用户名: 密码: 验证码:
离子交换树脂改性及在起爆药废水中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起爆药在我国的军工领域中发挥着重要的作用,相当一部分起爆药为有机或无机酸的重金属盐,在起爆药的生产过程中将会产生重金属废水重金属废水是对生态环境和人类健康危害最大的工业废水之一,随着我国的工业化不断深入,重金属废水所带来的污染日趋严重,直接威胁到人民的身心健康。近几年来,我国的重金属废水污染事件频繁发生,再次给我们敲响了警钟。K·D复盐起爆药为我国自主知识产权产品,国外并没有对该废水问题进行研究报道。现在针对K·D复盐起爆药重金属废水的处理工艺虽然能使出水达到国家相应的排放标准,但是处理工艺选择性差,有可能造成二次污染,并不是最佳的选择。由于重金属废水污染的严重性,其所带来的环境污染问题也得到越来越多的重视,加之当今不可再生资源短缺,因此,研发出更加环保有效的起爆药生产废水处理技术以及新型离子交换树脂不仅可以有效的治理重金属废水、保护环境,同时可以减轻企业的经济负担。相比于其他常规的重金属废水处理方法和吸附剂,离子交换树脂吸附法具有处理效率高、操作简便、成本低等优点而受到广泛的关注。
     本文在此基础上,主要研究了2个方面的内容。一是,针对K·D复盐与GTG起爆药生产废水中含有的铅、镉两种主要的重金属污染物,考察了D418和001×7两种离子交换树脂处理工艺在K-D复盐起爆药生产废水中的应用研究以及对铅、镉离子的吸附行为。通过对两种离子交换树脂的筛选,采用较好的001×7离子交换树脂作为处理K·D复盐起爆药生产废水中金属离子的吸附剂进行进一步的工程化与资源化研究。二是,为了进一步提高离子交换树脂的吸附性能,探讨了离子交换树脂的改性研究,并研究了改性离子交换树脂对金属离子的吸附性能。本研究在促进离子交换树脂处理工艺在起爆药重金属废水中的进一步应用以及为实际工程应用提供一定的理论依据和技术支持、缓解重金属废水所带来的环境危害等方面具有一定的现实意义。
     本文首先探讨了离子交换树脂的改性研究,以D401离子交换树脂为母体对其进行进一步功能化修饰,制备出一种改性D401离子交换树脂,并用红外光谱、扫描电镜对其进行了表征,对比了D401离子交换树脂改性前后对铅离子的吸附性能,并从吸附等温线、吸附热力学、吸附动力学、脱附性能以及吸附机理等方面考察了改性D401树脂对铅离子的吸附性能。扫描电镜、红外光谱、能谱分析等表征手段表明改性D401树脂表面具有孔结构,含有-N(CH2COOH)2、-SO3H两种功能基团;改性D401树脂对铅离子的吸附量较改性前有了明显的提高;吸附过程符合Freundlich和Langmuir等温吸附方程,液膜扩散为铅离子在改性D401树脂上吸附速率的主要控制步骤;改性D401树脂具有较快的吸附速率,且脱附性能稳定、重复使用性好;改性D401树脂对铅离子的吸附有两种途径:功能基团-N(CH2COOH)2中的N、O原子与pb2+形成配位键,而功能基团电离出的H+与pb2+发生了离子交换。
     其次研究了D418、001×7离子交换树脂对K·D复盐与GTG起爆药生产废水中存在的铅、镉离子的吸附行为,并研究了对K·D复盐起爆药实际生产废水的动态吸附。结果表明,Freundlich和Langmuir等温方程均适合描述铅离子在D418树脂上的等温吸附过程,Freundlich等温方程更适合描述镉离子在D418树脂上的等温吸附过程;而铅离子在001×7树脂上的吸附过程符合Langmuir等温吸附方程,Freundlich等温方程更适合描述镉离子在001×7树脂上的等温吸附过程。液膜扩散与颗粒内扩散共同影响着铅离子、镉离子在D418、001×7离子交换树脂上吸附速率。D418离子交换树脂对K·D复盐起爆药生产废水中铅离子的动态吸附实验确立的适宜工艺条件为:吸附流速,6 BV/h;吸附温度,313 K;脱附流速,3 BV/h;脱附温度,室温;脱附剂,3mol/L的硝酸;脱附剂用量,5 BV。001×7离子交换树脂对K·D复盐起爆药生产废水中铅离子的动态吸附实验确立的适宜工艺条件为:吸附流速,6 BV/h;吸附温度,室温;脱附流速,3 BV/h;脱附温度,室温;脱附剂,3mol/L的硝酸;脱附剂用量,4 BV。
     最后考察了离子交换树脂吸附工艺在K·D复盐起爆药生产废水处理中的应用研究。通过对D418、001×7两种离子交换树脂的筛选,采用001×7离子交换树脂作为处理K·D复盐起爆药生产废水中金属离子的吸附剂,进行进一步的工程化与资源化研究,为K·D复盐起爆药生产废水除铅段提供了一种处理效率高、操作简便、能够避免二次污染的新工艺,并提供了一种可以对金属离子进行回收的综合处理方法。稳定性放大实验结果证明,采用所选定的适宜的吸附和脱附条件进行实验,001×7树脂用于处理K·D起爆药生产废水中的铅,其吸附、脱附性能稳定,可使出水达到相应标准排放,单位体积树脂对该废水的处理量达到84倍树脂体积,对铅的处理效果良好,去除率接近100%,脱附率达到94%以上。同时稳定性实验也表明,上批次2 BV低浓度的脱附液套用于下批次的树脂脱附,树脂的脱附率保持稳定,不影响下批次的吸附效果。采用离子交换树脂工艺处理起爆药生产废水中的金属离子,不仅具有较高的处理效率,同时可以避免二次污染的产生,对铅进行回收利用,因此是一种较好处理起爆药生产废水中金属离子的方法。
Primary explosive play an important role in our war industry domain, and most of primary explosive are inorganic or organic acid heavy metal salt, can bring heavy metal wastewater in the producing process. Heavy metal wastewater is the most harmful industrial wastewater to the entironment and human health, the pollution of heavy metal wastewater is increasingly fearful with the development of industrialisation and straight threaten the health and mind of people. In recent years, the pollution events of heavy metal wastewater are frequently happen and caution us again. K-D double salt primary explosive is China's independent intellectual property rights, so the wastewater question of K-D double salt primary explosive is not reported at abroad. Though the wastewater of K-D double salt primary explosive can reach the relevant effluent standard, the selectivity of present treatment technic is low and may bring secondary pollution and is not a optimal choice. Due to the ponderance of heavy metal wastewater pollution, the problem of environment pollution is more and more regarded. Now nonrenewable resource are deficient, so new treatment technics of primary explosive production wastewater with more environment friendly and effective is important to environmental protection and financial burden of corporation. Among familiar technologies, the ion-exchange resin adsorption method seems to be the most suitable method for removing heavy metal ions from aqueous solution because of its low cost, ease of handling and high efficiency, so it gets extensive attention.
