蚯蚓粘液对番茄幼苗生长及Cd富集的影响机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,蚯蚓在重金属污染土壤植物修复中的应用得到了普遍的关注。许多研究表明,蚯蚓不仅能够提高污染土壤中重金属的生物有效性,还能促进植物生长、提高植物对重金属的吸收和向地上部的运输。这些结果说明,蚯蚓在螯合诱导植物修复重金属污染土壤中具有应用的潜力。但遗憾的是,蚯蚓提高土壤中重金属生物有效性、促进植物生长以及富集重金属的作用机理目前还不清楚。因此,本文设置了一系列的培养试验,主要研究:(1)威廉腔环蚓(Metaphire guillemi)粘液对Cd胁迫下番茄(Lycopersicon esculentum)合作903幼苗生长及Cd富集的影响;(2)蚯蚓粘液及其氨基酸模拟溶液对番茄幼苗生理指标及其体内Cd富集的影响;(3)蚯蚓粘液及其氨基酸模拟溶液对番茄幼苗中Cd的亚细胞分布及化学形态的影响;(4)蚯蚓对模拟污染土壤中Cd化学形态分布的影响,试图揭示蚯蚓提高土壤重金属生物有效性,促进植物对重金属吸收及向地上部运输的作用机理,为蚯蚓在植物修复重金属污染土壤中的应用提供理论依据。主要结果如下:
     (1)通过营养液培养试验研究了威廉腔环蚓(Metaphire guillemi)粘液对番茄(Lycopersicon esculentum)合作903幼苗生长及Cd富集的影响。结果发现,在Cd浓度为0和5mg L-1时,蚯蚓粘液显著提高了番茄幼苗干生物量,分别使根系及地上部干生物量增加了12.4-33.2%和13.8~44.5%;而在Cd浓度为10 mg L-1时,对番茄幼苗干生物量没有产生显著影响,甚至在添加高浓度蚯蚓粘液时使番茄幼苗地上部干生物量比对照降低4%。同时,本研究还发现,随着外源Cd浓度和蚯蚓粘液添加量的增加,番茄幼苗根系和地上部Cd浓度及富集量显著增加,且根系Cd浓度及富集量显著高于地上部。蚯蚓粘液中含有大量的可溶性有机碳(DOC)、NH4+-N、N03--N、P和K等植物可利用营养成分,促进了植物生长及对重金属的富集,这可能是蚯蚓促进植物生长、提高植物对重金属富集的作用机理之一
     (2)通过营养液培养试验发现,与对照相比,蚯蚓粘液显著增加了番茄幼苗根系和叶的干生物量,而其氨基酸模拟溶液仅使番茄根系幼苗干生物量较对照显著增加。同时,蚯蚓粘液及其氨基酸模拟溶液均使番茄幼苗平均根直径、根体积较对照显著增加。这些结果表明,蚯蚓粘液可以促进番茄幼苗生长,这可能与其提高番茄幼苗叶片中叶绿素含量,促进番茄幼苗对Fe、Mn、Zn和Cu等四种微量元素的吸收和运输有关。而蚯蚓粘液的主要成分氨基酸模拟溶液并未对番茄幼苗生长,叶绿素含量,以及Fe、Mn、Zn、Cu等微量元素的吸收和运输产生显著的影响。
     (3)在Cd胁迫下,蚯蚓粘液显著提高了番茄幼苗体内叶绿素含量和抗氧化酶活性,如超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT),显著促进了番茄幼苗对Fe、Mn、Zn、Cu等四种微量元素的吸收及运输。这可能是蚯蚓粘液促进番茄幼苗生长及对Cd富集的原因之一。但是,氨基酸模拟溶液虽然也能提高番茄幼苗体内叶绿素含量和抗氧化酶活性,促进番茄幼苗对Fe、Mn、Zn、Cu的吸收和运输,但其促进作用显著低于蚯蚓粘液。
     (4)在Cd胁迫下,蚯蚓粘液分别使番茄幼苗根系、茎和叶的鲜重增加123.9%、16.2%和32.0%,Cd浓度升高22.5%、14.4%和28.9%,Cd富集量增加173.2%、14.5%和75.4%。这可能与蚯蚓粘液提高了番茄幼苗亚细胞分布中可溶态Cd浓度、化学形态中无机及溶解形态Cd浓度有关。同时,氨基酸模拟溶液也具有同样的作用,即促进了番茄幼苗生长及对Cd的富集,并且提高了番茄幼苗亚细胞分布中可溶态Cd浓度、化学形态中无机及溶解态Cd浓度。但是,氨基酸模拟溶液的这种作用显著低于蚯蚓粘液。这些结果表明,蚯蚓粘液通过改变番茄幼苗体内Cd的亚细胞分布及化学形态,促进了番茄幼苗的生长及对Cd的富集。
     (5)蚯蚓(Metaphire guillemi)活动显著提高了模拟Cd污染土壤高沙土(10 mgCd kg-1, Orthic aquisols)中Cd的生物有效性,特别是蚯蚓活动频繁场所蚓穴及蚯蚓代谢产物蚓粪中Cd的生物有效性显著高于接种蚯蚓土壤土体。与对照相比,蚯蚓活动显著提高了土体中可交换态和碳酸盐结合态Cd浓度,而蚓穴壁及蚓粪中可交换态和碳酸盐结合态Cd浓度又显著高于接种蚯蚓土壤土体。同时,蚯蚓体内和体表可以分别富集和分泌Cd,且蚯蚓体内和粘液中Cd浓度均随培养时间的延长显著升高,二者之间存在显著的正相关关系。这些结果表明,蚯蚓可以提高土壤中Cd的生物有效性,其作用机理可能包括:1)蚯蚓活动显著降低了土壤pH,尤其是蚓穴壁及蚓粪pH;2)产生有机物质并使之与重金属Cd充分混合;3)体表分泌。
     以上这些试验结果表明,(1)蚯蚓粘液显著促进番茄幼苗生长及对Cd的富集,这可能是蚯蚓促进植物生长及对Cd富集的作用机理之一;(2)蚯蚓粘液促进植物对重金属的富集可能与其促进植物生长、加快植物代谢有关;(3)蚯蚓粘液中的氨基酸在蚯蚓粘液促进植物生长及对Cd富集中具有一定的作用,但其作用效率远低于蚯蚓粘液;(4)蚯蚓粘液促进植物生长及对重金属的富集可能与其含有的IAA激素及其它未知物质的关系更大;(5)蚯蚓活动可以提高土壤中Cd的生物有效性,其可能的机理包括三个方面:一是降低土壤pH;二是产生有机质,并使土壤中的有机质与Cd充分混合;三是通过体表分泌。
