城市降雨径流中重金属污染特征与污染负荷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市降雨径流中重金属污染主要是城市地面污染物、大气颗粒物、地表灰尘等在降雨事件作用下,经冲刷进入受纳水体,造成受纳水体水质的污染。由于近年来快速的城市化进程,城市不透水面积不断增大,导致城市降雨径流中重金属污染有日益严重的趋势。本研究内容依托于国家水体污染控制与治理科技重大专项“城市黑臭河道外源阻断、工程修复与原位多级生态净化关键技术研究及示范”(2009ZX07317-006),并在此项目与国家自然科学基金项目“沿海城市河岸氮素截留效率和转化机制研究”(40971259)、上海市优秀学科带头人计划“城市河岸带对面源营养盐的生态阻控机理研究”(10XD1401600)的资助下,以上海与温州城市降雨径流为对象,研究其中Cr、Cu、Fe、Mn、Ni、Zn、Hg和As的含量,并对此作出环境评价,了解降雨径流中各重金属的污染特征、时空变化,探讨降雨强度、降雨历时、雨前干期等降雨特征对重金属污染特征的影响程度,揭示降雨径流初期冲刷效应与各因素间关系。通过温州城区重金属污染特征和负荷的研究,估算出温州城市重金属夏季污染负荷,由此为有效地管理城市非点源污染提供可靠的数据。
     本研究在对大量第一手数据资料进行分析的基础上得到以下几条结论:
     (1)本研究监测上海和温州市区7场次夏季降雨,分析表明城市降雨径流中交通干道、停车场、小区路面等下垫面径流中重金属含量较高。溶解态Fe、Mn、Ni、Zn、Hg、等重金属与pH较为相关,溶解态Cu、Fe和Mn与TSS呈线性关系。城市降雨径流过程中pH动态变化与降雨特征并无关系;TSS时间变化呈指数衰减,其浓度的高值多出现在径流初期或是最大雨强出现时刻;重金属的动态变化与降雨特征有关,雨势较小时部分重金属会随着径流过程而累积,而雨势较大时径流初期重金属动态变化与径流深动态变化一致,一旦最大雨强出现后其浓度立刻衰减。
     (2)上海与温州城市降雨径流交通干道径流中TSS EMC值较高,易超出污水综合排放二级标准。降雨径流中重金属中除Hg外EMC值都低于地表水Ⅲ和V类标准,其中Cu、Mn和Zn EMC值的下垫面差异较大,EMC的高值主要是出现在交通干道等人为活动较多的下垫面径流,而Hg EMC值大小与下垫面类型无关。各降雨特征中雨前干期、降雨量和降雨强度与重金属EMC值关系较大,雨前干期越长降雨径流中重金属EMC值越大,而降雨量与降雨强度越大降雨径流中重金属EMC值则越小。
     (3)本研究运用无量纲累积曲线对城市降雨径流中TSS和重金属进行初期冲刷效应的分析,结果表明TSS较易发生初期冲刷效应,控制降雨径流40%的累积径流量即能有效地控制TSS对下一级受纳水体的污染。除Fe、Mn和Ni外的多数重金属不易发生初期冲刷,其中Mn的FF30值最大,为51.12%,而Cr的FF30值最小,则为31.84%。降雨径流初期冲刷效应的程度主要取决于最大降雨强度出现的时间,与汇流区下垫面的类型与面积大小无关。
     (4)本研究探讨其他环境介质对城市降雨径流中重金属浓度的影响,包括大气干湿沉降、地表灰尘等。结果表明上海和温州市区大气颗粒物质PM10中重金属含量基本都高于该地区土壤背景值,Mn和Ni的富集因子<1,属于自然因素:Zn的富集因子>10,属于人为活动影响造成的污染。对比城市雨水与降雨径流中重金属的浓度,发现雨水中重金属对降雨径流有着一定的贡献,将研究区雨水中含金属浓度与国内外城市进行对比,得出上海和温州雨水重金属浓度是国内较低污染水平,但明显高于发达国家城市,说明雨水中重金属污染水平与经济、城市化发展水平有一定的关联。城市停车场和交通干道的地表灰尘含量较高,上海与温州地表灰尘污染程度相近,且多数重金属均呈现粒径分级效应,其中Cr、Cu、Pb和Zn最为明显。
     (5)本论文将“地表灰尘—雨水井口沉积物—降雨径流”作为系统进行探讨,其中Cr、Cu、Fe、Mn、Ni和Pb的含量呈递减的状态,其中递减程度最为明显的是Mn,这一方面说明这些重金属的来源具有一定的相似性,另一方面说明地表灰尘中重金属对降雨径流贡献较大,但整体的影响机制受到影响因素多且复杂并伴随着随机性,较难统一
     (6)通过对温州山下河和九山外河流域汇流区夏季5场次降雨事件进行监测,得到两个汇流区夏季降雨径流中Cr、Cu、Fe、Mn、Ni、Zn、Hg和As的EMCs值,结合SCS模型对汇流区径流量进行修正,利用降雨径流重金属污染负荷模型对不同下垫面夏季重金属污染负荷定量,其结果表明山下河汇流区降雨径流中Cr、Cu、Fe、Mn、Ni、Pb、Zn、Hg和As的夏季负荷为0.16 kg、0.40 kg、2.06 kg、0.69 kg、0.23 kg、1.85 kg、0.04 kg和0.35kg,而相应地九山外河汇流区夏季负荷为0.05 kg、0.43 kg、3.33 kg、3.35 kg、0.24 kg、4.10 kg、0.08 kg和0.22kg。可以看出汇流区夏季降雨径流重金属污染负荷与该汇流区面积、汇流区下垫面性质以及该下垫面径流中所携带的重金属污染物浓度都有一定的关系,结果表明九山外河汇流区降雨径流重金属污染对九山外河的影响较大。将两个汇流区夏季降雨径流重金属污染负荷按下垫面类型进行分类,山下河汇流区各下垫面贡献率由大到小顺序为:屋面>交通干道>小区路面>草地>停车场;九山外河汇流区各下垫面贡献率由大到小顺序为:小区路面>屋面>草地>交通干道>停车场。
