印度芥菜细胞中Hg~(2+)分布的可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞对动物和植物均会产生损害。印度芥菜是目前发现的较好的能够超累积汞的植物,能够高富集包括Hg2+在内的多种二价重金属离子,是比较理想的研究超富集Hg2+的分子机制和解毒机制的植物。本研究通过愈伤组织诱导获得悬浮细胞,寻找到最适宜的印度芥菜愈伤组织诱导的最优条件。在印度芥菜愈伤组织诱导试验中,选择子叶为外植体诱导愈伤组织速度较快,明显快于下胚轴和幼叶,同时愈伤组织较为疏松,呈浅黄色,形态较好。筛选出的最适诱导愈伤组织的条件为MS+2,4-D(1.0mg·L-1)+NAA (1.0mg-L"1)+6-BA(3.0mg·L-1),诱导出的愈伤组织呈现浅绿色疏松水渍状,增殖很快,数量最多,质量也最好。
     本研究中使用EPNP作为对Hg2+高度敏感的探针,观察Hg2+在印度芥菜植物体的分布。结果表明,EPNP能够透过细胞壁和细胞膜,分布到细胞内部。随着培养基中Hg2+浓度从10μM升高到100μM,可以明显观察到荧光信号明显增强。时间依赖实验表明,经过3小时的培养,EPNP与汞离子结合后产生的荧光并没有淬灭。同时,通过共聚焦显微镜的观察,可以判断Hg2+主要富集在溶酶体,而不是细胞核或者线粒体中。这些观察为Hg2+在印度芥菜活体细胞中的分布提供了实验证据。
     利用分子成像仪,观察印度芥菜外植体中EPNP对汞离子响应的浓度和时间依赖。随着汞离子浓度的升高,荧光的亮度明显增加。说明在活体植物中,EPNP对植物体本身无毒无害,而且随着Hg2+浓度的增加,EPNP的荧光亮度也明显增强。经过1h、2h、5h、6h培养后,印度芥菜下胚轴均呈现明显的荧光。随着培养时间的增长,可以明显看到汞离子荧光的运输情况。本研究实现了活体、实时和动态地观察研究Hg2+在印度芥菜根、茎等部位的吸收、转移和运输的过程。利用荧光分子成像技术,研究Hg2+在活体内的迁移,并以此初步开始分子影像学的研究。这是第一次使用Hg2+的荧光探针观察活体植物细胞。将EPNP应用于其他受到Hg2+污染的环境和植物,实时观察汞离子的分布和运输,进一步研究与植物修复和解毒相关的基因和蛋白,可能会对植物解毒的研究有所帮助。
Exposure to mercury causes severe damage to plants, animals and even humans. Brassica juncea, as a plant species that has been reported as a new heavy metal hyper-accumulator recently, is used in this research. Brassica juncea can accumulate many divalent metals including Hg2+due to its particular transmembrane proteins. Calli of Brassica juncea were induced from cotyledons, stems and young leaves explants under the effect of hormonal supplementation (NAA,6-BA,2,4-D). The results showed that the stem is the best organ to obtain loose callus material. The MS medium containing1.0mg·L-1NAA+1.0mg·L-1-BA+2.0mg·L-12,4-D was found to be the most effective in callus induction. Suspension cells were established by transferring calli to a liquid MS medium in triangular flasks containing the same composition and same hormonal supplementation and were shaken for21days.
     By using EPNP as a highly selective and sensitive probe for Hg2+, the distribution of Hg2+in Brassica juncea can be detected. Our results show that EPNP can penetrate the cell wall and cell membrane, and is distributed inside the cell. With the increase of HgCl2concentrations from10μM to100μM in the cultured medium, a gradual enhanced fluorescence can be observed. A time-dependent experiment showed the fluorescence of the EPNP-Hg complex was still not quenched after3hours of exposure. It was also found that Hg2+mostly accumulated in lysosomes and not in the nucleus or mitochondria. These observations provide direct experimental evidence for the localization of Hg2+in Brassica juncea suspension cells in vivo.
     In vivo fluroseence imaging to visualize the transportation of Hg2+, the progress can be detected. Our results show that with the increase of HgCl2from10μM to100μM in the cultured medium, gradually enhanced fluorescence intensity can be observed. A time-dependent experiment showed the fluorescence of the EPNP-Hg complex in the plant was still accumulated. To the best of our knowledge, this is the first example of a probe-based methodology for imaging Hg2+in living plants and suspension cells. More applications of EPNP for fluorescence imaging of other plants grown in Hg2+polluted environment may be helpful to better understand plant poisoning.
引文
[1]Alkorta I, Hernandez-Allica J, Becerril J, et al. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic [J]. Reviews in Environmental Science and Biotechnology,2004,3(1):71-90.
    [2]Liu X, Wu Q, Li P. Phytoremediation of Heavy Metal Contaminated Soil by Hyper-Accumulators:A Review of Researches in China and Abroad [J]. Journal of Agro-Environment Science,2003,22(5):636-640.