Recently, many researches have been focused on the effects of earthworms on the phytoremediation of heavy metal contaminated soils which demonstrated that earthworms not only were able to increase heavy metal bioavailability in contaminated soils, but also enhance plant growth and heavy metal accumulations. These researches results indicated that earthworms had a potential role in modifying the efficiency of phytoremediation of heavy metal contaminated soils. However, the basic mechanisms of earthworms increase heavy metal bioavailability in contaminated soils, and enhance plant growth and heavy metal accumulations were still unclear. Therefore, we had designed a series of cultivated experiments to investigate the basic mechanisms of earthworms increase heavy metal bioavailability in contaminated soils, and enhance plant growth and heavy metal accumulation. These studies were mainly focused on:(1) Effects of earthworm (Metaphire guillemi) mucus on tomato(Lycopersicon esculentum, Hezuo 903) seedlings growth and cadmium (Cd) accumulations; (2) Influences of earthworm mucus and a solution of amino acids matching those in earthworm mucus on tomato seedlings physiological activities and Cd accumulations; (3) Effects of earthworm mucus and a solution of amino acids matching those of earthworm mucus on Cd subcellular distribution and chemical forms in tomato seedlings; (5) Influences of earthworm(Metaphire guillemi) on Cd species in spiked soils. The main results were shown as following:
     (1) A hydroponic study was conducted to investigate the effects of earthworm mucus (Metaphire guillemi) on tomato seedlings(Lycopersicon esculentum, Hezuo 903) growth and Cd accumulations. Results showed that, at 0 and 5 mg L-1 Cd concentrations, compared with control, earthworm mucus significantly increased dry weights of tomato seedlings roots and shoots by 12.4~33.2% and 13.8-44.5%, respectively. While, at 10 mg L-1 Cd concentration, earthworm mucus was no significant influence on tomato seedlings growth and even decreased dry weights of plant shoots by 4% at high earthworm mucus addition level treatment compared with control. Meanwhile, present study also showed, with Cd and earthworm mucus addition levels increasing, Cd concentrations and accumulations in tomato seedlings were significantly increased and the Cd concentrations and accumulations in tomato seedlings roots were much higher than those in corresponding shoots. Earthworm mucus contained abundant available nutrient materials, such as dissolved organic carbon (DOC), NH4+-N, NO3--N, P and K, which may be responsible for earthworm mucus increasing plants growth and heavy metals accumulation. This may be a mechanism of earthworm enhancing plant growth and heavy metal accumulations.