Heavy metal pollution of urban rainfall runoff was the water pollution which formed by washing urban surface pollutants, Atmospheric particulates, surface dusts etc. and informed receiving waterbodies. Since quick urbanization in recent years, the areas of impermeable surface had increased leading to serious heavy metals pollution of urban rainfall runoff. With the support of Major Science and Technology Program for Water Pollution Control and Treatment (No.2009ZX07317-006), NNSF of China (No.40971259), and Shanghai excellent entancement plan (No.10XD1401600), the pollution characters and spatio-temporal changes were studied. Besides, first flush effects of rainfall runoff were also studied to proclaim the relationship between rainfall character and heavy metal EMCs. And the resouces of heavy metal in PM10S, surface dusts and catch-basin sediments were analyzed. Using EMCs of heavy metals(Cr, Cu, Fe, Mn, Ni, Zn, Hg and As) estimated urban heavy metal load in summer in Wenzhou City to supply stable datas to management of uraban non-point source pollution.
     The main conclusions can be summed up as follows.
     1. The study monitored 7 summer rainfall events in Shanghai and Wenzhou City, the results showed that contents of heavy metals in traffic artery, parking lot and community road were higher than other underlying surface. The contents of Fe, Mn, Ni, Zn, Hg (dissolved form) were related to pH and Cu, Fe and Mn (dissolved form) related to TSS. Dynamic changes of pH were not related to rainfall charaters, the opponent to heavy metals, and the TSS one showed indexmovement when the max value appeared the beginning of rainfall runoff.
     2. TSS EMC of the traffic artery runoff was the highest of all the underlying surfaces and exceeded Integrated Wastewater Discharge 2 Standard easily. Heavy metal EMCs except Hg were below to Surface Water III and V Standard, which EMCs of Cu, Mn and Zn got apparent spatial variability, but Hg EMC was not related to underlying surface types. Correlation coefficient was higher among ADWP, precipitation, rainfall intensity and EMCs of heavy metals.