     On the basic of summarize, two aspects content are mainly studied. Firstly, the adsorption performance of Pb2+, Cd2+ in K·D double salt and GTG primary explosive wastewater, and the treatment of K·D double salt primary explosive wastewater are studied by D418,001×7 ion-exchange resin.001×7 resin is selected as the sorbent of treatment of K-D double salt primary explosive wastewater and the feasibility that the treatment technics of K-D double salt primary explosive wastewater by 001×7 resin is ulteriorly studied. Secondly, the resources of the new treatment technics and modification of ion-exchange resin are studied synchronously. The study contributes practical significance to the environment protection, engineering application and academic basis.
     Modification of ion-exchange resin is studied in the paper, the modified D401 ion-exchange resin is synthesized by chemical modification of D401 resin and characterized by FT-IR and SEM. And the adsorption properties of Pb2+ on the modified D401 is studied by batch adsorption from adsorption isotherm, adsorption thermodynamics, adsorption kinetics, desorption and adsorption mechanism, and the contrast of adsorption performances on the modified D401 and D401 resin are also studied. The modified D401 resin is provided with macroporous structure and two function groups by analyzing FT-IR and SEM. Experimental results show that at the study condition, the adsorption capacity of the modified D401 resin for Pb2+ is obviously increased compare with D401 resin. Freundlich and Langmuir isothermal adsorption models are both suitable for the equilibrium adsorption of the modified D401 resin and the adsorption rate is mainly governed by liquid film diffusion. Adsorption is an endothermic process that runs spontaneously. The modified D401 resin is provided with fast adsorption rate and good desorption capability, and the adsorption capacity remains stable after several consecutive adsorption-desorption cycles. The modified D401 resin is an efficient adsorbent for the removal of Pb2+ from its single-metal ion solution. The adsorption mechanism is concluded that coordinate atoms N and O of function group combine with Pb2+ by coordination bond and H+ ionized by function groups exchanges with Pb2+.
     The adsorption properties of Pb2+ and Cd2+ on D418,001×7 ion-exchange resin are studied by batch adsorption, dynamic adsorption of Pb2+ of K·D double salt primary explosive wastewater is also studied by column adsorption. At the study condition, Freundlich and Langmuir isothermal adsorption models are both suitable for the adsorption process of Pb2+ on D418 resin, and Freundlich isothermal adsorption model is more suitable for the adsorption process of Cd2+ on D418 resin; And Langmuir isothermal adsorption model is suitable for the adsorption process of Pb2+ on 001×7 resin, Freundlich isothermal adsorption model is suitable for the adsorption process of Cd2+ on 001×7 resin. The adsorption rate is governed by liquid film diffusion and intraparticle diffusion corporately. The feasible technics conditions of dynamic adsorption of D418 resin are:adsorption rate,6 BV/h; adsorption temperature,313 K; desorption rate 3 BV/h; desorption temperature, room temperature; desorbent,3 mol/L nitric acid; desorbent dosage,5 BV. And the feasible technics conditions of dynamic adsorption of 001×7 resin are:adsorption rate,6 BV/h; adsorption temperature, room temperature; desorption rate 3 BV/h; desorption temperature, room temperature; desorbent,3 mol/L nitric acid; desorbent dosage,4 BV.
     The treatment of K-D double salt primary explosive wastewater by ion-exchange resin is studied.001×7 resin is selected as the sorbent of treatment of K-D double salt primary explosive wastewater and the feasibility that the treatment technics of K-D double salt primary explosive wastewater by 001×7 resin is ulteriorly studied. The study provides a new treatment technics for removing heavy metal ions of K-D double salt primary explosive, the treatment technics is provide with high efficiency, ease of handling and no secondary pollution. The column adsorption experimental results show the adsorption and desorption effect of new treatment technics is well and steady, removal efficiency is close to 100%, desorption efficiency reach 94% and unit volume of resin can dispose 84 times volume actual wastewater. The last time 2 BV low concentration desorption solution can be used for next desorption and desorption efficiency is steady. In conclusion, the ion-exchange resin adsorption method is provide with high efficiency, ease of handling, no secondary pollution and can recovery heavy metals from wastewater, so it is a suitable method for the removal of heavy metal ions from primary explosive production wastewater.
引文
[1]《环境中重金属研究文集》编辑组.环境中重金属研究文集.第1版.北京:科学出版社,1988.
    [2]中国科学院环境化学研究所.环境中的重金属.第1版.北京:中国科学院环境化学研究所,1983.
    [3]郑国璋.农业土壤重金属污染研究的理论与实践.第1版.北京:中国环境科学出版社,2007.
    [4]钱华.环境铅污染来源及其对人体健康的影响.环境监测管理与技术,1998,10(6):14-17.
    [5]杨桂凤.铅暴露对儿童神经发育影响的研究进展.中国实用医药,2009,4(27):232-234.
    [6]霍霞.蔬菜中重金属铅污染现状及对策.六盘水师范高等专科学校学报,2009,21(3):27-31.
    [7]马雨水,符达,刘宗平.铅对骨骼毒性的作用机制研究进展.动物医学进展,2008,29(9):78-81.
    [8]韦友欢,黄秋婵.铅对人体健康的危害效应及其防治途径.微量元素与健康研究,2008,25(4):62-64.
    [9]高永强,马燕.铅对人体的危害.内蒙古环境科学,2007,19(3):115-117.
    [10]吴建刚.儿童铅危害的高危因素及预防.职业与健康,2007,23(16):1455.