     (2) The results of a hydroponic study showed that, compared with CK, earthworm mucus significantly increased dry weights of tomato seedlings roots and stems; while a solution of amino acids matching those of earthworm mucus significantly increased dry weights of tomato seedlings roots only, but slightly decreased dry weights of plants stems and leaves. Meanwhile, both earthworm mucus and amino acids significantly increased the root average diameters and root volumes of tomato seedlings compared with CK, but the extents increased by earthworm mucus were much higher those than by amino acids. These results suggest that earthworm mucus could increase tomato seedlings growth through increasing chlorophyll contents of tomato seedlings leaves and enhancing microelements (including Fe, Mn, Zn and Cu) uptake and transport in tomato seedlings. While amino acids have slight influences on tomato seedlings growth, chlorophyll contents and microelements uptake and transport in tomato seedlings compared with earthworm mucus.
     (3) Earthworm mucus significantly increased chlorophyll contents and antioxidative enzymes activities, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and significantly enhanced four essential elements, such as Fe, Mn, Zn and Cu, uptake and transport in tomato seedlings under Cd stress. These may be explaination for earthworm mucus enhancing tomato seedlings growth and Cd accumulations. However, although a solution of amino acids matching those of earthworm mucus significantly increased chlorophyll contents, antioxidative enzymes activities and microelements uptake and transport in plants, these effects of amino acids were much lower than those of earthworm mucus.
     (4) Under Cd stress, compared with control, earthworm mucus significantly increased the fresh weights of tomato seedlings roots, stems and leaves by 123.9%,16.2% and 32.0%, the Cd concentrations in tomato seedlings roots, stems and leaves by 22.5%,14.4% and 28.9%, and the Cd accumulations in tomato seedlings roots, stems and leaves by 173.2%, 14.5% and 75.4%, respectively. These might be due to earthworm mucus significantly increased soluble fraction Cd concentrations of Cd subcellular distribution and significantly increased inorganic and soluble forms Cd concentrations of Cd chemical forms in tomato seedlings. Meanwhile, a solution of amino acids matching those of earthworm muus had same functions as earthworm mucus that significantly enhanced tomato seedlings growth and Cd accumulation, and significantly increased soluble fraction Cd concentrations of Cd subcellular distribution and inorganic and soluble forms Cd concentrations of Cd chemical forms in tomato seedlings, but these effects of amino acids solution were much lower than those of earthworm mucus. These results indicated earthworm mucus increased tomato seedlings growth and Cd accumulation through changing Cd subcellular distribution and chemical forms in plants.
     (5) Earthworm (Metaphire guillemi) activities significantly increased cadmium bioavailability in spiked soils (10 Cd mg kg-1, Orthic aquisols). Especially, the Cd bioavailabilities in burrow walls and casts, which were earthworm frequently moving place and metabolizing production, respectively, were significantly higher than those in bulk soils with earthworm. Compared with control, earthworm activities significantly increased the Cd concentrations of exchangeable and bound to soil carbonates fractions in bulk soil with earthworms, and the Cd concentrations of exchangeable and bound to soil carbonates fractions in burrow walls and casts were significant higher than those in bulk soils with earthworms. Meanwhile, earthworm tissue and epidermis could accumulate and excrete Cd, respectively. The Cd concentrations in earthworm tissue and mucus were significantly increased with incubation time. There was a significant positive correlation between the Cd concentrations of earthworm tissue and epidermal excretion. These results indicated that earthworm increased Cd bioavailability in contaminated soils, which might be due to earthworms 1) significantly decreased the pH of soils, especially in burrow walls and casts in which the pH significantly lower than the pH of bulk soil with earthworms,2) produce organic materials and fully mixed them with Cd, and 3) excete Cd through their epidermis.
     In conclusion, these results indicated:1) Earthworm mucus significantly increased tomato seedlings growth and Cd accumulation, which might be a mechanism of earthworm activities increasing plants growth and Cd accumulation; 2) Earthworm mucus increase Cd accumulation by tomato seedlings might be due to earthworm mucus enhancing plants growth and metabolism activities; 3) A solution of amino acids matching those of earthworm mucus play a lower role than earthworm mucus on increasing plants growth and Cd accumulation; 4) Earthworm mucus increasing plants growth and heavy metals accumulation might be due to IAA-like substances and other unknown materials; 5) Earthworm activities could increase Cd bioavailability in contaminated soils through decreasing soil pH, producing organic matters and mixing Cd thoroughly with organic matters, and excreting Cd through epidermis.
引文
鲍桐,廉梅花,孙丽娜,等.2008.重金属污染土壤植物修复研究进展.生态环境.17(2),858-865.
    曹志平(主编).2007.土壤生态学.北京,化学工业出版社,pp.114-117.
    陈同斌,陈志军.2002.水溶性有机质对土壤中镉吸附行为的影响.应用生态学报.13(2),183-186.
    陈学成.1992.河北省农田土壤镉污染研究.农业环境保护.11(5),202-205.