     3. It was analyzed about first flush effects of urban rainfall runoff by using dimensionless cumulative curve. The main results determined that TSS gained first flush effect easier than heavy metals. It is efficient to control water pollution by remove the first 40% runoff. Except Fe, Mn and Ni, heavy metals appeared the first flush effects hard. FF30 of Mn was 51.12% and Cr was 31.84% which was the max value and min value of FF30. The result showed the effect of first flush mainly depended on the time of max rainfall intensity.
     4. The study research heavy metals in other environmental mediums affecting to the on in rainfall runoff including atmospheric deposition (dry and wet), surface dust etc. Heavy metal contents of PM10 in Shanghai and Wenzhou were higher than their background value of soil environment. EF of Mn and Ni were less than 1, meaned natural resource; EF of Zn was greater than 10, meaned human interference. Compared with heavy metal contents in urban rainwater, it had relationship with the contents in rainfall runoff and contributed a lot to heavy metal contents of rainfall runoff. The contents of heavy metals in surface dusts were higher in traffic artery and parking lot. The heavy metal pollution degree of surface dust was similar in both Shanghai City and Wenzhou City.
     5. The trend of Cr, Cr, Fe, Mn, Ni and Pb contents decreased progressively in the system of surface dust—catch-basin sediment—rainfall runoff, especially Mn. It indicated that on one hand resource of these heavy metals were similar; on the other hand heavy metal pollutants in surface dusts contributed more. The affection machining was affected by lots of facts, presented complexity and randomness and hard to centralize.
     6. By means of monitoring 5 rainfall events in summer in Wenzhou City(SX catchment and JS catchment), the EMCs of Cr, Cu, Fe, Mn, Ni, Zn, Hg and As were analyzed. After correcting CN value of SCS modeling and quantifying, summer heavy metal pollution loads were estimated. The results showed that the loads of Cr, Cu, Fe, Mn, Ni, Pb, Zn, Hg and As were 0.16kg, 0.40 kg, 2.06 kg, 0.69 kg, 0.23 kg, 1.85 kg, 0.04 kg and 0.35kg in SX catchment when the JS catchment were 0.05 kg,0.43 kg, 3.33kg, 3.35kg, 0.24kg,4.10 kg,0.08 kg and 0.22kg, which means JS catchment was affected critically by rainfall runoff pollution. Contribution rate of unerlying surface in SX catchment was roof>traffic artery>community road>grassland> parking lot, and JS catchment was community road>roof>grassland>traffic artery >parking lot.
引文
[1]Airey D, Jones P. Mercury in the River Mersey, its estuary and its tributaries. Water Res, 1982,16:565-577.
    [2]Aleen P. Loading estimates of lead, copper, cadmium and zinc in urban runoff from specific sources. Chemo-sphere,2001,44:997-1009.
    [3]Alley W M, Smith P E. Estimation of accumulation parameters for urban runoff quality modeling. Water Resource Research,1981,17(6):1657-1663.
    [4]Anju D K, Banerjee. Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environmental Pollution,2003,123(1):95-105.
    [5]Brezonik P L, Stadelmann T H. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA. Water Research,2002,36(7):1743-1757.
    [6]Charbeneau R J, Barrett M E. Evaluation of methods for estimating storm water pollutant load research,1998,70(7):1295-1302.
    [7]Crabtree B, Moy F, Whitehead M, et al. Monitoring pollutants in highway runoff. Water and Environment Journal,2006(20):287-294.
    [8]Day J P, Hart M, Robinson S M.1975. Lead in urban street dust. Nature,253:343-345.
    [9]Deletic A. The first flush load of urban surface runoff. Water Research,1998,32(8): 2462-2470.
    [10]Deletic A, Maksimovic C T. Evaluation of water quality factors in storm runoff from paved areas. Journal of Environmental Engineering,1998,124(9):869-879.
    [11]Chappell W R, Beck B D, Brown KG, et al. Inorganic arsenic:a need and an opportunity to improve risk assessment. Environmental Health Perspect,1997,105:1060-1067.
    [12]Chak A K, Saha K C. Arsenic dermiatosis from tubewell water in west bengal. India J M Res, 1987,85:326-334.
    [13]Deletic A, Orr D W. Pollution buildup on road surfaces. Journal of Environmental Engineering,2005,131(1):49-59.
