    50 云南省人民政府矿业开发调研组,云南矿业发展若干对策研究(综合报告),昆明,1999
    51 冯桂林,关于云南省发展铅锌冶金工业的思考,云南冶金,2000,29(2) :25-29
    52 Fathi Habashi. Handbook of Extractive Metallurgy.1997
    53 中国有色金属工业“十五”规划,2002
    54 窦明民,基夫塞特(Kivcet)直接熔炼工艺的发展及现状,云南冶金,1998,27(2):37-42
    55 李建永,葫芦岛锌厂重金属废水的治理与回用。有色金属(季刊),2002(4):117-119
    56 夏志乡,论选矿与环境的关系,云南冶金,2002,31(1):5-8
    57 邓敬石,浅谈含重金属离子的铅锌矿尾矿废水危害及治理,云南冶金,2002,31(2):22-27
    58 童雄,张艮林,阎森,综合回收有色金属伴生钴的研究概况,云南冶金,2001,30(6):36-39
    59 薛玉兰,王淀佐,叶秉瑞,黄药在铅锌铁硫化矿浮选流程中的分布与浮选效果,,中南矿冶学院学报,1994,(25)6:691-695
    60 蓝卓越,胡岳华,黎维中,低品位氧化锌矿硫酸浸出工艺研究,矿冶工程,2002(22)3:63-65
    61 Bodas M G. Hydrometallurgical treatment of zinc silicate ore from Thailand. Hydrometallurgy.1996,40:37-39
    62 Abdel-Aal E A. Kinetic of sulfuric acid of low-grade zinc silicate ore. Hydrometallurgy.2000,55:247-254
    63 Castro I M, etc. Bioleaching of zinc and nickel from silicates using As-pergillus Niger culture. Hydrometallurgy.2000,57:39-49
    64 Youeai Zhao, Robert Standforth.Production of Zn powder by alkaline treatment of smithsonite Zn-Pbores. Hydrometallurgy.2000,56:237-249
    65 Fowler T A, Crundwell F K. Leaching of Zinc Sulfide by Thiobacillus fer-rooxidans:Bacterial Oxidation of the Sulfur Product Layer Increases theRate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions. App EnvironMicro.1999(12):5285-5292
    66 Kuyucak N. Microorganisms, biotechnology and acid rock drainage-emphasis on passive-biological control and treatment methods Minerals & Metallurgical Processing.2000(17):85-95
    67 廖梦霞,汪模辉,邓天龙,难处理硫化矿生物湿法冶金研究进展(Ⅱ),稀有金属,2004,28(5):931-935
    68 程德明,中国硫化铅锌矿选矿技术的现状与前景,广东有色金属学报,1994,4(1):6-12
    69 钱荣耀,水热硫化法及氨浸硫化沉淀法处理氧化铜矿石过程中铜物相及矿相的研究,云南冶金,1990,19(6):36-40
    70 李志华,薛怀生,姚耀春,兰坪难选氧化锌矿氨浸动力学,云南冶金,2003,(32)4:45-50
    71 谭欣,李长根,国内外氧化铅锌矿浮选研究进展(Ⅰ),国外金属矿选矿2000.37(3):7-14
    72 谭欣,李长根,国内外氧化铅锌矿浮选研究进展(Ⅱ),国外金属矿选矿2000.37(4):2-6
    73 王淑秋,罗琳,张心平,难选氧化铅锌矿浮选工艺研究,有色金属(选矿部分),1998(3):17-20
    74 冉银华,杨玉珠,张汉平,内蒙某氧化锌矿的选矿研究,云南冶金,2000,(29)5:27-31
    75 罗仙平,严群,谢明辉,某氧化铅锌矿浮选工艺试验研究,有色金属(选矿部分),2005(1):22-27
    76 杨敖,石道民,兰培林,兰坪氧化锌矿—脉石体系分散与选择性絮凝研究,昆明工学院学报,1992,(17)1:30-38
    77 张心平,周秀英,王淑秋,兰坪氧化铅锌矿浮选新工艺研究,矿冶,1995,4(3):38-43
    78 邱廷省,周源,罗仙平,复杂难选高氧化率铅锌硫化矿石浮选工艺研究,有色金属(选矿部分),2003(2):12-17
    79 I L E Brus. Asimple model for the ionization potential, electron affinity, and agueous redox potentials of small semiconductor crystallites[J], J Chem Phys,1983,79(11):5566-5571
    80 L E Beus. Electron-electron and electron hole interactions in small semiconductor crystallites:The size dependence of the lowest excited elestronic state[J]. J Chem. Phys,1984,80(9):4403-4409