    [11]张英,周长民.重金属铅污染对人体的危害.辽宁化工,2007,36(6):395-397.
    [12]魏文科,周文逊.铅污染对机体的危害与防治研究进展.湖北民族学院学报,2005,22(3):38-40.
    [13]周敏.环境铅污染与铅毒危害.中国煤炭工业医院杂志.2005,8(3):207-208.
    [14]汪哗君.铅污染对人体健康的危害及防治措施.沈阳大学学报,2004,16(6):103-106.
    [15]马静,易建华.镉致肾脏损伤的研究概况.国外医学卫生学分册,2009,36(1):34-37.
    [16]韩磊,张恒东.铅、镉的毒性及其危害.职业卫生与病伤,2009,24(3):173-177.
    [17]陈晓,朱国英,金泰虞.镉对肾脏和骨骼的毒性研究进展.环境与职业医学,2008,25(4):412-415.
    [18]罗绪强,王世杰,张桂玲.土壤镉污染及其生物修复研究进展.山地农业生物学报,2008,27(4):357-361.
    [19]黄秋婵,韦友欢,黎晓峰.镉对人体健康的危害效应及其机理研究进展.安徽农业科学,2007,35(9):2528-2531.
    [20]魏筱红,魏泽义.镉的毒性及其危害.公共卫生与预防医学,2007,18(4):44-46.
    [21]杜瑜,尚琪.环境镉污染人群健康影响研究回顾.卫生研究,2006,35(2):241-243.
    [22]崔玉静,黄益宗,朱永官.镉对人类健康的危害及其影响因子的研究进展.卫生研究,2006,35(5):656-658.
    [23]曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防治对策.云南农业大学学报,2005,20(3):360-365.
    [24]黄宝圣.镉的生物毒性及其防治策略.生物学通报,2005,40(11):26-28.
    [25]郑荣光,张丽梅.白云石灰乳处理含铅废水的研究.环境与开发,2000,15(4):3-36
    [26]马艳飞,王九思,宋光顺,张淑英.氢氧化镁对废水中镉(Ⅱ)吸附性能的研究.兰州交通大学学报,2003,22(4):120-122.
    [27]余晓皎,姚秉华,周孝德.乳化液膜法迁移及分离Pb(Ⅱ)的研究.西北农林科技大学学报,2007,35(10):127-132.
    [28]许振良,徐惠敏,翟晓东.胶束强化超滤处理含镉和铅离子废水的研究.膜科学与技术,2002,22(3):15-20.
    [29]刘新芳,何鼎胜,马铭,王书媚.三正辛胺-仲辛醇-煤油组合液膜分离镉锌的研究.无机化学学报,2003,19(12):1295-1300.
    [30]王岩,王玉军,骆广生,戴猷元.中空纤维膜萃取镉离子的研究.化学工程,2002,30(5):62-65.
    [31]Bahadir T, Bakan G, Altas L, Buyukgungor, H. The investigation of lead removal by biosorption:An application at storage battery industry wastewaters. Enzyme and Microbial Technology,2007,41(1-2): 98-102.
    [32]EI-Naas M H, AI-Rub F A, Ashour I, Marzouqi M A. Effect of competitive interference on the biosorption of lead(Ⅱ) by Chlorella vulgaris. Chemical Engineering and Processing,2007,46(12): 1391-1399.
    [33]Sari A, Tuzen M, Uluozlu O D, Soylak M. Biosorption of Pb(Ⅱ) and Ni(Ⅱ) from aqueous solution by lichen (Cladonia furcatd) biomass. Biochemical Engineering Journal,2007,37(2):151-158.
    [34]Bunluesin S, Kruatrachue M, Pokethitiyook P, Upatham S, Lanza G R. Batch and Continuous Packed Column Studies of Cadmium Biosorption by Hydrilla verticillata Biomass. Journal of Bioscience and Bioengineering,2007,103(6):509-513.
    [35]Naddafi K, Nabizadeh R, Saeedi R, Mahvi A H, Vaezi F, Yaghmaeian K, Ghasri A, Nazmara S. Biosorption of lead(Ⅱ) and cadmium(Ⅱ) by protonated Sargassum glaucescens biomass in a continuous packed bed column. Journal of Hazardous Materials,2007,147(3):785-791.
    [36]Ofomaja A E, Ho Y H. Effect of pH on cadmium biosorption by coconut copra meal. Journal of Hazardous Materials,2007,139(2):356-362.
    [37]张少峰,胡熙恩.含铅废水处理技术及其展望.环境污染治理技术与设备,2003,4(11):68-71.
    [38]Widner R C, Sousa M F B, Bertazzoli R. Electrolytic removal of lead using a flow-through cell with a reticulated vitreous carbon cathode. Journal of Applied Electrochemistry,1998,28(2):201-207.
    [39]陈志荣.流化床电极技术及在治理含金属废水中的应用.工业水处理,1996,16(6):3-5.
    [40]金焰,李敦顺,曹阳.铁氧体沉淀法处理模拟含铅废水.化学与生物工,2006,23(7):45-47.
    [41]李东伟,袁雪,王克浩,杨建,李斗.化学沉淀-铁氧体法处理重金属废水实验研究.重庆建筑大学学报,2007,29(2):90-91.
    [42]杨明德,包福毅,党广悦,张志庚.离子交换净化除铅.有色金属,1995,47(1):49-52.
    [43]Agrawal A, Sahu K K. Separation and recovery of lead from a mixture of some heavy metals using Amberlite IRC 718 chelating resin. Journal of Hazardous Materials,2006,133(1-3):299-303.
    [44]Diniz C V, Ciminelli V S T, Doyle F M. The use of the chelating resin Dowex M-4195 in the adsorption of selected heavy metal ions from manganese solutions. Hydrometallurgy,2005,78(3-4): 147-155.
    [45]Demirbas A, Pehlivan E, Gode F, Altun T, Arslan, G. Adsorption of Cu(Ⅱ), Zn(Ⅱ), Ni(Ⅱ), Pb(Ⅱ), and Cd(Ⅱ) from aqueous solution on Amberlite IR-120 synthetic resin. Journal of Colloid and Interface Science,2005,282(1):20-25.
    [46]Prabhakaran D, Subramanian M S. A new chelating sorbent for metal ion extraction under high saline conditions. Talanta,2003,59(6):1227-1236.