    [14]EPAUS, Office of water Washington, D. C.,1999.
    [15]EPA. Meeting the Environment Challenge[M]. USA:EPA,1990,46-50.
    [16]EPA. Manual for combined sewer overflow control. EPA Report nr EPA/625/R-93/007, Cincinnati, USA,1993,95.
    [17]Field R, Pitt R E. Urban storm-induced discharge impacts:US Environmental Protection Agency research program review. Water Sci Technol,1990,22(10):1-7.
    [18]Gromaire-Mertz M C, Garnaud S, Gonzalez A, et al. Characterization of urban runoff pollution in Paris. Water Sci Technol,1999,39:1-8.
    [19]Jarvis B. Investigation of stormwater runoff from highway catchment. Nedlands:University of Western Australia,1992.
    [20]Kafi M, Gasperi J, Moilleron R, et al. Spatial variability of the characteristics of combined wet weather pollutant loads in Paris. Water Research,2008,42 (3):539-549.
    [21]Kayhanian M, Suverkropp C, Ruby A, et al. Characterization and prediction of highway runoff constituent event mean concentration. Journal of Environmental Management, 2007(85):279-295.
    [22]Lee J H, Bang K W. Characterization of urban stormwater runoff. WaterRes,2000,34(6): 1773-1780.
    [23]Lee J Y, Kim H J, Kim Y J, et al. Characteristics of the event mean concentration(EMC) from rainfall runoff on an urban highway. Environment Pollution,2011(159):884-888.
    [24]Miguel A G, Cass G R, Glovsky M M, et al. Allergens in paved road dust and airborne particles. Environmental Science & Technology,1999,33:4159-4168.
    [25]Mukesh S, Shaily M. Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmospheric Environment,2005(39):6015-6026.
    [26]Novotry, Handbook of nonpoint pollution, sources and management. Van Nostrand Reinbold Company, New York,1981,313-347.
    [27]Orumwense. Removal of lead from water by adsorption on a kaolinitic clay. Technol Biotechnol,1996,65 (4):363-369.
    [28]Rasmussen P E, Subramanian K S, Jessiman B J. A multielement profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canda. Science of the Total Environment,2001,267:125-140.
    [29]Sator J D, Water pollution aspects of street surface contaminates. WPCF,1974,46.
    [30]Sansalone J J, Buchberger S G. Part it ioning and first flush of metals in urban roadway storm water. Journal of Environmental Engineering,1997,123(2):134-143.
    [31]Tuccillo M E. Size fractionation of metals in runoff from residential and highway storm sewers. Science of the Total Environment,2006,355(1/2/3):288-300.
    [32]Vassilakos C H, Veros D, Michopoulos J, et al. Estimation of selected heavy metals and arsenic in PM10 aerosols in the ambient air of the Greater Athens Area, Greece. Journal of Hazardous Materials,2007,140(2):389-398.
    [33]Wegener K R. Selection of parametric stormwater pollutant loading models using predictive reliability analysis. LSU, Baton rouge, LA,1982.
    [34]Zabal T, Milne I, Mckay G. Approaches adopted by the European Union and selected Member States for the control of urban pollution. Urban Water,2001,3:24-32.
    [35]Zhao J W, Shan B Q, Yin C Q. Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area. Journal of Environmental Sciences,2007(19):464-468.
    [36]边博.前期晴天时间对城市降雨径流污染水质的影响.环境科学,2009,30(12):3522-3526.
    [37]常静,刘敏,许世远,等.上海城市降雨径流污染时空分布与初始冲刷效应.地理研究,2006,25(6):994-1002.
    [38]葛永学.城市非点源污染研究进展.中山大学研究生学刊,2010,311(1):16-21.
    [39]林积泉,马俊杰,王伯铎,等.城市非点源污染及其防治研究.环境科学与技术,2004,27(4):63-65.
    [40]黄金良,杜鹏飞,欧志丹,等.澳门城市暴雨径流污染特征研究.中国给水排水.2006,22:62-67.
    [41]黄金良,涂振顺,杜鹏飞,等.城市绿地降雨径流污染特征对比研究:以澳门与厦门为例.环境科学,2009,30(12):3514-3520.