    崔德杰,张玉龙.2004.土壤重金属污染现状与修复技术研究进展.土壤通报.35(3),366-370.
    段文芳,石贵玉,秦丽凤,等.2008.镉胁迫对桐花树光合、蒸腾作用及保护每活性的影响.安徽农业科学.36(4),1355-1356,1370.
    段学军,闵航.2004.Cd胁迫下稻田土壤生物活性与酶活性综合研究.农业环境科学学报.23(3),422-427.
    冯凤玲,成杰明,王德霞.2006.蚯蚓在植物修复重金属污染土壤中的应用前景.土壤通报.37(4),809-814.
    高大翔,郝建朝,金建华,等.2008.重金属汞、镉单—胁迫及复合胁迫对土壤酶活性的影响.农业环境科学学报.27(3),903-908.
    戈峰,刘向辉,潘卫东,等.2001.蚯蚓在德兴铜矿废弃地生态恢复中的作用.生态学报.21(11),1790-1795.
    顾继光,周启星,王新.2003.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报.11(2),143-151.
    顾继光,周启星.2002.镉污染土壤的治理及植物修复.生态科学.21(4),352-356.
    郭朝晖,廖柏寒,黄昌勇.2003.模拟酸雨下Cd、Cu、Zn复合污染对土壤微生物量碳和酶活性的影响.应用与环境生物学报.9(4),382-385.
    郭观林,周启星,李秀颖.2005.重金属污染土壤原位化学固定修复研究进展.应用生态学报.16(10),1990-1996.
    胡锋,吴珊眉,李辉信.1998.蚯蚓和蚁类活动对红壤性质的影响.见:红壤生态系统研究(第五集)何圆球,杨艳生(主编).北京,中国农业科技出版社,pp.276-285.
    胡佩,刘德辉,胡锋,等.2002.蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用.生态学报.22,1211-1214.
    胡艳霞,孙振均,程文玲.2003.蚯蚓养殖及蚓粪对植物土传病害抑制作用的研究进展.应用生态学报.14(2),296-300.
    黄健,徐芹,孙振均,等.2006.中国蚯蚓资源研究:Ⅰ.名录及分布.中国农业大学学报.11(3),9-20.
    纪淑娟,王俊伟,黄莉萍,等.2008.重金属镉胁迫对小麦生长的影响及小麦镉污染预测的研究.粮食加工.33(1),51-53.
    贾久满,朱莲英,石洪凌.2007.蚯蚓水解液对大肠杆菌的抑菌效果.安徽农业科学.35(4),969-971.
    蒋先军,骆永明,赵其国.2000.重金属污染土壤的微生物学评价.土壤.32(3),130-134.
    李法虎(主编).2006.土壤物理化学.北京,化学工业出版社,pp.305-306.
    李合生(主编).2000.植物生理生化实验指导.北京,高等教育出版社,pp.119-120,125-127.
    李辉信,胡锋,沈其荣,等.2002.接种蚯蚓对秸秆还田土壤碳、氮动态和作物产量的影响.应用生态学报.13(12),1637-1641.
    李继云,任尚学,陈代中.1988.镉和铬对陕西某些地区土壤污染的调查报告.农业环境保护.7(5),30-33.
    李妍.2007.镉胁迫对补血草种子萌发的影响.青海农林科技.3,13-15.
    李映强.1997.有机物质与土壤结构.热带亚热带土壤科学.6(1),45-50.
    廖自基.1993.微量元素的环境化学及生物效应.北京,中国环境科学出版社,pp.299-302.
    林强.2004.我国的土壤污染现状及其防治对策.福建水土保持.3,25-28.
    林淑芬,李辉信,胡锋.2006.蚓粪对黑麦草吸收污染土壤重金属铜的影响.土壤学报.43(6),911-918.
    刘登义,沈章军,严密,等.2006.铜陵铜矿区凤丹根际和非根际土壤酶活性.应用生态学报.17(7),1315-1320.
    刘建新.2005.镉胁迫下玉米幼苗生理生态的变化.生态学杂志.24(3),265-268.
    刘莉.2005.镉胁迫对水稻幼苗干物质积累和活性氧代谢的影响.浙江农业学报.17(3),147-150.
    刘立群.1990.赣南土壤污染的防治途径.资源开发与保护杂志.6(2),100-102.
    刘明久,刘艳霞.2007.不同浓度的镉离子(Cd2+)对小麦种子萌发的影响.种子.26(9),31-32.
    龙新宪,杨肖娥,倪吾钟.2002.重金属污染土壤修复技术研究的现状与展望.应用生态学报.13(6),757-762.
    罗虹,刘鹏,宋小敏.2006.重金属镉、铜、镍复合污染对土壤酶活性的影响.水土保持学报.20(2),94-96.