    81 Louis Brus, Electronic wave functions in sami conductor clusters: Experiment and Theory[J]. J phys Chem,1986,90(12):2555-2560
    82 Heinz Gerischer, Adam Heller. The role of oxygen in photooxidation of orgamic molecules on semiconductor particles[J]. J phys Chwm, 1991.95:5261-5267
    83 Michael R Hoffmann etal. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95:69-96
    84 Valeriy sukharer. Robert Kershaw. Concerning the role of oxygen in ph otocatalytic decomposition of salicylic acid in water[J]. J photo-schem photobiox:Chemistry.1996,98:165-169
    85 Noriniko I'akeda, Masayuki Ohtani, etal. Evaluation of diffusibity of adsorbed propionaldehyde on tianium dioxide-loaded adsorbent photocatalyst films from its photodecomposition rate[J]. physchem, B: 1997,101:2644-2649
    86 Nicola peill, Michael R Hoffmann. Devolopment and optimization of a TiO2 coated fiber-optic cable Reactor photocatalytic degradatin of 4-chlorophenol[J], Environ Scitechnol,1995,29:2974—2981
    87 Nicola peill, Michael R Hoffmann. Chemical and physical Characterization of a TiO2coated fiber optic cable reactor[J]. Environ Sci Technol,1996,30:2806-2812
    88 周中定, 湖北兴山某氧化锌矿石选矿试验研究,中南冶金地质,1997(2): 13-17
    89 黄云峰,周强,富文彬,赵祖桥,氧化锌矿石的重介质选矿实践,云南冶金,1997,26(2):22-24
    90 许刚,贵州都匀牛角塘氧化锌矿石的浮选研究,贵州地质,2002,19(4):249-252
    91 杨军,奕良洛泽河多金属硫化铅锌矿的选矿生产,云南冶金(县乡矿冶版),1991(3):4-6
    92 邓海波,冯其明,许时, 硫酸亚铁和氰化钠在铅锌硫化矿分离中的作用,矿冶工程,1991,(11)4:41-44
    93 Lasat, M.M., Baker, A.J.M. and Kochian, L.V. Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol.1998.118:875-883.
    94 Lasat, M.M., Pence,N. S., Garvin, D.F., Ebbs, S.D. and Kochian, L.V. Molecular physiology of zinc transport in the Zn hyperaccumulation in Thlaspi caerulescens. J. Exp.Bot.2000,51:71-79
    95 Li,T.Q., Yang, X.E., He, Z.L. and Yang,J.Y. Root morphology and Zn+ uptake kinetics of the Zn hyperaccu-mulator of Sedum alfredii Hance. J.Int. Plant Biol.2005.47:927-934
    96 朱从杰,矿泥对氧化锌矿物浮选行为的影响,矿产综合利用,2005(1)23-26
    97 汪伦,冷娥有机螫合剂在氧化锌矿浮选中的应用研究,昆明理工大学学报,2003,(23)2:256-259.
    98 A.M,马拉比尼,抑制剂对氧化锌矿物浮选的影响,国外金属矿选矿,1996,12(6):13-18
    99 T Kiersznicki. Flotation of znic Oxide Ores with Chelating A.gents. Inter J Miner Process.1981, (6):311-317
    100 Douglas R Shaw. Dodecyl Mercaptan:A Superior Collector for Sulfide Ores. Mining Engineering.1981,33(6):686-692
    101 Contini G, Ciccioli A, Cozza C; Infrared study of 2-mercaptobenzole and two of its derivatives adsorbed on PbS. International Journal of Mineral Processing,1997,51(1-4):283-291
    102 Marabini A M. The influence of depressants for the flotationof zinc oxides ores[J].Minerals and Metallurgical Processing,1994,11(2): 97-104.