    [42]李立青,尹澄清.雨、污合流制城区降雨径流污染的迁移转化过程与来源研究.环境科学,2009,30(2):368-375.2007,27(3):312-316.
    [43]李立青,尹澄清,何庆慈,等.武汉市城区降雨径流污染负荷对受纳水体的贡献.中国环境科学,
    [44]梁涛,王浩,张秀梅,等.不同土地类型下重金属随暴雨径流迁移过程及速率对比,应用生态学报,2003,14(10):1756-1760.
    [45]孟飞,刘敏,侯立军,等.上海中心城区地表灰尘与土壤中重金属累积及污染评价.华东师范大学学报,2007,4:56-63.
    [46]欧阳威,王玮,郝芳华,等.北京城区不同下垫面降雨径流产污特征分析.中国环境科学,2010,30(9):1249-1256.
    [47]齐苑儒,李怀恩,李家科,等.西安市非点源污染负荷估算.水资源保护,2010,26(1):9-12.
    [48]史贵涛,陈振楼,毕春娟,等.城郊小河流沉积物吸附Pb2+的动力学过程.环境科学,2009,30(6):1749-1755.
    [49]施为光.街道地表无的累积与污染特征——以成都市为例.环境科学,1991,12(3):18-23.
    [50]孙超,陈振楼,张翠,等.上海市主要饮用水源地水重金属健康风险初步评价.环境科学研究,2009,22(1):61-65.
    [51]孙树青,胡国华,王勇泽,等.湘江干流水环境健康风险评价.安全与环境学报,2006,6(2):2-15.
    [52]王和意,刘敏,刘巧梅,等.城市降雨径流非点源污染分析与研究进展.城市环境与城市生态,2003,16(6):283-285.
    [53]王和意.上海城市降雨径流污染过程及管理措施研究.华东师范大学,上海.2005.
    [54]王利,陈振楼,陈晓枫,等.上海内环高架沿线灰尘重金属污染分析与评价.环境监测管理与技术,2009,21(5):35-38.
    [55]王利军,卢新卫,雷凯.宝鸡市街尘中As和Hg含量及其环境风险评价.环境科学研究,2007,20(5):35-38.
    [56]汪慧贞,李宪法.北京城区雨水径流的污染及控制.城市环境与城市生态,2002,15(2):16-18.
    [57]王少平,俞立中,许世远,等.苏州河非点源污染负荷研究.环境科学研究,2002,15(6):20-24.
    [58]王祖伟,张辉,张文具.天津地区土壤环境中有效态重金属的分布特征与生态意义.土壤通报,2005,36(1):101-103.
    [59]许世远.上海城市自然地理图集.北京:中国地图出版社,2004.
    [60]叶闽,杨国胜,张万顺,等.城市面源污染特征及污染负荷预测模型研究.环境科学与技术.2006,29(2):67-69.
    [61]张百良,马孝琴.城市水土流失及其防治对策.市发展研究,2001,8(5):49-53.
    [62]张翠,毕春娟,陈振楼,等.地表水体中重金属类内分泌干扰物的环境行为.水资源保护,2008,24(2):1-5.
    [63]张慧敏,章明奎.杭州不同功能区道路灰尘中污染物的分布和有效性.广东微量元素科学,2007,14(12):14-18.
    [64]张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积口.第四纪研究,2001,21(1):29-40.
    [65]张瑜英,孙丽云,李占斌.城市非点源污染研究进展与展望.人民黄河,2006,28(3):42-43.
    [66]赵剑强.城市地表径流污染与控制.北京:中国环境科学出版社,2002.郑毅,曹建山,刘宝山,等.对出奇雨水径流弃流问题的探讨.中国给水排水,2009,25(19):106-108.
    [1]Adachi K, Tainosho Y. Single particle characterization of size-fractionated road sediments. Applied Geochemistry,2005,20:849-859.
    [2]Al-rajhi M A, Al-shayeb S M, Seaward M R D, et al. Particle size effect for metal pollution analysis of deposited dust. Atmospheric Environment,1996,30(1):145-153.