    [47]Atia A A, Donia A M, Abou-El-Enein S A, Yousif A M. Studies on uptake behaviour of copper(Ⅱ) and lead(Ⅱ) by amine chelating resins with different textural properties. Separation and Purification Technology,2003,33(3):295-301.
    [48]Biesuz R, Alberti G, D'Agostino G, Magi E, Pesavento M. Determination of cadmium(Ⅱ), copper(Ⅱ), manganese(Ⅱ) and nickel(Ⅱ) species in Antarctic seawater with complexing resins. Marine Chemistry, 2006,101(3-4):180-189.
    [49]Gupta V K, Singh P, Rahman N. Adsorption behavior of Hg(Ⅱ), Pb(Ⅱ), and Cd(Ⅱ) from aqueous solution on Duolite C-433:a synthetic resin. Journal of Colloid and Interface Science,2004,275(2): 398-402.
    [50]Wang W M, Fthenakis V. Kinetics study on separation of cadmium from tellurium in acidic solution media using ion-exchange resins. Journal of Hazardous Materials,2005,125(1-3):80-88.
    [51]Kocaoba S, Akcin G. Removal of chromium (Ⅲ) and cadmium (Ⅱ) from aqueous solutions. Desalination,2005,180(1-3):151-156.
    [52]Singh D K, Srivastava M. Selective uptake and recovery of cadmium (Ⅱ) by microcapsule containing chelating resin. Separation and Purification Technology,2005,45(1):1-7.
    [53]Chen M, Cui L, Li C H, Diao G W. Adsorption, desorption and condensation of nitrobenzene solution from active carbon:A comparison of two cyclodextrins and two surfactants. Journal of Hazardous Materials,2009,162(1):23-28.
    [54]Chan L S, Cheung W H, Allen S J, Mckay G. Separation of acid-dyes mixture by bamboo derived active carbon. Separation and Purification Technology,2009,67(2):166-172.
    [55]Simpson D R. Biofilm processes in biologically active carbon water Purification. Water Research, 2008,42(12):2839-2848.
    [56]Farag H. Selective adsorption of refractory sulfur species on active carbons and carbon based CoMo catalyst. Journal of Colloid and Interface Science,2007,307(1):1-8.
    [57]Yang J, Juan P, Shen Z M, Guo R, Jia J P, Fang H J, Wang Y L. Removal of carbon disulfide (CS2) from water via adsorption on active carbon fiber (ACF). Carbon,2006,44(8):1367-1375.
    [58]Cosnier F, Celzard A, Furdin G, Begin D, Mareche, Barres O. Hydrophobisation of active carbon surface and effect on the adsorption of water. Carbon,2005,43(12):2554-2563.
    [59]Qi J R, Li Z, Guo Y P, Xu H D. Adsorption of phenolic compounds on micro-and mesoporous rice husk-based active carbons. Materials Chemistry and Physics,2004,78(1):96-101.
    [60]Gurses A, Yalcin M, Sozbilir M, Dogar C. The investigation of adsorption thermodynamics and mechanism of a cationic surfactant,CTAB, onto powdered active carbon. Fuel Processing Technology, 2003,81(1):57-66.
    [61]Ania C O, Parra J B, Pis J J. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds. Fuel Processing Technology,2002,79(3):265-271.
    [62]Guo Y P, Qi J R, Yang S F, Yu K F, Wang Z C, Xu H D. Adsorption of Cr(Ⅵ) on micro- and mesoporous rice husk-based active carbon. Materials Chemistry and Physics,2002,78(1):132-137.
    [63]Nibou D, Mekatel H, Amokrane S, Barkat M, Trari M. Adsorption of Zn2+ ions onto NaA and NaX zeolites:Kinetic, equilibrium and thermodynamic studies. Journal of Hazardous Materials,2010, 173(1-3):637-646.
    [64]Saxton C G, Kruth A, Castro M, Wright P A, Howe R F. Xenon adsorption in synthetic chabazite zeolites. Microporous and Mesoporous Materials,2010,129(1-2):68-73.
    [65]Han R P, Wang Y, Sun Q, Wang L L, Song J Y, He X T, Dou C C. Malachite green adsorption onto natural zeolite and reuse by microwave Irradiation. Journal of Hazardous Materials,2010,175(1-3): 1056-1061.
    [66]Mosti T, Rowson N A, Simmons M J H. Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing,2009,92(1-2):42-48.
    [67]Chutia P, Kato S, Kojima T, Satokawa S. Adsorption of As(Ⅴ) on surfactant-modified natural zeolites. Journal of Hazardous Materials,2009,162(1):204-211.
    [68]Yousef R I, EI-Eswed B. The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,334(1-3):92-99.
    [69]Zheng H, Han L J, Ma H W, Zheng Y, Zhang H M, Liu D H, Liang S P. Adsorption characteristics of ammonium ion by zeolite 13X. Journal of Hazardous Materials,2008,158(2-3):577-584.
    [70]Gu F N, Zhuang T T, Cao Y, Zhou C F, Zhu J H. Effect of copper cation on the adsorption of nitrosamines in zeolite. Solid State Sciences,2008,10(11):1658-1665.
    [71]Li P, Tezel F H. Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite. Microporous and Mesoporous Materials,2007,98(1-3):94-101.
    [72]Wang S B, Ariyanto. Competitive adsorption of malachite green and Pb ions on natural zeolite. Journal of Colloid and Interface Science,2007,314(1):25-31.
    [73]Yin P, Xu Q, Qu R J, Zhao G F, Sun Y Z. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material. Journal of Hazardous Materials, 2010,173(1-3):710-716.
    [74]Pereira A S, Ferreira G, Caetano L, Martines M A U, Padilha P M, Santos A, Castro G R. Preconcentration and determination of Cu(Ⅱ) in a fresh water sample using modified silica gel as a solid-phase extraction adsorbent. Journal of Hazardous Materials,2010,175(1-3):399-403.
    [75]Tu Z F, Hu Z, Chang X J, Zhang L J, He Q, Shi J P, Gao R. Silica gel modified with 1-(2-aminoethyl)-3-phenylurea for selective solid-phase extraction and preconcentration of Sc(Ⅲ) from environmental samples. Talanta,2010,80(3):1205-1209.