    罗旭红,罗新义.2005.镉胁迫对苜蓿膜质过氧化的影响及保护系统的应答.中国草地.27(3),37-40.
    骆永明.1999.金属污染土壤的植物修复.土壤.5,261-265.
    沈振国,陈怀满.2000.土壤重金属污染生物修复的研究进展.农村生态环境.16(2),39-44.
    宋关玲,侯文华,刘朝.等.2008.镉对西洋菜生长影响的研究.高校化学工程学报.22(2),339-343.
    孙光闻,朱祝军,方学智.2004.不同镉水平对白菜生长及抗氧化酶活性的影响.园艺学报.31(3), 378-380.
    孙光闻,朱祝军,方学智.2005.镉对小白菜光合作用及叶绿素荧光参数的影响.植物营养与肥料学报.11(5),700-703.
    孙华,孙波,张桃林.2003.江西省贵溪冶炼厂周围蔬菜地重金属污染状况评价研究.农业环境科学学报.22(1),70-72.
    滕应,黄昌勇,龙健,等.2002.铅锌银尾矿污染区土壤酶活性研究.中国环境科学.22(6),551-555.
    滕应,黄昌勇,骆永明,等.2004a.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究.土壤学报.41(1),113-119.
    滕应,骆永明,赵祥伟,等.2004b.重金属复合污染农田土壤DNA的快速提取及其PCR DGGE分析.土壤学报.41(5),735-741.
    王丹丹,李辉信,胡锋,等.2006.蚯蚓活动对锌污染土壤微生物群落结构及酶活性的影响.生态环境.15(3),538-542.
    王丹丹.2006.蚯蚓及蚓粪对植物修复Cu、Zn污染土壤的影响.南京农业大学博士论文,pp.70-78.
    王艮梅,周立祥.2003.施用有机物料对污染土壤水溶性有机物和铜活性的动态影响.环境科学学报.23(4),452-457.
    王焕校(主编).2002.污染生态学(第2版).北京,高等教育出版社,pp.60-64.
    王凯荣.1997.我国农田镉污染现状及其治理利用对策.农业环境保护.16(6),274-278.
    王新,周启星.2004.土壤重金属污染生态过程、效应及修复.生态科学.23(3),278-281.
    王新,周启星.2004.重金属与土壤微生物的相互作用及污染土壤修复.环境污染治理技术与设备.5(11),1-5.
    王云,陈尧,钱亚如,等.2008.镉胁迫对不同品种小麦幼苗生长和生理特性的影响.生态学杂志.27(5),767-770.
    王志坤,廖柏寒,黄运湘,等.2006.镉胁迫对大豆幼苗生长影响及不同品种耐镉差异性研究.农业环境科学学报.25(5),1143-1147.
    文倩,关欣.2004.土壤团聚体形成的研究进展.干旱地区研究.21(4),434-437.
    吴春艳,陈义,闵航,等.2006.Cd2+、Cu2+对水稻土微生物及酶活性的影响.浙江农业科学.3,303-307.
    吴学峰,晋松,储玲,等.2007.La(N03)3浸种对镉胁迫下油菜种子萌发及幼苗生长的影响.生态学杂志.26(8),1159-1164.
    吴燕玉,周启星,田均良.1991.制定我国土壤环境标准(汞、镉、铅和砷)的探讨.应用生态学报.2(4),334-349.
    熊愈辉.2007.镉污染土壤植物修复研究进展.安徽农业科学.35(22),6876-6878.
    徐国良,莫江明,周国逸,等.2003.土壤动物与N素循环及对N沉降的响应.生态学报.23(11), 2453-2463.
    徐晟徽,郭书海,胡筱敏,等.2007.沈阳张士灌区重金属污染再评价及镉的形态分析.应用生态学报.18(9),2144-2148.
    徐苏凌,邢承华,方勇.2008.镉胁迫对紫花苜蓿生长及植株镉含量的影响.广东微量元素科学.15(3),23-26.
    许嘉林,杨居荣.1995.陆地生态系统中的重金属.北京,中国环境科学出版社,pp.24-36.
    闫华晓,赵辉,高登征,等.2007.镉离子对玉米种子萌发和生长影响的初步研究.作物杂志.5,25-28.
    杨小光,黄运湘,包海田.2008.土壤添加镉对大豆生长及氮、磷、钾、镉含量和分布的影响.湖南农业科学.2,75-79.
    杨秀敏,胡振琪,胡桂娟,等.2008.重金属污染土壤的植物修复作用机理及研究进展.金属矿山.7,120-123.
    于方明,汤叶涛,周小勇,等.2007.镉在圆锥南芥(Arabis paniculata Franch)中的亚细胞分布及其化学形态.中山大学学报(自然科学版).46(6),88-92.