    [3]Ball J E, Jenks R, Aubourg D. An assessment of the availability of pollutant constituents on road surfaces. Science of the Total Environment,1998,209:243-254.
    [4]Bris F J, Garnaud S, Apperry N, et al. A street deposit sampling method for metal and hydrocarbon contamination assessment. Science of the Total Environment,1999,235:211-220.
    [5]Deletic A B, Orr D W. Pollution buildup on road surfaces. Journal of Environmental Engineering, 2005,131(1):49-59.
    [6]Duong T T, Lee B K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management,2011, 92: 554-562.
    [7]Viklander M. Particle size distribution and metal content in street sediment. Journal of Environmental Engineering,1998,124(8):761-766.
    [8]黄淑玲,徐光来.城市化发展对城市洪灾的影响及减灾对策.安徽大学学报,2006,30(2):91-94.
    [9]李崇.沈阳市不同粒径区间街道灰尘中Pb的空间分布特征研究.环境保护与循环经济,2010,1:60-62.
    [10]庞博,张银龙,王丹.城市不同功能区内叶面尘与地表灰尘的粒径和重金属特征,生态环境学报.2009,18(4):1312-1317.
    [11]上海地方志.http://www.shtong.gov.cn/.
    [12]温州年鉴.http://www.wenzhou.gov.cn/col/col7343/index.html/.
    [1]Ashley R M, Wotherspoon D J J, Coghlan B P, et al. The erosion and movement of sediment and associated pollutants in combined sewers. Wat. Sci. Tech.,1992,25(8):101-114.
    [2]Bauske B, Goetz D. Effects of de-icing salts on heavy metal mobility. Acta Hydrochim,1993, 21:38-42.
    [3]Chui T W, Mar B W, Horner P R. Pollutant loading model for highway runoff. Division, ASCE,1982, 108(EE6):1193-1210.
    [4]Bertrand-Krajewski J L, Briat P, Scrivener O. Sewer sediment production and transport modeling:a literature review. Journal of Hydraulic Research,1993,31(4):435-460.
    [5]Desta M B, Bruen M, Higgins N, et al. Highway runoff quality in Ireland. J. Environ. Monit, 2007,9:366-371.
    [6]Geiger W. Flushing effects in combined sewer systems. In Proc.4th Int. Conf. on Urban Storm Drainage, Lausanne, Switzerland,1987:40-46.
    [7]Geiger W F. Characteristics of combined sewer runoff. Proceeding of the 3rd International Conference on Urban Storm Drainage, Goteberg, Sweden.1984:851-860.
    [8]Gromaire M C, Garnaud S, Saad M, et al. Contribution ofdiferent sources to the polution of wet weatherflows in combined sewers. Water Research,2001,35(2):521-533.
    [9]Lee J H, Bang K W, Ketchum L H, et al. First flush analysis of urban storm runoff. The Science of the Total Environment,2002,293:263-175.
    [10]Legret M, Pagotto C. Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci. Total Environ,1999,235:143-150.
    [11]Li L Q, Yin C Q, He Q C, et al. First flush of storm runoff pollution from an urban catchment in China. Journal of Environmental Sciences,2007,19:295-299.
    [12]Lindgren A. Asphalt wear and pollution transport. Sci. Total Environ,1996,189/190: 281-286.
    [13]Lopes T J, Bender D A. Nonpoint source of volatile organic compounds in urban areas-relative importance of land surface and air.1998,2:221-230.
    [14]Novotny V, Olem H. Water Quality, Prevention, Identification and Management of Diffuse Pollution. Van Nostrand Reinhold, New York.1994.
    [15]Gupta K, Saul A J. Specific relationships for the first flush load in combined sewer flows. Wat. Res.1996,30:1244-1252.
    [16]Perdikaki K, Mason C F. Impact of road run-off on receiving streams in eastern England. Water Research,1999,33(7):1627-1633.
    [17]Saget A, Chebbo G, Bertrand-Krajewski J. The first flush in sewer system. In Proc. Int. Conf. on Sewer Solids-Characteristics, Movement, Effects and Control, Dundee, U.K.,1995: 58-65.
