活性真菌对重金属离子吸附及抗性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属的生物吸附是以吸附、离子交换、络合或微沉淀作用为基础的一种物理-化学现象,金属的生物吸附因其科学的新颖性和在环境保护中的应用潜力,一直受到极大的重视,许多研究表明,活的或死的、完整的微生物细胞以及微生物的代谢产物都能高效地吸附金属离子。目前关于死菌吸附重金属的研究已有很多报道,但是有关生长中的真菌对重金属吸附的报道很少。
     从湖南临乡桃林矿区土壤中分离到一株高抗铜和锌的菌株,经26S rRNA D1/D2鉴定为棘孢曲霉Aspergillus aculeatus。本实验将生长中的该菌体作为活性生物吸附剂,选择铜(Ⅱ)、锌(Ⅱ)两种离子作为吸附质。在单一重金属离子体系中,研究在不同溶液初始pH值、不同吸附质初始浓度、不同吸附时间情况下,菌体对铜(Ⅱ)、锌(Ⅱ)两种离子的吸附能力。根据实验结果确定真菌吸附的优化条件。
     不少重金属是微生物正常生长的必需元素,但是当重金属在菌体内浓度过高时,会对菌体产生毒性。微生物可通过细胞的表面富集与细胞膜成分的改变减小毒性的破坏,通过多途径的联合作用对重金属的毒性进行解毒。重金属的抗性增强了各种微生物在恶劣环境下的生存能力。
     本文研究了铜(Ⅱ)、锌(Ⅱ)两种离子对菌体的最低抑制浓度(MIC),并通过电镜照片和红外光谱图分析菌体吸附金属离子前后的变化。此外还通过碘量法测定不同培养环境中菌体内谷胱甘肽含量的变化,初步探究菌体产生金属抗性的机理。
     实验表明在优化条件下:30℃,pH值5.0,起始铜离子和锌离子浓度为50mg/L,摇床转速为120r/min,培养时间120h,该菌体对铜离子和锌离子的吸附率分别达到54%和60%。菌株可以单抗铜400mg/L、锌800mg/L。电镜照片表明25mg/L铜锌两种离子对菌体造成了一定程度的损伤,使其细胞表面形态和内部结构均发生了变化;红外光谱图说明菌体表面的-OH、磷酸酯、糖环等参与了吸附活动。A. aculeatus菌在重金属铜和锌胁迫下,体内的谷胱甘肽起了显著变化。在铜锌离子浓度为50mg/L时,菌体内谷胱甘肽的含量达到最大值,分别为0.98和0.88mg/g。而没有金属离子胁迫时生长的菌体体内谷胱甘肽含量很低,只有0.04mg/g。可以初步认为谷胱甘肽缓解了铜、锌离子对Aspergillus aculeatus的氧化损伤。
The metal biosorption is a physico-chemical phenomenon based on absorption, ion exchange, complexation or microprecipitation. Biosorption of metals has been recently receiving a great deal of attention for both its scientific novelty and application potential in environmental protection or recovery of precious metals. Many investigations have showed that intact microbial cells, living or dead,and derived microbial products,can be highly efficient absorption of metal ions, especially from diluted external concentration. There have been a number of reports on the biosorption of heavy metals. However, there have been only a few reports on living epiphyte absorption.
     A stain of resistance to copper and zinc with high concentration was isolated from soil of tiaolin in HuNan province. With the identification of 26S rRNA D1/D2 gene sequence, the strain was identified as Aspergillus aculeatus. This experiment used the growing fungus as adsorbent, and Cu2+, Zn2+ as adsorate. The influences of experimental conditions such as time, pH value, temperature, inditial concentration of adsorbent and adsorate on adsorbing effect are studied.
     Many heavy metals are the necessary elements for the microorganisms. But when the concentrations of the intercellular heavy metals are too high, the metals become poisonous. The microorganisms can minish the destroy of the toxicity by alter the componential of the membrane and enhance the superficial enrichment. Metal-resistance of microorganisms may enhance their ability to live in bad surroundings.
     This text maked sure the Cu2+, Zn2+ to 2# fungus’minimal inhibitory concentration (MIC). Using the electron magnifier and FTIR technic analysed the normal and absorption metals’fungus. Furthermore, the meath of iodimetric estimation was used to analyse the contents of glutathione which were cultured in different mediums. Primery research the mechanism of Metal-resistance by fungus.