    [76]Xing H B, Su B G, Ren Q L, Yang Y W. Adsorption equilibria of artemisinin from supercritical carbon dioxide on silica gel. The Journal of Supercritical Fluids,2009,49(2):189-195.
    [77]Wang H J, Kang J, Liu H J, Qu J H. Preparation of organically functionalized silica gel as adsorbent for copper ion adsorption. Journal of Environmental Sciences,2009,21(11):1473-1479.
    [78]Yin P, Xu Q, Qu R J, Zhao G F. Removal of transition metal ions from aqueous solutions by adsorption onto a novel silica gel matrix composite adsorbent. Journal of Hazardous Materials,2009, 169(1-3):228-232.
    [79]Qu R J, Wang M H, Sun C M, Zhang Y, Ji C N, Chen H, Meng Y F, Yin P. Chemical modification of silica-gel with hydroxyl- or amino-terminated polyamine for adsorption of Au(Ⅲ). Applied Surface Science,2008,255(5):3361-3370.
    [80]Puanngam M, Unob F. Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(Ⅱ) ions. Journal of Hazardous Materials,2008,154(1-3):578-587.
    [81]Antonio P, Iha K, Suarez-Iha M E V. Adsorption of di-2-pyridyl ketone salicyloylhydrazone on silica gel:characteristics and isotherms. Talanta,2004,64(2):484-490.
    [82]Bascetin E, Haznedaroglu H, Erkol A Y. The adsorption behavior of cesium on silica gel. Applied Radiation and Isotopes,2003,59(1):5-9.
    [83]Wu Z X, Meng Y, Zhao D Y. Nanocasting fabrication of ordered mesoporous phenol-formaldehyde resins with various structures and their adsorption performances for basic organic compounds. Microporous and Mesoporous Materials,2010,128(1-3):165-179.
    [84]Kammerer J, Kammerer D R, Jensen U, Carle R. Interaction of apple polyphenols in a multi-compound system upon adsorption onto a food-grade resin. Journal of Food Engineering,2010, 96(4):544-554.
    [85]Liu P, Long C, Li Q F, Qian H M, Li A M, Zhang Q X. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin. Journal of Hazardous Materials,2009,166(1):46-51.
    [86]Nobre C, Santos M J, Domingues A, Torres D, Rocha O, Peres A M, Rocha I, Ferreira E C, Teixeira J A, Rodrigues L R. Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins. Analytica Chimica,2009,654(1): 71-76.
    [87]Rajesh N, Jalan R K, Hotwany P. Solid phase extraction of chromium(Ⅵ) from aqueous solutions by adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column. Journal of Hazardous Materials,2008,150(3):723-727.
    [88]Du X L, Yuan Q P, Li Y. Equilibrium, thermodynamics and breakthrough studies for adsorption of solanesol onto macroporous resins. Chemical Engineering and Processing,2008,47(8):1420-1427.
    [89]Chabani M, Amrane A, Bensmaili A. Kinetics of nitrates adsorption on Amberlite IRA 400 resin. Desalination,2007,206(1-3):560-567.
    [90]Qiu N X, Guo S G, Chang Y H. Study upon kinetic process of apple juice adsorption de-coloration by using adsorbent resin. Journal of Food Engineering,2007,81(1):243-249.
    [91]Bilgili M S. Adsorption of 4-chlorophenol from aqueous solutions by xad-4 resin:Isotherm, kinetic, and thermodynamic analysis. Journal of Hazardous Materials,2006,137(1):157-164.
    [92]Deepatana A, Valix M. Recovery of nickel and cobalt from organic acid complexes:Adsorption mechanisms of metal-organic complexes onto aminophosphonate chelating resin. Journal of Hazardous Materials,2006,137(2):925-933.
    [93]何炳林,黄文强.离子交换与吸附树脂.第1版.上海:上海科技教育出版社,1995.
    [94]王方.离子交换应用技术.第1版.北京:北京科学技术出版社,1990.
    [95]Hosseini M S, Hosseini-Bandegharaei A, Raissi H, Belador F. Sorption of Cr(Ⅵ) by Amberlite XAD-7 resin impregnated with brilliant green and its determination by quercetin as a selective spectrophotometric reagent. Journal of Hazardous Materials,2009,169(1-3):52-57.
    [96]Sharma R K, Pant P. Preconcentration and determination of trace metal ions from aqueous samples by newly developed gallic acid modified Amberlite XAD-16 chelating resin. Journal of Hazardous Materials,2009,163(1):295-301.
    [97]Navarro R, Gallardo V, Saucedo I, Guibal E. Extraction of Fe(Ⅲ) from hydrochloric acid solutions using Amberlite XAD-7 resin impregnated with trioctylphosphine oxide (Cyanex 921). Hydrometallurgy,2009,98(3-4):257-266.
    [98]Ghasemi J B, Zolfonoun E. Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by a-benzoin oxime modified Amberlite XAD-2000 resin. Talanta,2010,80(3):1191-1197.
    [99]Memon S Q, Hasany S M, Bhanger M I, Khuhawar M Y. Enrichment of Pb(Ⅱ) ions using phthalic acid functionalized XAD-16 resin as a sorbent. Journal of Colloid and Interface Science,2005,291(1): 84-91.
    [100]Metilda P, Sanghamitra K, Gladis J M, Naidu G R K, Rao T P. Amberlite XAD-4 functionalized with succinic acid for the solid phase extractive preconcentration and separation of uranium(Ⅵ). Talanta, 2005,65(1):192-200.
    [101]Bayramoglu G, Altintas B, Arica M Y. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal,2009,152(2-3):339-346.
    [102]Anriudhan T S, Radhakrishnan. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(Ⅵ) adsorption onto cation exchange resin derived from a lignocellulosic residue. Applied Surface Science,2009,255(9):4983-4991.
    [103]Zhang Q, Gao Y, Zhai Y A, Liu F Q, Gao G. Synthesis of sesbania gum supported dithiocarbamate chelating resin and studies on its adsorption performance for metal ions. Carbohydrate Polymers, 2008,73(2):359-363.
    [104]Huang J H, Huang K L, Liu S Q, Luo Q, Shi S Y. Synthesis, characterization, and adsorption behavior of aniline modified polystyrene resin for phenol in hexane and in aqueous solution. Journal of Colloid and Interface Science,2008,317(2):434-441.