    103谭欣,李长根,以CF为捕收剂氧化铅锌矿浮选新方法,有色金属,54(4):52-58
    104 Oliveira J F, Sampaio J A. Development studies for the recovery of Brazilian scheelite fines by froth flotation[A]//Production and processing of fine particles[C]. Pergamon press, New York,1988:209
    105 Marinakis K I, Shergold H L. Influence of sodium silicate addition on the adsorption of oleic acid by fluorite, calcite and barite[J]. Int J Miner Proc,1985,14(3):177-181
    106 Yong D C. Flotation in systems with controlled dispersion-carrier flotation[A]//Beneficiation mineral fines [C]. AIME,1979,295-301
    107 Bustamante H, Shergold H L. Surface chemistry and flotation of zinc oxide minerals:II—lotation with chelating reagents[J]. Trans Inst Min Metall,1983,92:208-213
    108 Kiersnicki T, Borkowski J, Majewski J. Flotation enrichment of oxidized zinc-lead ore[J]. Rudy Mer Niezelaz,1981,26(12):640
    109 Kusaka E, Maegawa K, Eukunaka Y, etal. Two-liquid flotation of fine oxide particles with 8-hydroxyqwnoline[J]. Can J Chem Eng,1999, 77(1):62-66
    110吕翠兰,新型预硫化催化剂,石化译文,1998(3):27-30
    111分散度对氧化锌矿可浮性的影响,贵州地质,2002,(19)4-31-36
    112张覃,唐云,氧化锌矿石活化浮选行为的观察,贵州工业大学学报,1998,(27)3:89-91113吕世海,硫化矿浮选中矿浆充氧的重要性,四川石柱难选氧化锌矿石合理利用的技术经济探讨,成都
    114邓彤,陈家镛,相转移催化元素硫的歧化反应,无机化学,1991,3(4): 12-17
    115邓彤,元素硫的歧化反应动力学研究,应用化学,1988(1):31-37
    116刘巧玲,判断歧化反应,锦州师范学院学报(自然科学版)1999(2):11-15
    117凌必文,浅谈歧化反应与反歧化反应,安庆师范学院学报,1994(1):16-19
    118 柴兰琴,董文魁,相转移催化反应机理及应用,兰州铁道学院学报(自然科学报),2002,21(4):89-91
    119吕月仙,王香梅,相转移催化反应及其机理,华北工学院学报,1981,18(3):12-15
    120廖梦霞,汪模辉,邓天龙,难处理硫化矿生物湿法冶金研究进展Ⅱ氧化机制、强化细菌浸出与生物反应器设计,2004,28(5):931-935
    121张会文,乙硫氮浮选铅及铅锌分离的研究,广东有色金属学报,1996,6(2):89-93
    122 LIAs, GRUDENSKI. The growth of high Q quartz at high growth rates[J]. Journal of Crystal Growth,1973,18:1-6
    123 JLEE D Y, SONG Y S, KIM D J. Chromaticity, hydrothermal stability, and mechanical properties of t-Zr02/Al2O3 composites doped with yttrium, niobium, and ferric oxides[J]. Materials Science & Engineering, 2000,289(1-2):1-7
    124 PITICECU, MONTY C, TAIX)I D. Hydrothermal synthesis of zirconia nanomaterials[J], Journal of the European Ceramic Society,2001, 21(10-11):2057-2060
    125 SCHMETZER D R, PERETT. Characterization of a group of experimental Russian hydrothermal synthetic sapphires[J]. The Journal of Cemmology,2000,27(1):1-7
    126 YAMAKATA K, HIROTA K, YAMAGUCHI O, etal. Formation of alumina/Zirconia(3mot % yttria) composite powers prepared by the hydrazine method[J]. J AM Ceram Soc,1994,77(8):2207
    127 ROGER F, BELT. Hydrothermal ruby:Infrared spectra and x-Ray topography[J]. Communitions,1967,2:2688-2689
    128 王立明,韦志仁,吴峰,水热条件下影响晶体生长的因素,河北大学学报(自然科学版),2002,(22)4-345-350
    129 矢泽彬.日本矿业会志,1975,91(39):1043
    130 Giggenbach W F. Inorg.Chem.1974,13:1730

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700