     Its optimum growth conditions were temperature 30℃, pH 5.0, initial concentration of Cu2+ and Zn2+ 50mg/L, rate of the shaker 120r/min, cultured time 120h, the adsorption efficiency could reach 54% and 60% respectively. It can resist copper of 400mg/L and zinc of 800mg/L. The electron magnifier photos show that fungus cells appeared different degree damnification under 25mg/L Cu2+, Zn2+. The results of FTIR show that the fungus surface’s–OH、phosphate、polyoses are absorption movement centers. Stress of Cu2+, Zn2+ induced fungus interior GSH’s change. Under the condition of 50 mg/L Cu2+, Zn2+, GSH achieved to the maximum, respectively 0.98 and 0.88mg/g. While GSH at normal fungus only was 0.04 mg/g. It can confer that glutathione seems to play a favorable role in avoidance of heavey metal oxidation stress from the results.
引文
[1]刘永惫,宿华,刘巍.中国水资源的现状与未来.水资源保护, 2001, (4): 13
    [2]蒋清民.工业废水处理技术进展.河南化工, 2003, (1): 8-10
    [3] Pradhan, A. A. and Lerine, A D. Role of extracellular components in microbial biosorption of copper and lead. Water science and Technoiogy, 1992, 26: 2153-2156
    [4]戴树桂编著.环境化学.北京:高等教育出版社, 1997
    [5]常学秀,文传浩,王焕校.重金属污染与人体健康.云南环境科学, 2000, 19(1): 59
    [6]魏复盛主编.水和废水监测分析方法指南(上册).北京:中国环境科学出版社, 1990
    [7]朱一民,沈岩柏,魏德洲.海藻酸钠吸附铜离子的研究.东北大学学报(自然科学版), 2003, 24(6): 589-592
    [8]石晶,黄云,龙刚等.用中和剂CY-1配加助凝剂处理化纤含锌废水.环境与开发, 1999, 14(4): 14-15
    [9]廖自基编著.微量元素的环境化学及生物效应.北京:中国环境科学出版社, 1992: 4
    [10]李圭白,刘超.地下水除铁除锰(第二版).北京:中国建筑工业出版社, 1989, 349
    [11]许保玖主编.给水处理理论.北京:中国建筑工业出版社, 2000, 695-710
    [12] Raskin I, Ensley B D. Phytoremediation of toxic metals: using plants to clean up the environment.New York: John Wiley and Sons, 2000, 23-25
    [13] Alexander M. Biodegradation and bioremediation.London: Academic Press 1999, 61-70
    [14] Shen H, Prtichard P H and Sewell G W. Microbial reduction of Cr(Ⅵ) during anaerobic degradation of benzoate. Environ Sci.Technol., 1996, 30: 1667-1674
    [15]俞慎,何振立,黄昌勇.重金属胁迫下土壤微生物和微生物过程研究进展.应用生态学报, 2003, 14(4): 618-622
    [16]陈怀满等著.土壤中化学物质的行为与环境质量.北京:科学出版社, 2002, 102-105
    [17] J.W.帕特参.废水处理技术.北京:化学工业出版社, 1987, 45-53
    [18]刘庆文.重金属离子废水的处理方法.天津化工, 1995, (4): 16-17
    [19]马荣骏.工业废水的治理.长沙:中南工业大学出版社, 1991
    [20] CJ·Wiliams, D. Aderhold, etal. Comaprison between biosorbents for the removal of metal ions from aqueous solution. WaterResearch, 1998, 31(1): 216-224
    [21]周少奇.现代环境生物技术.北京:科学出版社, 2003:199-227
    [22]李峰,张西平,黄昆, eatl.产朊假丝酵母Candida utilis细胞壁对铜离子吸附位点的研究.应用与环境生物学报, 2000, 6(1): 93-95
    [23]吴涓,李清彪.黄孢原毛平革菌吸附铅离子机理的研究.环境科学学报, 2001, 21(3): 291-295
    [24] Guibal E. Roulph C. Cloirec P L. Uptake of uranylions by new sorbing polymers discussion of adsorption isotherms and pH efect . Environmental Science and Technology, 1995, 29: 2496-2504
    [25] Aksu Z. Investigation of biosorption of copper(Ⅱ) by C.vulgaris and Z. ram lgera. Environment Technology, 1992, 13: 579-586
    [26] Wang jianlong. Biosorption of copper(Ⅱ)by chemically modified biomass of Saccharomycescerevisial. Process Biochemistry, 2002, 37(8): 847-850