    [105]Meesri S, Praphairaksit N, Imyim A. Extraction and preconcentration of toxic metal ions from aqueous solution using benzothiazole-based chelating resins. Microchemical Journal,2007,87(1): 47-55.
    [106]Chen C Y, Chiang C L, Huang P C. Adsorptions of heavy metal ions by a magnetic chelating resin containing hydroxy and iminodiacetate groups. Separation and Purification Technology,2006,50(1): 15-21.
    [107]Sun C M, Qu R J, Ji C N, Wang Q, Wang C H, Sun Y Z, Cheng G X. A chelating resin containing S, N and O atoms:Synthesis and adsorption properties for Hg(Ⅱ). European Polymer Journal,2006, 42(1):188-194.
    [108]Atia A A, Donia A M, Elwakeel K Z. Adsorption behaviour of non-transition metal ions on a synthetic chelating resin bearing iminoacetate functions. Separation and Purification Technology, 2005,43(1):43-48.
    [109]Oshima T, Tachiyama H, Kanemaru K, Ohe K, Baba Y. Adsorption and concentration of histidine-containing dipeptides using divalent transition metals immobilized on a chelating resin. Separation and Purification Technology,2009,70(1):79-86.
    [110]Oshima T, Kanemaru K, Tachiyama H, Ohe K, Baba Y. Adsorption of histidine-containing dipeptides on copper(Ⅱ) immobilized chelating resin from saline solution. Journal of Chromatography B,2008,876(1):116-122.
    [111]Shao W J, Li X M, Cao Q L, Luo F, Li J M, Yu Y Y. Adsorption of arsenate and arsenite anions from aqueous medium by using metal(Ⅲ)-loaded amberlite resins. Hydrometallurgy,2008,91(1-4): 138-143.
    [112]Samatya S, Mizuki H, Ito Y, Kawakita H, Uezu K. The effect of polystyrene as a porogen on the fluoride ion adsorption of Zr(Ⅳ) surface-immobilized resin. Reactive and Functional Polymers, 2010,70(1):63-68.
    [113]Zhu Z L, Ma H M, Zhang R H, Ge Y X, Zhao J F. Removal of cadmium using MnO2 loaded D301 resin. Journal of Environmental Sciences,2007,19(6):652-656.
    [114]Balaji T, Yokoyama T, Matsunaga H. Adsorption and removal of As(Ⅴ) and As(Ⅲ) using Zr-loaded lysine diacetic acid chelating resin. Chemosphere,2005,59(8):1169-1174.
    [115]陈进,吴爱祥,王洪武.世界与我国铅锌产量和消费量的重构相空间混沌预测.南华大学学报(自然科学版),2007,21(3):23-27.
    [116]裴廷权,王里奥,包亮,钟山,宋珍霞.三峡库区小江流域土壤重金属的分布特征与评价分析.土壤通报,2010,41(1):206-211.
    [117]崔振昂,郑志昌,林进清,梁开,霍振海.广西北海近岸海域表层沉积物中重金属分布特征及
    生态风险评价.安全与环境工程,2010,17(1):31-35.
    [118]丛源,陈岳龙,杨忠芳,侯青叶,胡省英,郭莉.北京市农田土壤重金属的化学形态及其对生态系统的潜在危害.土壤,2009,41(1):37-41.
    [119]许振成,杨晓云,温勇,陈桂华,方建德.北江中上游底泥重金属污染及其潜在生态危害评价.环境科学,2009,30(11):3262-3268.
    [120]王立明,林超,刘德文.南水北调东线一期工程黄河以北段底泥重金属污染及其潜在生态危害评价.南水北调与水利科技,2008,6(3):5-8.
    [1]近藤精一,石川达雄,安部郁夫.吸附科学.第2版.北京:化学工业出版社,2005.
    [2]赵振国.吸附作用应用原理.第1版.北京:化学工业出版社,2005.
    [3]Unlu N, Ersoz M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. Journal of HazardousMaterials,2006,136(2):272-280
    [4]马红梅,朱志良,张荣华,林建伟,赵建夫.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究.离子交换与吸附,2006,22(6):519-526.
    [5]王学江,张全兴,李爱民,陈金龙.NDA-100大孔树脂对水溶液中水杨酸的吸附行为研究.环境科学学报,2002,22(5):658-660.
    [6]柴丽敏.大孔弱碱性阴离子交换树脂D301R处理DSD酸还原废水的研究.天津:天津大学,2005.
    [1]何炳林,黄文强.离子交换与吸附树脂.第1版.上海:上海科技教育出版社,1995.
    [2]Ding X C, Nomura M, Fujii Y. Zinc isotope effects by chromatographic chelating exchange resin. Progress in Nuclear Energy,2010,52(2):164-167.
    [3]Li Q G, Zeng L, Xiao L S, Yang Y N, Zhang Q X. Completely removing vanadium from ammonium molybdate solution using chelating ion exchange resins. Hydrometallurgy,2009,98(3-4):287-290.
    [4]Zainol Z, Nicol M J. Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings. Hydrometallurgy,2009,96(4):283-287.
    [5]Dinu M V, Dragan E S, Trochimczuk A W. Sorption of Pb(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) by iminodiacetate chelating resins in non-competitive and competitive conditions. Desalination,2009,249(1):374-379.
    [6]Donia A M, Atia A A, Moussa E M M, E1-Sherif A M, E1-Magied M O A. Removal of uranium(Ⅵ) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy,2009,95(3-4): 183-189.
    [7]Zainol Z, Nicol M J. Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748. Hydrometallurgy,2009,99(3-4):175-180.
    [8]Wongkaew M, Imyim A, Eamchan P. Extraction of heavy metal ions from leachate of cement-based stabilized waste using purpurin functionalized resin. Journal of Hazardous Materials,2008,154(1-3): 739-747.
    [9]Panahi H A, Kalal H S, Moniri E, Nezhati M H, Menderjani M T, Kelahrodi S R, Mahmoudi F. Amberlite XAD-4 functionalized with m-phenylendiamine:Synthesis, characterization and applications as extractant for preconcentration and determination of rhodium (Ⅲ) in water samples by Inductive Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Microchemical Journal,2009,93(1):49-54.