    [18]Stahre P, Urbonas B. Stormwater Detention for Drainage, Water Quality and CSO Management. Prentice Hall, Englewood Cliffs, NJ,1990.
    [19]Taebi A, Droste R L. First flush pollution load of urban stormwater runoff. Journal of Environmental Engineering,2004,3:301-309.
    [20]Thornton R C, Saul A J. Some quality characteristics of combined sewer flows. Public Health Engineer,1986,14:35-38.
    [21]Vorreiter L, Hickey C. Incidence of the first flush phenomenon in catchments of the Sydney region. In National Conf. Publication Institution of Engineers, Australia,1994:359-364.
    [22]Wanielista M P. Yousef Y A. Storm water management. Wiley & Sons., New York, USA, 1993.
    [23]Zushi Yasuyuki, Masunaga Shigeki. First flush loads of perfluorinated compounds in stormwater runoff from Hayabuchi River basin, Japan served by separated sewerage system. Chemosphere,2009,76:833-840.
    [24]陈莹.高速公路路面径流污染特征的探讨.交通部上海船舶运输科学研究所学报,2004,27(1):41-45.
    [25]董建军.合肥地区农田土壤重金属形态特征及生物有效性研究.安徽:安徽农业大学,2007:1-2.
    [26]郭琳,曾光明,程运林.城市街道地表物特性分析.中国环境监测,2003,19(6):40-42.
    [27]贺宝根,周乃晟,高效江,等.农田非点源污染研究中的降雨径流关系——SCS修正法.环境科学研究,2001,14(3):49-51.
    [28]李立青,尹澄清,何庆慈,等.城市降水径流的污染来源与排放特征研究进展,水科学进展,2006,17(2):288-294.
    [29]梁新强,田光明,李华,等.天然降雨条件下水稻田氮磷径流流失特征研究,水土保持学报,2001,19(1):59-63.
    [30]刘勇华,高超,王登峰,等.城市降雨径流污染初始冲刷效应对BMPs选择的启示.水资源保护,2009,25(6):29-32.
    [31]尹澄清,等.城市面源污染的控制原理和技术.北京:中国建筑工业出版社,2009.
    [1]Ahmed F, Ishiga H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atomospher Environment,2006,40:3835-3844.
    [2]Buat-Menard P, Chesselet P. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters,1979,42: 398-411.
    [3]Charlesworth S, Everett M, McCarthy R, et al. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, WestMidlands, UK. Environment International,2003,29(5): 563-573.
    [4]Culbard E B, Thornton I, Watt J, et al. Metal contamination in British urban dusts and soils. Environment Quality,1988,17:226-234.
    [5]Davies D J A, Watt J M, Thornton I. Lead levels in Birmingham dusts and soils. Science Total Environment,1987,67:177-185.
    [6]Duong T T, Lee B K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management,2011, 92:554-562.
    [7]Ferreira-Baptista L, DeMiguel E. Geochemistry and risk assessment of street dust in Luanda, Angola:A tropical urban environment. Atmospheric Environment,2005,39:4501-4512.
    [8]Fujiwara F, Rebagliati R J, Dawidowski L, et al. Spatial and chemical patterns of sze fractionated road dust collected in a megacity. Atmospheric Environment,2011,45: 1497-1505.
    [9]Gromaire M C, Garnaud S, et al. Contribution of different to the pollution of wet weatherflows in combined sewer. Water Research.2001,35(2):521-533.
    [10]Jambers W, Dekov V, Van Grieken R. Single particle and inorganic characterization of rainwater collected above the North Sea. Science of the Total Environment,2000,256: 133-150.
    [11]McKenzie E R, Wong C M, Green P G, et al. Size dependent elemental composition of road-assciated particeles. Sci Total Environ,2008,10:2-52.
    [12]Moreclli C P R, Figuereido A M G, Sarkis J E S, et al. PGEs and other traffic-ralated elements in roadside soils from Sao Paulo. Science of the total environment,2005,345:81-91.
    [13]Omarail A. The investigation of metal concentrations in street dust samples in Aqaba city, Jordan. Environ Geochem Health,2007,29:197-207.