    [27]刘月英,傅锦坤,陈平, etal.巨大芽抱杆菌D0l吸附金(Au3+)的研究.微生物学报, 2000, 40(4): 425-429
    [28]刘月英,傅锦坤,胡洪波, etal.金霉链霉菌废菌丝体吸附金(Au)特性的表征.科学通报, 2001, 46(14): 1179-1182
    [29]刘月英,傅锦坤,李仁忠, etal.细菌吸附Pb2+的研究.微生物学报, 2000, 40(5): 535-539
    [30] Greene B, Hosea M, McPherson R, etal. Environmental Science and Technology, 1986, 20: 627
    [31] Volesky B, May H, Holan Z.R. Biosorption of Cadium by biomass of marine algae. Biotech and Bioeng, 1993, 41: 819-825
    [32]赵晓红.高效菌活性污泥法处理分散染料废水实验研究.环境工程, 2002, 20(1): 77-81
    [33]常秀莲,王文华,冯咏梅.海藻吸附重金属离子的研究.海洋通报, 2003, 22(2): 39-44
    [34]李明春,姜恒,候文强.酵母菌对重金属离子吸附的研究.菌物系统, 1998, 17(4): 367-373
    [35] Marios Tsezos. Biosorption of Uranium and Thorium. Biotechlology and Bioengineering, 1981, 7: 583-604
    [36]孟令芝.纤维素-铝-硅复合物的制备及对重金属离子的吸附.环境科学与技术, 2000, 89(2): 24-26
    [37]杨志宽,单崇新,苏帕拉.羧甲基壳聚糖对水中Cd2+的絮凝处理研究.环境科学与技术, 2000, 88(1): 10-12
    [38]陈必链,庄惠如,余望, etal.钝顶螺旋藻对锌和硒生物富集作用的研究.食品与发酵工业, 1998, 6: 27-29
    [39] G add G M, Grifths A J. Studies on the biosorption. Microbiol, 1978, 4: 303
    [40]叶景韶.生物吸附剂的制备及其对铬的吸附性能.环境化学, 2002, 21(2): 144-148
    [41]刘月英.固定化地衣芽抱杆菌R08吸附Pd2+的研究.微生物学报, 2002, 42(6): 700-705
    [42]吴涓,李清彪.白腐真菌吸附铅的研究.微生物学报, 1999, 39(1): 87-90
    [43]刘恒,王建龙.啤酒酵母吸附重金属离子铅的研究.环境科学研究, 2002, 15(2): 26-29
    [44] JuLie G, Michael S. A novel selenite-and tellurite-inducib legene inescherichia col. Applied and Environmental Micro-biology, 2000, 66(11): 4972-4978
    [45] Perry J, Carol A. RoLe of a Candida aLbicansP1-Type AT-Pase in resistance to copper and silver ion toxicity. Journal of Bacteriology, 2000,182(17): 4899-4905
    [46] Tanja K, RaLph J, etal. Silver-based crystalline nanoparticles microbially fabricated. Applied PhysicalSciences/Microbiology, 1999, 96(24): 13611-13614
    [47] Mario G, Luisl, etal. Agenec Luster involved in metal homeostasis in the cyanobacterium Synechocystis sp strain PCC 6803. Journal of Bacteriology, 2000, 182(6): 1507-1514
    [48] Simon V, Shareeka L etal. StimuLation of strontium accu-muLation in LinoLeate-enriched Saccharomyces cerevisiaeis a resuLt of reduced Sr2+effLux. AppLied and Environmental Microbiology, 1999, 65(3): 1191-1197
    [49] Avery S. Caesium accumulation by microorganisms: up-take mechanisms cation competition compartmentalization and toxicity. Ind Microbiol, 1995, 14(2): 76-84
    [50] Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control Annu Rev Plant PhysioL. Plant Mol Biol, 1998, 49: 249-279
    [51] May M J, Vernoux T, LeaverC, etal. Glutathione homeostasis in pLants: implications for enviromental seneing and plant development. Exp Bot, 1998, 49: 649-667
    [52]郑云郎.谷胱甘肽的生物学功能.生物学通报, 1995, 30(5): 22-24
    [53]樊跃平,张琳.谷胱甘肽的生理意义及其各种测定方法比较评价.中国临床营养杂志, 2003, 11(2): 136-139
    [54] Vojesky B,May-Philips H.A. Biosoorption of heavy metals Saccharomycescerevisiae Appl. Micorobiol Biotechnol, 1995, 42: 797-806
    [55] Volesky B, Tsezos M. Separration of uranium by biosorption, March 1982, US Patent No. 4,320,093, Canadian Patent No1,143,077, July 1983
    [56] Kratoohvil D, Pimentel P F, Volesky B. Rmoval of trivalent chromium by seaw eed biomass. Department of CheimcaI Engineering 2002