    俞花美,陈秋波,葛成军,等.2008.重金属镉胁迫对热带牧草坚尼草生长及品质的影响.安徽农业科学.36(9),3509-3511.
    俞慎,何振立,黄昌勇.2003.重金属胁迫下土壤微生物和微生物过程研究进展.应用生态学报.14(4),618-622.
    张芬琴,孟红梅,沈振国,等.2006.镉胁迫下绿豆和箭舍豌豆幼苗的抗氧化反应.西北植物学报.26(7),1384-1389.
    张磊,于燕玲,张磊.2008.外源镉胁迫对玉米幼苗光合特性的影响.华北农学报.23(1),101-104.
    张利红,李培军,李雪梅,等.2005.镉胁迫对小麦幼苗生长及生理特性的影响.生态学杂志.24(4),458-460.
    张玲,叶正钱,李廷强,等.2006.铅锌矿区污染土壤微生物活性研究.水土保持学报.20(3),136-140.
    章秀福,王丹英,储开富,等.2006.镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异.中国水稻科学.20(2),194-198.
    赵胡,郑文教,陈杰.2008.土壤镉污染对大蒜幼苗生长及根系抗氧化系统的影响.生态学杂志.27(5),771-775.
    赵祥伟,骆永明,滕应,等.2005.重金属复合污染农田土壤的微生物群落遗传多样性研究.环境科学学报.25(2),186-191.
    郑世英,张秀玲,商学芳,等.2007.Cd2+胁迫对玉米抗氧化物酶活性及丙二醛含量的影响.江苏农业科学.1,36-38.
    周青,黄晓华,彭方晴,等.1999.La-Gly配合物对Cd2+伤害小白菜的影响.环境科学.20(1),91-94.
    朱玲,李辉信,刘宾,等.2007.老化和风干处理对蚓粪微生物学性质和结构稳定性的影响.生态学报.27(1),120-127.
    Adams M.L., Zhao F.J., McGrath S.P., Nicholson F.A., Chambers B.J.,2004. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual.33,532-541.
    Amador J.A., Gorres J.H.,2005. Role of the anecic earthworm Lumbricus terrestris L. In the distribution of plan residue nitrogen in a corn(Zea mays)-soil system. Appl. Soil Ecol.30,203-214.
    Amador J.A., Gorres J.H., Savin M.C.,2003. Carbon and nitrogen dynamics in Lumbricus terrestris (L.) burrow soil:relationship to plant residues and macropores. Soil Sci. Soc. Am. J.67,1755-1762.
    Amador J.A., Gorres J.H., Savin M.C.,2006. Effects of Lumbricus terrestris L. On nitrogen dynamics beyond the burrow. Appl. Soil Ecol.33,61-66.
    Amini M., Khademi H., Afyuni M., Abbaspour K.C.,2005. Variability of available cadmium in relation to soil properties and landuse in an arid region in central Iran. Water, Air, Soil Poll.162,205-218.
    Araujo Y., Luizao F.J., Barros E.,2004. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mescocosms. Biol. Fert. Soils 39,146-152.
    Asada K.,1992. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol. Plantarum 85(14),235-241.
    Barancikova G, Madaras M., Rybar O.,2004. Crop contamination by selected trace elements. J. Soils Sed.4,37-42.
    Basta N.T., Ryan J.A., Chaney R.L.,2005. Trace element chemistry in residual-treated soils:key concepts and metal bioavailability. J. Environ. Qual.34,49-63.
    Bastardie F., Capowiez Y., Cluzeau D.,2005.3D characterization of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Appl. Soil Ecol.30,34-46.
    Baszynski T., Wajda L., Krol M., Wolinska D., Krupa Z., Tukendorf A.,1980. Photosynthetic activities of cadmium-treated tomato plants. Physiol. Plantarum 48,365-370.
    Beare M.H., Cabrera M.L., Hendrix P.F., Coleman D.C.,1994. Aggregate-protected and unprotected organic matter pools in conventional and no-tillage soils. Soil Sci. Soc. Am J.58,787-795.
    Bernardo D., Marta D., Isabel C.,2007. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69,836-840.
    Binet F., Fayolle L., Pussard M.,1998. Significance of earthworms in stimulating soil microbial activity. Biol. Fert. Soils 27,79-84.
    Blouin M., Barot S., Lavelle P.,2006. Earthworms (Millsonia anomala, Megascolecidae) do not increase rice growth through enhanced nitrogen mineralization. Soil Biol. Biochem.38,2063-2068.
    Bouche M.B., Aladdan F., Cortez J.,1997. Role of earthworms in N cycle:A falsifiable assessment. Soil Biol. Biochem.29,375-380.
    Brookes P.C.,1995. Use of microbial parameters in monitoring soil pollution by heavy metals. Boil Fert. Soils 19,269-279.