    [10]Hosseinia M S, Hosseini-Bandegharaei A, Raissi H, Beladora F. Sorption of Cr(Ⅵ) by Amberlite XAD-7 resin impregnated with brilliant green and its determination by quercetin as a selective spectrophotometric reagent. Journal of Hazardous Materials,2009,169(1-3):52-57.
    [11]Sharma R K, Pant P. Preconcentration and determination of trace metal ions from aqueous samples by newly developed gallic acid modified Amberlite XAD-16 chelating resin. Journal of Hazardous Materials, 2009,163(1):295-301.
    [12]Ghasemi J B, Zolfonoun E. Simultaneous spectrophotometric determination of trace amounts of uranium, thorium, and zirconium using the partial least squares method after their preconcentration by a-benzoin oxime modified Amberlite XAD-2000 resin. Talanta,2010,80(3):1191-1197.
    [13]沈秋仙,熊春华.亚胺基二乙酸树脂对镝的吸附及机理.有色金属,2002,54(3):45-54.
    [14]施林妹,莫建军,熊春华.亚胺基二乙酸树脂对镨的吸附性能及其机理.化学试剂,2003,25(2):74-76.
    [15]王永江,熊春华,吴香梅,朱炳林.功能高分子亚氨基二乙酸树脂对钕的吸附行为研究.兵工学报,25(2):200-203.
    [16]施林妹,王惠君.亚胺基二乙酸树脂吸附钐(Ⅲ)的研究.浙江海洋学院学报(自然科学版),2005,24(2):140-142.
    [17]王永江,陈宣友,赵清泉.不同体系中D401对铈(Ⅲ)的吸附及解吸行为研究.丽水学院学报,27(2):40-42.
    [18]洪山海.光谱解析法在有机化学中的应用.第1版.北京:科学出版社,1980.
    [19]Wang Y H, Lan Y, Huang C B. Adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings. Journal of Central South University of Technology,2008,15(2):183-187.
    [20]Powell T, Brion G M, Jagtoyen M, Derbyshire F. Investigating the effect of carbon shape on virus adsorption. Environmental Science and Technology,2000,34(13):2779-2783.
    [21]Salem I A, EI-Maazawi M S. Kinetics and mechanism of color rremoval of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere,2000,41(8):1173-1180.
    [22]Carmo A M, Hundal L S, Thompson M L. Sorption of hydrophobic organic compounds by soil materials:application of unit equivalent freundlich coefficients. Environmental Science and Technology, 2000,34(20):4363-4369.
    [23]魏瑞霞,陈连龙,陈金龙.硫辛酸在三种不同树脂上的吸附热力学和动力学研究.功能高分子学报,2004,17(2):193-199.
    [24]Garcia-Delgado R A, Cotoruelo-Minguez L M, Rodriguez J J. Equilibrium Study of single-solute adsorption of anionic surfactants with polymeric XAD resins. Separation Science and Technology,1992, 27(7):975-987.
    [25]潘丙军,郑建中,陈新庆,张炜铭,陶仙聪,潘丙才,陈一良,张全兴.盐对超高交联树脂吸附苯酚机理的影响.离子交换与吸附,2005,21(5):406-414.
    [26]李洁莹,陈金龙,费正皓,陆朝阳,李爱民,刘福强,张全兴.大孔吸附树脂对邻甲酚的吸附行为.研究离子交换与吸附,2004,20(5):430-437.
    [27]魏瑞霞,陈金龙,陈连龙,费正皓,李爱民,张全兴.2-噻吩乙酸在三种不同树脂上的吸附热力学和动力学研究.高等学校化学学报,2004,25(11):2095-2098.
    [28]马红梅,朱志良,张荣华,林建伟,赵建夫.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究.离子交换与吸附,2006,22(6):519-526.
    [29]王学江,张全兴,李爱民,陈金龙.NDA-100大孔树脂对水溶液中水杨酸的吸附行为研究.环境科学学报,2002,22(5):658-660.
    [30]Atia A A, Donia Q M, Yousif A M. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality. Separation and Purification Technology, 2008,61(3):348-357.
    [1]张俊,姚林,吕改芳,邓桂春.D-314树脂动态分离钼铼的研究.稀有金属,2010,34(1):85-89.
    [2]司士辉,赵坤,李凌璞,戚斌斌,朱雯.D301大孔树脂吸附钒(V)的性能研究.离子交换与吸附,2009,25(6):511-518.
    [3]李湘,郭海福,梁巧荣,黄清梅.负载氧化铁大孔树脂及其对巴戟天多糖平衡吸附的性质.离子交换与吸附,2009,25(3):253-258.
    [4]鄢贵龙,纪丽莲.大孔树脂对茄尼醇吸附行为的研究.离子交换与吸附,2009,25(4):346-353.
    [5]沈妮,林晓,曹宏斌,郭奋,张懿.离子交换树脂脱除高浓磷酸钠溶液中的钒(V)和铬(V1).过程工程学报,2009,9(5):871-876.
    [6]张凤莉,张玉忠,李泓,陈玲.大孔强酸性离子交换树脂填充EVAL中空纤维膜吸附剂对牛血红蛋白的吸附性能.天津工业大学学报,2009,28(2):10-13.
    [7]程瑛琨,李仁柯,李蕾,王丹梅,岳喜华,吕川,滕利荣.大孔树脂法精制酸浆宿萼色素的研究. 离子交换与吸附,2009,25(5):463-469.
    [8]邱挺,韩淑萃,吴燕翔.离子交换树脂法吸附醋酸工艺.过程工程学报,9(3):449-455.
    [9]蒋绪风,魏凤玉,刘娇.离子交换法去除有机胺吸收剂中S042+的平衡及动力学.化工进展,2009,28(S 1):240-242.
    [10]任萍,王木立,武春密,施荣富,王春红,王维.基于离子交换树脂制备多孔氧化铝球及在非水体系中分离银杏内酯.高等学校化学学报,2008,29(3):623-627.
    [11]王茜,李智,何琦,侯太平.杜仲叶中绿原酸提取分离工艺条件的研究.离子交换与吸附,2008,24(1):73-80.
    [12]许会平,彭奇均,李莉霞,赵泳.大孔阳离子交换树脂对奈替米星的吸附研究.离子交换与吸附,2008,24(2):168-174.