    [57] Volesky B, Holan Z R. Biosorption of heavy metals. Biotachnol Prog, 1995, 11: 235-250
    [58] Antonio Carlos A, DA Costa. Francisca P.Cadmium uptake by biosorbent seaweed: adsorption isotherms and some process conditions. Separation Science and Technology, 1996, 31(17): 2373-2393
    [59] Aksu Z, Ozer D, Ozer A. Investigation of the columu performance of Cadmium (Ⅱ) biosorption by Cladophora Crispata flocs in a packed bed. Separation of Science and Technology, 1998, 33(5): 667-682
    [60] Ozer D, Ozer A,Gulbeyi Dursun, etal. Caduminm(Ⅱ) adsorption on Cladophora Crispata in batch stirred reactors in series. Waste Management, 1999, 19: 233-240
    [61] Sag Y, Kaya A.Kutsal T. Biosorption of lead(Ⅱ), nickel(Ⅱ) and copper(Ⅱ) on Rhizopus arrhizus from binary and ternary metal mixtures. Sep. Sci.Technol, 2000, 35, 2601-2617
    [62] Yetis U, Dolek A, Dilek F B,etal.The removal of Pb(Ⅱ) by Phanerochaete Chrysosporium. Water Resource, 2000, 34(16): 4090-4100
    [63] Nourbakhsh M N, Kili A S, Ilhan S, etal. Biosorption of Cr6+,Pb2+ and Cu2+ ions in industrial waste water on Bacillus sp. Chemical Engineering Journal, 2002, 85: 351-355
    [64] B. Volesky. Biosorbents for metal recovery. Trends in Biotechnology, 1987, 5: 96-101
    [65]Spaulding A J, Shulerb M L, Liona L w, Mobilization of adsorbed copper and lead from naturally aged soil by bacterial exlracellular polymers. Water Resource 2004, 38: 1121-1128
    [66] Kuhn S P. Appol. Microbiol. Biotechnol, 1989: 31(5-6): 613-618
    [67] Maine M A, Duarte M V, Sue N L. Cadminm uptake by floating macrophytes. Wat. Res, 2001, 35(11): 2629-2634
    [68] Lodi A, Solisio C, Converti A, etal. Cadmium, Zinc, Copper, Silver and Chromium(Ⅲ) removal from wastes by Sphaerotilus natans. Bioprocess Engineering, 1998, 19: 197-203
    [69] Ikhuoria E U. Okieimen F E, Scavenging Cadmium Copper, Lead, .Nickel and Zinc ions from aqueous solution by modified cellulosic sorbent. Lntern J Environ Studies, 2000, 57: 401-409
    [70]陈明.微生物吸附重金属离子的试验研究.南方冶金学院学报, 2001, 22(3): l65-174
    [71]孟琴.生物吸附刑BAP对Cu2+的吸附研究.水处理技术, l998, 6(3): l75一177
    [72]李福德,微生物法治理电镀废水新技术.给水排水, 97, 23(6): 25-29
    [73]吴乾菁,李昕.微生物治理电镀废水的研究.环境科学, 1997, 18(5): 47-50
    [74] Chang J S, Law R, Chang C C. Biosroption of Lead,Copper and Cadmium by biomass of Pseudomonas aeruginosa PU21. Water Resource, 1997,31(7): 1641-1658
    [75]吴启堂,蒋成爱,林毅,etal.利用剩余活性污泥的生物吸附降低城市污水污泥重金属含量.环境科学学报, 2000, 20(5): 651-653
    [76]马晓肮,叶雪明.硫酸盐生物还原法处理含锌废水.环境科学, 1995, 16(4): 19-21
    [77] Turick C E, Apel W A. Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments. Appl Microbiol Biotechnol, 1996, 44: 683-688
    [78] Philip L, Iyengar L, Venkobachar C. Cr(Ⅵ) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 1998, 124(12): 1165-1170
    [79] Michael S. Price, John J. Classen, Gary A. Payne. Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresource Technology, 2001, 77: 41-49
    [80]张建梅.东京根霉对重金属Cr3+、Mn2+和Zn2+的吸附研究.环境污染治理技术与设备, 2006, 7(8): 64-68