    Brown G.G., Barois I., Lavelle P.,2000. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur. J. Soil Biol.36,177-198.
    Brown G.G., Edwards C.A., Brussaard L.,2004. How earthworms affect plant growth:burrowing into the mechanisms. In:Edwards C.A. (Eds), Earthworm Ecology. CRC Press LLC, Boca Raton USA pp. 13-49.
    Canellas L.P., Olivares F.L., Okorokova-Facanha A.L., Facanha A.R.,2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol.130,1951-1957.
    Carrier P., Baryla A., Havaux M.,2003. Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216,939-950.
    Chakravarty B., Srivastava S.,1992. Toxicity of some heavy metals in vivo and in vitro in Helianthus annus. Mutat. Res.283,287-294.
    Chander K., Brookes P.C.,1992. Synthesis of microbial biomass from added glucose in metal-contaminated and non-contaminated soils following repeated fumigation. Soil Biol. Biochem. 24,613-614.
    Chen H., Cutright T.,2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45,21-28.
    Chen J.G., Cheng S.H., Cao W.X., Zhou X.,1998. Involvement of endogenous plant hormones in the effect of mixed nitrogen source on growth and tillering of wheat. J. Plant Nutr.21,87-97.
    Cheng J.M., Wong M.H.,2002. Effects of earthworms on Zn fractionation in soils. Boil. Fert. Soils 36, 72-78.
    Christensen O.,1988. The direct effects of earthworms on nitrogen turnover in cultivated soils. Ecological Bulletins (Copenhagen) 39,41-44.
    Clapperton M.J., Lee N.O., Binet F., Conner R.L.,2001. Earthworms indirectly reduce the effects of take-all (Gaeumannomyces graminis var. tritici) on soft white spring wheat (Triticum aestivum cv. Fielder). Soil Biol. Biochem.33,1531-1538.
    Cordero B., Loderio P., Herrero R.,2004. Biosorption of cadmium by Fucus spiralis. Environ. Chem.1, 180-187.
    Cornelia L., Franz R.,2004. Assessing the potential for cadmium phytoremediation with calamagrostis epigejos:Apot experiment. Int. J. Phytoremediat.62,169-183.
    Cortez J., Bouche M.,1987. Composition chimique du mucus cutane de Allolobophora chaetophora (Oligochaeta:Lumbricidae). Comptes-Rendus de I’ Academie des Science de Paris, SeRie Ⅲ 305, 207-210.
    Cristian B., Dennis H.B., Fernando C.,1997. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence. Environ. Exp. Bot.38(2),165-179.
    Dafre A.L., Sies H., Akerboom T.,1996. Protein S-Thiolation and Regulation of Microsomal Glutathione Transferase Activity by the Glutathione Redox Couple. Arch. Biochem. Biophys.332, 288-294.
    Dai J., Thierry B., James H.R., Georges R., France B.R., Johanne N., Patrick L.,2004. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils. Soil Biol. Biochem.36,91-98.
    Dar G.H.,1996. Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresource Technol.56,141-145.
    Dariusz L., Jerzy K., Kazimierz S.,2005. Inhibition of zeaxanthin epoxidase activity by cadmium ions in higher plants. J. Inorg. Biochem.99,2081-2087.
    Darling C.T.R., Thomas V.C.,2005. Lead bioaccumulation in earthworms, Lumbricus terrestris, from exposure to lead compounds of differing solubility. Sci. Total Environ.346,70-80.
    Debra K., William H., Alan T., Sebastien S.,2002. Uptake of trace metals by the earthworm Lumbricus terrestris L. in urban contaminated soils. Appl. Soil Ecol.19,191-198.
    Decaens T., Galvis J.H., Amezquita E.,2001. Properties of the structures created by ecological engineers at the soil surface of a Colombian savanna. C. R. Acad. Sci. Ⅲ-Vie 324,465-478.
    Demuynck S., Grumiaux F., Mottier V., Schikorski D., Lemiere S., Lepretre A.,2007. Cd/Zn exposure interactions on metallothionein response in Eisenia fetida (Annelida, Oligochaeta). Comp. Biochem. Phys. C 145,658-668.
    Dev T.B., Herbert J.K.,2002. NH4+toxicity in higher plants:a critical review. J Plant Physiol.159, 567-584.
    Diego A.S., Marta A.V., Maria I.I.,2006. Plant growth inhibitors isolated from sugarcane (Saccharum officinarum) straw. J. Plant Physiol.163,837-846.
    Diego A.S., Melina A.S., Jose R.S., Emma N.Q., Marta A.V.,2007. Role of sugarcane straw allelochemicals in the growth suppression of arrowleaf sida. Environ Exp. Bot.60,495-503.