    [13]王津南,李爱民,张波,张全兴.胺基修饰大孔树脂对腐殖酸的吸附研究.离子交换与吸附,2008,24(1):33-39.
    [14]李稳宏,唐璇,李新生,陈德经,韩枫,李冬,李学坤.黄姜黄色素在大孔树脂上的吸附动力学
    研究.离子交换与吸附,2008,24(6):526-534.
    [15]穆波,张红岩,吕荣湖,刘丽丽,张瑶,郭绍辉.离子交换法去除磺化泥浆体系钻井废水COD的探索.化工进展,2008,27(7):1080-1084.
    [16]Wang Y H, Lan Y, Huang C B. Adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings. Journal of Central South University of Technology,2008,15(2):183-187.
    [17]Powell T, Brion G M, Jagtoyen M, Derbyshire F. Investigating the effect of carbon shape on virus adsorption. Environmental Science and Technology,2000,34(13):2779-2783.
    [18]Salem I A, EI-Maazawi M S. Kinetics and mechanism of color rremoval of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces. Chemosphere,2000,41(8):1173-1180.
    [19]Carmo A M, Hundal L S, Thompson M L. Sorption of hydrophobic organic compounds by soil materials:application of unit equivalent freundlich coefficients. Environmental Science and Technology, 2000,34(20):4363-4369.
    [20]Garcia-Delgado R A, Cotoruelo-Minguez L M, Rodriguez J J. Equilibrium Study of single-solute adsorption of anionic surfactants with polymeric XAD resins. Separation Science and Technology,1992, 27(7):975-987.
    [21]王穆君,孙越,周玮,费正皓,张全兴,任怀兴.大孔树脂对水溶液中邻苯二甲酸的吸附行为及其热力学研究.离子交换与吸附,2004,20(6):533-540.
    [22]Bell J P, Tsezos M. Removal of hazardous organic pollutants by biomass adsorption. Water Pollution Control Federation,1987,59(4):191-198.
    [23]潘丙军,郑建中,陈新庆,张炜铭,陶仙聪,潘丙才,陈一良,张全兴.盐对超高交联树脂吸附 苯酚机理的影响.离子交换与吸附,2005,21(5):406-414.
    [24]李洁莹,陈金龙,费正皓,陆朝阳,李爱民,刘福强,张全兴.大孔吸附树脂对邻甲酚的吸附行为.研究.离子交换与吸附,2004,20(5):430-437.
    [25]魏瑞霞,陈连龙,陈金龙.硫辛酸在三种不同树脂上的吸附热力学和动力学研究.功能高分子学报,2004,17(2):193-199.
    [26]魏瑞霞,陈连龙,陈金龙.三种不同树脂对硫辛酸吸附行为的研究.环境化学,2004,23(4):387-392.
    [27]魏瑞霞,陈金龙,陈连龙,费正皓,李爱民,张全兴.2-噻吩乙酸在三种不同树脂上的吸附热力学和动力学研究.高等学校化学学报,2004,25(11):2095-2098.
    [28]马红梅,朱志良,张荣华,林建伟,赵建夫.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究.离子交换与吸附,2006,22(6):519-526.
    [29]王学江,张全兴,李爱民,陈金龙.NDA-100大孔树脂对水溶液中水杨酸的吸附行为研究.环境科学学报,2002,22(5):658-660.
    [30]洪山海.光谱解析法在有机化学中的应用.第1版.北京:科学出版社,1980.
    [1]蒋荣光,刘自铴.起爆药.第一版.北京:兵器工业出版社,2006.
    [2]刘希春,刘自汤.起爆药.第一版.北京:国防工业出版社,1982.
    [3]劳允亮.起爆药化学与工艺学.第一版.北京:北京理工大学出版社,1997.
    [4]蒋荣光,刘自铴.球状K·D(Ⅱ)复盐起爆药的研究.爆破器材,2008,37(6):21-23.
    [5]熊家学.工业雷管用起爆药壳内制备技术的初步研究.爆破器材,2001,30(6):10-13.
    [6]鲍国钢,郝建春,汪小清,韩和亮,王成牛.钝化燃烧法销毁废K·D复盐起爆药.爆破器材,2005,34(2):28-29.
    [7]肖月华,张海金.新型起爆药的应用.爆破器材,2003,32(1):24-27.
    [8]刘鹏.浅谈K·D复盐起爆药生产中的结晶控制.爆破器材,2001,30(1):13-14.
    [9]张英豪,陈甜甜.GTG起爆药压爆问题研究.爆破器材,2007,36(5):20-21.
    [10]李联盟,杨爱民,张同来,张建国,乔小晶.GTG型火雷管技术研究.爆破器材,2004,33(4):16-20.
    [11]撒光,曹文俊,叔宝源.GTG起爆药在工业雷管中的应用.爆破器材,2001,30(1):15-19.
    [12]张同来,魏昭荣,吕春华,张建国.GTG起爆药性能研究.爆破器材,1999,28(3):16-19.
    [13]刘自汤,劳允亮.起爆药实验.第一版.北京:北京理工大学出版社,1995.
    [14]刘自汤.起爆药实验.第一版.北京:兵器工业部教材编审室,1986.
    [15]Wang Y H, Lan Y, Huang C B. Adsorption behavior of Pb2+ and Cd2+ ions on bauxite flotation tailings. Journal of Central South University of Technology,2008,15(2):183-187.
    [16]Powell T, Brion G M, Jagtoyen M, Derbyshire F. Investigating the effect of carbon shape on virus adsorption. Environmental Science and Technology,2000,34(13):2779-2783.
    [17]王学江,张全兴,李爱民,陈金龙.NDA-100大孔树脂对水溶液中水杨酸的吸附行为研究.环境科学学报,2002,22(5):658-660.
    [18]马红梅,朱志良,张荣华,林建伟,赵建夫.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究.离子交换与吸附,2006,22(6):519-526.
    [19]王学江,张全兴,李爱民,陈金龙.NDA-100大孔树脂对水溶液中水杨酸的吸附行为研究.环境科学学报,2002,22(5):658-660.
    [20]何炳林,黄文强.离子交换与吸附树脂.第1版.上海:上海科技教育出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700