磁场—趋磁细菌处理含贵金属离子废液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子、信息和化工等领域的快速发展,贵金属的应用愈来愈广泛,其使用量逐年大幅度增加,含贵金属的废料量也随之快速增加。因此从废弃物中回收贵金属的研究具有深远的经济和社会效益。
     为了探索贵金属离子的生物吸附机理及其选择性富集机理,并为下一步从富集生物载体中回收贵金属打下基础,本文采用磁场-趋磁细菌复合工艺,对趋磁细菌处理含贵金属离子废液进行了深入研究。在研究过程中本文首次采用了两级复合工艺组合的形式对二元金属离子体系的竞争吸附进行了初步研究,为日后普通金属离子循环强化吸附贵金属离子工艺过程的开发和研究提供部分实验研究储备。
     研究过程中先对从污水处理厂取回的活性污泥按照趋磁细菌的培养基进行富集培养,再通过趋磁收集器收集,经实验验证收集到的菌中94.7%为趋磁细菌。利用所得到的趋磁细菌,对单一贵金属离子吸附过程进行了详细的实验研究。确定了趋磁细菌对Pd~(2+)、Au~(3+)、Pt~(4+)、Ag~+四种贵金属离子的最佳吸附条件,包括温度、pH值、菌量、初始贵金属离子浓度及吸附时间等。另外,研究表明各吸附过程均遵循准一级动力学方程和Langmuir吸附等温模型。
     在对趋磁细菌吸附单一贵金属离子过程的研究基础上,对Pd-Al、Au-Cu和Au-Cu-Ni多元贵金属离子体系进行了实验研究。研究结果表明,趋磁细菌对贵金属离子的吸附量远大于对其它普通金属离子的吸附量,说明在多元体系中,趋磁细菌对贵金属离子有良好的选择吸附性。
     在静态分离实验中,利用多悬丝分离器,主要考察了不同磁场强度和不同时间对分离过程的影响,研究表明,磁场强度越大,分离时间越长,对吸附了贵金属离子的趋磁细菌的分离效果越好。
     最后根据此前得到的最佳操作条件,应用复合工艺流程连续处理含贵金属离子废液。通过二次吸附、二次分离工艺,在实现分离器出水达到排放标准的同时,逐级分离出贵金属离子及普通金属离子,可对分离出的菌体作进一步金属回收处理。
With the fast development of electronic engineering, information industry and chemical engineering, the scope and amount of precious metal employment are found expanding yearly. The risk pollution from waste materials of precious metals are uproaring as the result of the situation mentioned.
     As a try to remove and enrich the precious metals, lab research is performed, aiming at the theories of adsorption and its selectivity, which is also the first step of precious recovery. In this dissertation, a novel comprehensive technology is adopted, which involves magnetic field-magnetotactic bacteria system. The treatment is discussed and probed in detail, in which the precious metal ions in waste liquid can be adsorbed and then removed in magnetic field by magnetotactic bacteria, the carrier. During the research, a double stage flowsheet of the upper mention technology is put to use for the first time. In this flowsheet, competitive adsorption of double metal system is observed, which gives firsthand data supporting the consequent research of novel recycling normal metal reinforced process.
     In the research, the activated sludge taken from the wastewater treatment plant is cultivated in culture medium for magnetotactic bacteria. Then the bacteria are collected in magnetic field utilizing their direction finding feature. The result indicates that 94.7% of the collected are magnetotactic bacteria. Then, adsorption of single precious metal ion is probed in detail. The optimum adsorption conditions for the precious metal ions: Pd~(2+), Au~(3+), Pt~(4+), Ag~+, such as pH, temperature, biomass concentration, initial concentration of precious metal ions and time, are confirmed.
     Math work finds that the adsorption process in accordance with the pseudo-first order kinetic model and Langmuir isotherm.
     Based on the above work, the adsorption of Pd-Al、Au-Cu、Au-Cu-Ni is studied. The result indicates that the magnetotactic bacteria have the property of selective adsorption. The adsorption quantity of magnetotactic bacteria on precious metal ions is much higher than that of co-exist counterparts.
     Separation of magnetotactic bacteria carrying precious metal ions from waste liquid is studied using separator with paralleled wires. The result indicates that the higher magnetic field strength and the longer duration, the better separation effect.
     At last, the waste liquid with precious metal ions is treated by the magnetic field-magnetotactic bacteria comprehensive technology continuously under the optimum operation condition. Through two adsorption and two separation processes, precious metal ions and other metal ions are separated in sequence. Simultaneously, the liquid is purified.