    [81] Arzu Y. Dursun. A comparative study on determination of the equilibrium, kinetic andthermodynamic parameters of bio sorption of copper(Ⅱ) and lead(Ⅱ) ions onto pretreated Aspergillus niger. Biochemical Engineering Joural, 2006, (28): 187–195
    [82] Tamer Akar, Sibel Tunali. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(Ⅱ) and Cu(Ⅱ) ions from an aqueous solution. Bioresource Technology, 2006, 97: 1780–1787
    [83] Anoop Kapoor, T. Viraraghavan, D. Roy Cullimore. Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology, 1999, 70: 95–104
    [84] G. ?etinkaya D?nmez, Z.Aksu, A.?ztürk, etal. A Comparative study on heavymetal biosorption characteristics of some algae. Process Biochemistry, 1999, 34: 885–892
    [85] Carlos Green-Ruiz, Victor Rodriguez-Tirado, Bruno Gomez-Gil. Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects. Bioresource Technology, 2008, 99: 3864–3870
    [86] Tatiana Gisset P. Vásquez, Ana Elisa C. Botero, Lucǐana Marǐa S, etal. Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Minerals Engineering, 2007, 20: 939–944
    [87] B. Prasenjit, S. Sumathi, Uptake of chromium by Aspergillus foetidus. Mater. Cycles Waste Manag, 2005, 7: 88–92
    [88]朱一民,魏德洲. Mycobacterium phlei菌对重金属Pb2+,Zn2+,Ni2+,Cu2+的吸附规律.东北大学学报, 2003, 24(1): 91–93
    [89]刘振玉.谷胱甘肽的研究与应用.生命的化学, 1995, 15(4): 19-21
    [90]安贤惠.还原性谷胱甘肽提取方法初探.淮海工学院学报,2003, 12(2): 49–52
    [91] Sudhakar Srivastava, Seema Mishra, Rudra D.Copper-induced oxidative stress and responses of antioxidants and phytochelatines in Hydrilla verticillata (L.f.) Royle. Aquatic Toxicology, 2006, 80: 405–415
    [92] Garcia-Toledo. A. Babich, H., Stotzky, G. Training of Rhizopus stolonifer and Cunninghamella blakesleeama to cooper: cotolerance to cadmium, cobalt,nickel and lead. Can. J. Microbiol, 1985, (31): 485–492
    [93] Balsalobre, L. Estudio de levaduras tolerantes a metales aisladas de lodos. Minor Thesis, Universidad Complutense de Madrid
    [94] Lin-VienD, ColthupN B, Fateley W G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, INC, San Diego, Canada, 1991, 23-29
    [95] Socrates G, Infrared Characteristic Group Frequencies Tables and Charts. Second Edition, JohnWiley& SonsLtd, BaffinsLane, Chichester, England, 1994
    [96] Ina Bruns, Kristin Sutter, Sieglinde Menge et al. Cadmium lets increase the glutathione pool in bryophytes. Journal of Plant Physiology., 2001, 158: 79–89
    [97] Lin CN, Crawford BF, Kosman DJ. Distribution of copper64 in Saccharomyces cerevisiae[J]. Cellular localization and metabolism. Gen Microbiol, 1993, 139: 1605–1615
    [98] Dameron CT, Smith BR, Winge DR. Glutathione-coated cadmium-sulfide crystallites in Candida glabrata. Biol Chem, 1989, 264: 17355–17360
    [99] Ha SB, Smith AP, Howden R, et al. Phytochelati synthetase genes from Arabidopsis and the yeast Schizosaccharomyces pomber. Plant Cell, 1999,11: 1153–1164
    [100]陈沁,刘友良. H2O2和·OH及其清除剂对大麦叶片液泡膜微囊质子转运活性的影响.植物生理学报, 1999, 25(3): 281–286

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700