    [3]Bin Y, He S, Jingjun H, et al. Application of transgenic plants in phytoremediation for contaminated soil by heavy metals and organic pollutants [J]. Scientia Silvae Sinicae,2005,41(4):162-167.
    [4]母波,韩善华,张英慧等.汞胁迫对植物细胞结构与功能的影响[J].中国微生态学杂志,2007,19(4):112-113
    [5]张义贤.重金属对大麦毒性的研究[J].环境科学学报,1997,17(2):199-205
    [6]施国新,杜开和,解凯彬.汞、镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378.
    [7]解凯彬,施国新,陈国祥等.Hg2+对萍蓬草光合膜超微结构及功能的影响[J].农村生态环境,2002,18(1):26-30.
    [8]史字,何玉科.重金属污染环境的植物修复及其分子机制[J].植物生理与分子生物学学报,2003,29(4):267-274.
    [9]马剑敏,靳萍,吴振斌.沉水植物对重金属的吸收净化和受害机理研究进展[J].植物学通报,2007,2(1):12-15
    [10]Zhang W H, Tyerman S D. Inhibition of water channels by HgCl2 in intact wheat root cells [J]. Plant Physiology,1999,120(3):849-858.
    [11]Dordas C, Chrispeels M J, Brown P H. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots [J]. Plant Physiology, 2000,124(3):1349-1362.
    [l2]Guggino W, Hazama A, Kozono D, et al. Ion Permeation of AQP6 Water Channel Protein: Single-Channel Recordings After Hg2+ Activation [M]. Biolchem.2002,277:29224-29230.
    [13]Liu X, Zhang S, Shan X, et al. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co-contamination [J]. Ecotoxicology and Environmental Safety,2007,68(2):305-313.
    [14]Nielsen M, Rank J. Screening of Toxicity and Genotoxicity in Wastewater by the use of the Use of the Allium Test [J]. Hereditas,1994,121(3):249-254.
    [15]Chakravarty B, Srivastava S. Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus [J]. Mutation Research Letters,1992,283(4):287-294.
    [16]高扬,李学玲,辛树权.汞对洋葱根尖细胞有丝分裂的影响[J].吉林师范大学学报:自然科学版,2003,24(2):55-57.
    [17]Frenkel G D, Middleton C. Effects of lead acetate on DNA and RNA synthesis by intact HeLa cells, isolated nuclei and purified polymerases [J]. Biochemical Pharmacology, 1987,36(2):265-268.
    [18]Kramer U, Chardonnens A. The use of transgenic plants in the bioremediation of soils contaminated with trace elements [J]. Applied Microbiology and Biotechnology,2001, 55(6):661-672.
    [19]Bizily S P, Rugh C L, Summers A 0, et al. Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials [J]. Proceedings of the National Academy of Sciences,1999,96(12):6808-6813.
    [20]Rugh C L, Wilde H D, Stack N M, et al. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene [J]. Proceedings of the National Academy of Sciences,1996,93(8):3182-3187.
    [21]Bizily S P, Rugh C L, Meagher R B. Phytodetoxification of hazardous organomercurials by genetically engineered plants [J]. Nature Biotechnology,2000,18(2):213-217.
    [22]Rugh C L, Senecoff J F, Meagher R B, et al. Development of transgenic yellow poplar for mercury phytoremediation [J]. Nature Biotechnology,1998,16(10):925-928.
    [23]Haugland R P, Spence M T Z, Johnson I D. Handbook of fluorescent probes and research chemicals [M]. Molecular Probes Eugene, OR,1996.
    [24]Emptage N J. Fluorescent imaging in living systems [J]. Current Opinion in Pharmacology, 2001,1(5):521-525.
    [25]Lehn J M. Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self-Organization [J]. Angewandte Chemie International Edition in English,1990,29(11):1304-1319.
    [26]Kilsa K, Macpherson A N, Gillbro T, et al. Control of electron transfer in supramolecular systems [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2001, 57(11):2213-2227.
    [27]马立人.生物芯片[J].现代科学仪器,1999(3):3-8.
    [28]De Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches [J]. Chem Rev,1997,97(5):1515-1566.
    [29]Tan W, Parpura V, Haydon P G, et al. Neurotransmitter imaging in living cells based on native fluorescence detection [J]. Analytical Chemistry,1995,67(15):2575-2579.
    [30]何琪杨,张鸿卿.活细胞的分子探针——绿色荧光蛋白[J].国外医学:分子生物学分册,1997,19(6):279-283.
    [31]杨大莉,景乃禾.荧光能量转移技术在生物学研究中的应用[J].生命科学,2003,15(002):88-91.
    [32]夏立汀,李楠.原位生物修复治理汞害的机制及作用[J].环境科学进展,1998,6(3):48-52.
    [33]王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-510.