引文
[1] 黎鼎鑫,王永录,贵金属提取与精炼,修订版,长沙:中南工业大学出版社,2003.1~28
    [2] 蔡树型,黄超,贵金属分析,北京:冶金工业出版社,1984.7
    [3] 周全法,尚通明,贵金属二次资源的回收利用现状和无害化处置设想,稀有金属材料与工程,2005,34(1):7~11
    [4] 周全法,王琪,徐正,鼓氧氰化法生产高纯度氰化亚金钾的研究,黄金,2002,23(5):34~36
    [5] 周全法,王琪,谈永祥,含银电子元器件中白银的回收及其综合利用,再生资源研究,2001,1:16~18
    [6] 周全法,王琪,刘玉海,鼓氧氰化法生产高纯度氰化银钾的研究,无机盐工业,2002,34(1):14~15
    [7] 王琪,周全法,从含钯电子废料中直接生产含钯精细化工产品的研究,再生资源研究,2001,6:15~17
    [8] 张建民,王质斌,重金属离子对酵母影响的研究,微生物学通报,1999, 26 (1):18~22
    [9] Myers CR, Nealson KH. Microbial reduction of manganese oxides. Science.1988, 240: 1319~1321
    [10] Norberg A, Ryclin S. Development of a continuous process for metal accumulation by Zoogloea ramigera. Biotechnol.Bioeng.. 1984, 26:265~268
    [11] 赵晓红,张敏,李福德,SRV 菌去除电镀废水中铜的研究,中国环境科学, 1996,16(4):288~292
    [12] 温志良,毛友发,陈桂珠,重金属污染生物恢复技术研究,环境科学动态,1999,3:15~17
    [13] Lioyd JR, Harding CL, Macaskie LE. Tc(VII) reduction and accumulation by immobilized cells of Escherichia coli.Biotechnol.Bioeng..1997,53 (3):505~509
    [14] Merroun ML. Ben ON, Gonzalez MT, et al. Myxococcus xanthus biomass as biosorbent for lead.J.Appl.Microbiol..1998,84:63~67
    [15] 屠娟,张利,赵力,非活性黑根霉对废水中重金属离子的吸附,环境科学,1995,16(1):12~15
    [16] 张利,俞耀庭,发酵废渣黑根霉对铅离子的吸附作用,离子交换与吸附,1995,11(6):545~549
    [17] 张利,孔德领,屠娟等,发酵废渣黑根霉菌对铅离子吸附机理的研究,离子交换与吸附,1996,12(4):317~323
    [18] 陈勇生,孙启俊,陈钧等,重金属的生物吸附技术研究,1997,5(6):34~42
    [19] Kuyucak N, Volesky B.Accumulation of cobalt by marine algae. Biotechno. Bioeng.1989, 33(7):809~814
    [20] 徐丽华,姜成林,微生物资源学,北京:科学出版社,1997
    [21] Brierley JA, Vance DB. Recovery of precious metals by microbial biomass.Biohydrometa Proc. Int symp.1987( Pub,1988),477~485
    [22] Korenevskii AA, Rhamidova K,Avakyan AZ,et al. Silver biosorption by micromycetes. Microbiology. 1999,68(2):139~145
    [23] 黄淑惠,吸附金(Au3+)的真菌筛选,微生物学通报,1991,18(1):11~13
    [24] 傅锦坤,刘月英,占萍英等,乳酸杆菌 Ao9 吸附还原 Ag(I)特性的谱学表征,物理化学学报,2000,16(9):779~782
    [25] 刘月英,傅锦坤,陈平等,巨大芽抱杆菌 DO1 吸附金的研究,微生物学报,2000,40(4):88~92
    [26] Liu Yue-ying, Fujin-kun, Zhou Zhao-hui et al. Study of Pt4+ adsorption and reduction by Bacillus megaterium D01. Chem. Research in Chinese Universities. 2000,16(3): 1~4
    [27] Kuyucak N, Volesky B, The mechanism of Cobalt biosorption, Biotechnology and Bioengineering, 1989, 33: 823~831
    [28] Tobin J M, Cooper D G, Neufeld A G, Investigation of the mechanism of metal uptake by denatured Rhizopus arrizus biomass, Enzyme and Microbial Technology, 1990, 12(8): 591~595
    [29] A. S. Bahaj, D.C. Ellwood and H. P. Watson. Extraction of heavy medals using microorganisms and high gradient magnetic separation. IEEE Transactions on Magnetics, 1991, 27(6): 5371~5374
    [30] Blakemore R. P., Science, 1975, 19(2):377~379
    [31] Blakemore R. P., Journal of Bacteriology, 1979, 140(2): 720~729
    [32] R. P. Blakemore, Maratea,Wolfe,Isolation and pure culture of a freshwater magnetic,Ann.Rev.microbial,1982,36:217~238
    [33] 潘继承,李如亮,陈少英等,趋磁性细菌的研究进展, 微生物学通报,1997, (24): 47~51
    [34] 王艳红,任茂明,孙津生,趋磁性细菌的培养及其在污水处理方面应用的研究,化工进展(增刊),2003,8:171~174
    [35] 王艳红,孙津生,趋磁性细菌吸附重金属离子的研究,第一界化学工程与生物化工年会,1128
    [36] 王艳红,孙津生,Biosorption of heavy metals by MTB,第二届国际环境会 议,1259~1261