    [14]Sabin L D, Lim J H, Stolzenbach K D, et al. Contribution of trace metals from atmospheric deposition to stormwater runoff in a small imperious urban catchment. Water Research,2005, 39:3929-3937.
    [15]Sezgin N, Ozcan H, Demir G, et al. Determination of heavy metal concentrations in street dust in Istanbul E-5 highway. Environment International,2005,29:979-985.
    [16]Taylor S R. Abundance of chemical elements in the continental crust:a new talbe. Geochimica et Cosmochimica Acta,1964,28:1273-1285.
    [17]Takeda K, Matumoto K, Minamikawa T, et al. Three-year determination of trace metals and the lead isotope ratio in rain and snow deposition collected in Higashi-hiroshima, Japan. Atmospheric Environment,1999,34:4525-4535.
    [18]Yuan Y, Hall K, Oldham C. A preliminary model for predicting heavy metal contaminant loading from an urban catchment. Science of the Total Environment,2001,226:299-307.
    [19]常静,刘敏,李先华,等.城市地表灰尘-降雨径流系统重金属生物有效性研究.环境科学,2009,30(8):2241-2247.
    [20]杜佩轩,马智民.城市灰尘污染及治理.城市问题,2004,8(2):46-49.
    [21]方凤满,蒋炳言,王海东,等.芜湖市区地表灰尘中重金属粒径效应及其健康风险评价.地理研究,2010,29(7):1194-1202.
    [22]黄顺生,华明.金洋,等.南京市大气降尘重金属含量特征及来源研究.地学前缘,2008,15(5):161-166
    [23]李凤全,潘虹梅,叶玮,等.城市灰尘重金属污染特征及生态危害评价.安徽农业科学,2008,36(6):2495-2498.
    [24]刘玉燕,刘浩峰,刘敏.乌鲁木齐市地表灰尘重金属含量及其健康风险.干旱区研究,2009,26(5):750-754.
    [25]史贵涛,陈振楼,许世远,等.上海城市公园土壤及灰尘中重金属污染特征.环境科学,2007,28(2):239-242.
    [26]王金达,刘景双,于君宝.沈阳市土壤与灰尘中铅的分布特征.中国环境科学,2000,23(30):300-304.
    [27]杨伟,周静.焦作市雨水中重金属特征.环境科学与管理,2009,34(1):56-59.
    [28]杨忠平,卢文喜,龙玉桥,等.长春市城区大气湿沉降中重金属及pH值调查.吉林大学学报(地球科学版),2009,39(5):887-892.
    [29]于瑞莲,胡恭任,袁星,等.大气降尘中重金属污染源解析研究进展.地球与环境,2009,37(1):73-79.
    [30]张晶晶,毕春娟,陈振楼,等.上海市区地表灰尘对降雨径流中汞砷污染的影响.华东师范大学学报(自然科学版),2011,1:195-202.
    [31]张菊,邓焕广,陈振楼,等.上海市区街道灰尘重金属污染研究.土壤通报,2007,38(4):727-731.
    [32]赵洪涛,李叙勇,王为东,等.城镇街尘污染与平原河网水体的源-汇效应研究.环境科学学报,2010,30(6):1295-1301.
    [33]郑小康,李春晖,黄国和,等.保定城区地表灰尘污染物分布特征及健康风险评价.环境科学学报,2009,10:2195-2202.
    [1]Budhendra B, Jon H, Bernie E, et al. Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environmental Management,2006(6): 643-658.
    [2]Lee J G, Heaney J P, Lai F H. Optimization of integrated urban wet-weather control strategies. Journal of Water Resource Planning and Management,2005,131 (4):307-315.
    [3]Patrick L B, Teresa H S. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the twin cities metropolitan area, Minnesota, USA. Water Research,2002,36(7):1743-1757.
    [4]郭琳,曾光明,程运林.城市街道地表物特性分析.中国环境监测,2003,19(6):40-42.
    [5]吴寿昌.城市暴雨径流污染.甘肃环境研究与监测,1997,10(3):43-44.
    [6]温灼如,苏逸深,刘小靖,等.苏州水网城市暴雨径流污染的研究.环境科学,1986,7(6):2-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700