    [34]田吉林,沈瑞娟,何玉科merB基因的序列修饰及转基因烟草对有机汞的高抗作用.科学通报[J].2002,47(23):1515-1519
    [35]Woodroofe C C, Lippard S J. A novel two-fluorophore approach to ratiometric sensing of Zn2+[J]. Journal of the American Chemical Society,2003,125(38):11458-11459.
    [36]陈荣悌,赵广华.化学污染:破坏环境的元凶[M].北京:清华大学出版社,2002.
    [37]Horvat M, Nolde N, Fajon V, et al. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China [J]. The Science of the Total Environment, 2003,304(1-3):231-256.
    [38]De Souza M, Huang C, Chee N, et al. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants [J]. Planta,1999,209(2):259-263.
    [39]Schnoor J L, Light L A, Mccutcheon S C, et al. Phytoremediation of organic and nutrient contaminants [J]. Environmental Science & Technology,1995,29(7):318-323.
    [40]骆永明.镉锌交互作用和土壤γ—辐射对大麦和黑麦草生长的影响[J].土壤,2000,32(2):95-98.
    [41]蒋波,王志敏,汤青林等.叶用芥菜细胞悬浮培养的研究[J].西南大学学报:自然科学版,2010(4):70-74.
    [42]王丽艳,荆瑞勇,冯哲等.芥菜愈伤组织诱导及再生植株的分化[J].农业科技通讯,2008(1):55-56.
    [43]栾雨石,包永明等.生物工程实验技术手册[M].化学工业出版社,2005
    [44]陈利萍,徐春霞,李春顺.影响茎用芥菜愈伤组织诱导和植株再生的因素[J].植物生理学通讯,2005,41(006):758-760.
    [45]李士生,张玉玲.小麦幼穗的组织培养及愈伤组织的分化研究[J].武汉植物学研究,1990,8(4):349-354.
    [46]陈崇顺,R,J.杏茎脆散型愈伤组织的获取及细胞悬浮培养的建立[J].植物资源与环境,1994,3(003):22-26.
    [47]余晓丽.植物原生质体培养及应用[J].南都学坛:南阳师专学报,1998,18(003):78-82.
    [48]朱根发,余毓君.水稻愈伤组织状态的调控[J].华中农业大学学报,1995,14(3):213-219.
    [49]邵宏波,初立业.禾本科植物细胞悬浮培养和影响胚胎发生的几个因素[J].生物技术通报,1990,(3):1-5
    [50]张喜春,吴绛云.软枣猕猴桃悬浮细胞系的建立及其影响因素[J].植物研究,1991,11(003):77-83.
    [51]Vardi A, Spiegel-Roy P, Galun E. Plant regeneration from Citrus protoplasts: variability in methodological requirements among cultivars and species [J]. TAG Theoretical and Applied Genetics,1982,62(2):171-176.
    [52]张洁,葛会波,张学英等.草莓细胞悬浮培养条件优化及植株再生的研究[J].河北农业大学学报,2005,28(001):28-31.
    [53]郭殿京,王东凯.葡萄子房胚性细胞悬浮系的建立及其生长特性研究[J].生物技术,1995,5(002):16-18.
    [54]向太和,杨剑波.水稻、玉米胚性悬浮细胞系的有效建立[J].安徽农业科学,1996,24(1):1-3.
    [55]王海波.植物组织及细胞培养通用分析模式的探索[D],1994,(11-13)
    [56]吕长平,郑玉生,石雪晖等.草莓原生质体的培养和植株再生[J].江西农业大学学报,2003,25(2):254-257.
    [57]颜秋生,张雪琴,滕胜等.水稻原生质体培养技术体系的建立[J].中国农业集刊(第二辑):农作物原生质体培养专集北京:中国农业出版社,1995,(26-27)
    [58]卫志明.农业科学集刊(第十集)[J].农作物原生质体培养专辑,1995,7(12-13).
    [59]吕哲.萘系DNA靶向分子和汞离子生物探针的研究[D].大连:大连理工大学,2005.
    [60]李静,范大和,李红波等.水溶性汞离子荧光探针的研究新进展[J].光谱实验室,2010(003):825-832.
    [61]李洪伟.基于磺酰胺基团的汞离子荧光探针的设计,合成及识别机理研究[D].吉林:吉林大学,2009.
    [62]Rurack K. Flipping the light switch ON'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2001,57(11): 2161-2195.
    [63]申宝忠.GFP基因标记的移植瘤活体分子成像研究[D].天津:天津医科大学,2004.
    [64]Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion [J]. Chemical Reviews,2008,108(9):3443-3480.
    [65]Nolan E M, Lippard S J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media [J]. Journal of the American Chemical Society,2003, 125(47):14270-14271.
    [66]Yoon S, Albers A E, Wong A P, et al. Screening mercury levels in fish with a selective fluorescent chemosensor [J]. Journal of the American Chemical Society,2005,127(46): 16030-16031.
    [67]Zhou Z, Yu M, Yang H, et al. FRET-based sensor for imaging chromium (Ⅲ) in living cells [J]. Chemical Communications,2008(29):3387-3389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700