    [37] George M.Garrity,Julia A.Bell,Timothy G.Lilburn,Taxonomic outline of the prokaryotes bergey’s manual of systematic bacteriology,New York Berlin Heidelberg ,2004:35
    [38] 章勇良,卫扬保,杨清香,趋磁性细菌研究,武汉大学学报(自然科学版),1997,43(6):775~780
    [39] 卫扬保,张洪霞,姜伟等,趋磁性细菌研究,武汉大学学报(自然科学版),1994,6:121~127
    [40] A.S Bahaj p.A.B James and F.D Moeschler . An Alternative Method for the Estimation of Magnetic Moment of Non-SpHerical Manetotactic Bacteria. IEEE Transaction on magnetics. 1996,32(5):5133~5135
    [41] Y.Fukumori,H.Tamegai,K.Yoshimatsu,T.Yamazaki,H.Ohyanagi and T.Fujiwara. Respiratory chin and magnetite synthesis in magentospillum magnetotacticum, Arch. Microbiol, 1995,22(5):108
    [42] Chen-Dong Yang,Haruko Takeyama,Tsuyoshi Tanaka,Tadashi Matsunaga. Effects of growth medium composion,iron sources and atmospHeric pxygen concentrations on magnetospirillum magneticum AMB-1 Enzyme and Microbial Technology. 2001,29:13~19
    [43] 阮颖,谭周进,任文辉等,趋磁性细菌的分离研究,湖南农业大学学报,1998,24(3):238~240
    [44] T.Matsunang F.Tadokoro and N.Nakamura. Mass Culture and Application of Magnetotactic Bacteria,Magnetics Conference,1990.1990 Digests of INTERMAG’90.International 17~20 April 1990 Page(s):BC-07-BC-07
    [45] A.S Bahaj,P.A.B James and F.D Moeschler.Continuous Cultivation and Recovery of magnetotactic bacteria,IEEE Transaction on magnetics.1997,33(5):4263~4265
    [46] 郑必胜,郭祈远,应用高梯度磁分离技术处理糖蜜酒精废水,环境科学报,1999, 19(3):252~255
    [47] 田琰,刘若茜,黄常钢等,高梯度磁分离技术在废水处理中的应用,磁性材料及器件,2000,31(2):24~26
    [48] 顾夏生,水处理工程,北京:清华大学出版社,1985:17~20
    [49] A.S.Bahaj,P.B.James and F.D. Moeschler. Low magnetic-field separation system for metal –loaded magnetotactic bacteria. Journal of Magnetism and Magnetic Materials,1998,177-181:1453~1454
    [50] J.H.P.Watson and A.S Bahaj,Vortex capture in high gradient magnetic separation at moderate reynolds number.Wastewater Treatment by Bio-magnetic Separation,IEEE Transaction on magnetics. 1989,25(5):3803~3805
    [51] Carl Cowen,F.J.Friedlaender,Rajiv Jaluria, High gradient magnetic field particle capture on a single wire. IEEE Transactions on Magnetics,1975,11(5):1600~1602
    [52] 岳敬文,用高梯度磁分离法处理造纸及其它工业废水,天津轻工,1990,47(3):29~32
    [53] 丁力,高梯度磁过滤技术及其在钢铁工业中的应用,湖南冶金,1990,7(4):35~36
    [54] 谭晖,冯定王,肖松文,趋磁性细菌载体分离技术,国外金属矿选矿,2002,37(2):2~5
    [55] 王艳红,磁场-趋磁细菌处理重金属离子废水:[硕士学位论文],天津;天津大学,2005
    [56] D. Schüler, The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol,2002,5:209~214
    [57] 沈萍,范秀容,李广武,微生物学实验(第三版),北京:高等教育出版社,1999.93
    [58] 潘进芬,海藻对水体中重金属的吸附研究:[硕士学位论文],北京;中国科学院,2000
    [59] 李仁忠,细菌吸附Pd2+的研究:[硕士学位论文],厦门;厦门大学,2000
    [60] 昝逢宇,啤酒酵母对重金属的吸附特性及其应用研究:[硕士学位论文],重庆;西南农业大学,2004
    [61] Fourest E, Volesky B. Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ. Sci. Technol., 1996, 30:277~282
    [62] Lopez A,Lazaro N.Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39:A comparative study. Water, Air and Soil pollution, 2002, 135: 157~172
    [63] 孙津生,磁场-趋磁细菌复合工艺处理含重金属离子废水:[博士学位论文],天津;天津大学,2005
    [64] 吴海锁,张洪玲,张爱茜等,小球藻吸附重金属离子的试验研究,环境化学,2004,23(2):173~177
    [65] C. W. Cheung, J. F. Porter, G. Mckay, Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Reasearch, 2001, 35(3):605~612

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700