    Doelman P.,1986. Resistance of soil microbial communities to heavy metals. In:Jensen V., Kjoller A. and Sorensen L.H. (Eds), Microbial Communities in Soil. Elsevier, London and New York,369-383.
    Dong J., Wu F.B., Zhang G.P.,2005. Effect of cadmium on growth and photosynthesis of tomato seedlings. J. Zhejiang Univ. Sci.6B(10),974-980.
    Dong J., Wu F.B., Zhang G.P.,2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64, 1659-1666.
    Edwards C. A. (Ed),2004. Earthworm Ecology.2nd ed. CRC Press LLC. New York, pp.3-4.
    Edwards C.A., Bohlen P.J. (Eds),1996. Biology and Ecology of Earthworms,3rd ed. Chapman & Hall, London.
    Edwards C.A., Bohlen P.J., Linden D.R.,1995. Earthworms in agroecosystems. In:Hendrix PF (ed) Earthworm Ecology and Biogeography in North America. Lewis Publishers, Boca Raton, FL, pp 185-213.
    El Harti A., Saghi M., Molina J.-A.,2001a. Production de composes indoliques rhizogenes par le ver de terre Lumbricus terrestris. Can J. Zool 79,1921-1932.
    El Harti A., Saghi M., Molina J.-A.,2001b. Production d'une substance rhizogene a effect similaire a celui de l'acide indole acetique par le ver de terre Lumbricus terrestris. Can J. Zool 79,1911-1920.
    Enami Y., Okano S., Yada H., Nahamura Y.,2001. Influence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLEA pattern. Eur. J. Soil Biol.37, 269-272.
    Eriksen-Hamel N.S., Whalen J.K.,2007. Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agr. Ecosyst. Environ.120,442-448.
    Evangelou M.W.H., Ebel M., Schaeffer A.,2006. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63,996-1004.
    Falkengren-Grerup U., Mansson K.F., Olsson M.O.,2000. Uptake capacity of amino acids by ten grasses and forbs in relation to soil acidity and nitrogen availability. Environ. Exp. Bot.44,207-219.
    Fliepbach A., Martens R., Peber H.,1994. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem.26,1201-1205.
    Furlong M.A., Singleton D.R., Coleman D.C., Whitman W.B.,2002. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol.68,1265-1279.
    Gabbrielli R., Panddfini T., Vergnano O., Palandri M.R.,1990. Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil 122,271-277.
    Gao Y., He J., Ling W., Hu H., Liu F.,2003. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ. Int.29,613-618.
    Ge Y., Hendershot W.,2005. Modeling sorption of Cd, Hg and Pb in soils by the NICA [non-ideal competitive adsorption]-Donnan model. Soil Sediment Contain.14,53-69.
    Ge Y., Murray P., Hendershot W.H.,2000. Trace metal speciation and bioavailability in urban soils. Environ. Pollut.107,137-144.
    Gorres J.H., Savin M.C., Amador J.A.,2001. Soil micropore structure and carbon mineralization in burrows and casts of anecic earthworm (Lumbricus terrestris). Soil Biol. Biochem.33,1881-1887.
    Gouia H., Ghorbal M.H., Meyer C.,2000. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol. Biochem.38,629-638.
    Guo T.R., Zhang G.P., Zhang Y.H.,2007. Physiological changes in barley plants under combined toxicity of aluminum, copper and cadmium. Colloid Surfaces B 57,182-188.
    Halim M., Conte P., Picco;o A.,2003. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52,265-275.
    Hammer D., Keller C.,2002. Changes in the rhizosphere of metalaccumulating plants evidenced by chemical extractants. J. Environ. Qual.31,1561-1569.
    Han F., Shan X.Q., Zhang S.Z., Wen B., Gary O.,2006. Enhanced cadmium accumulation in maize roots the impact of organic acids. Plant Soil 289,355-368.
    Hayens R.J.,1980. Ion exchange properties of roots and ionic interactions within the root POPLsn:theirv role in ion accumulation by plants. Bot. Rev.46,75-99.
    Heberer J.A., Below F.E.,1989. Mixed nitrogen nutrition and productivity of wheat grown in hydroponics. Ann. Bot.63,643-649.
    Heredia R.B., Duenas S., Castillo L., Ventura J.J., Briano M.S., Posadas F., Rodriguez M.G.,2007. Autofluorescence as a tool to study mucus secretion in Eisenia foetida. Comp. Biochem. Phys. 2007.01.726.
    Heyes R.B.,1997. The carcinogenicity of metals in humans. Cancer Causes Control 8,371-385.
    Himer A., Ladwig F., Stransky H., Okumoto S., Keinath M., Harms A., Frommer W.B., Koch W.,2006. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18,1931-1946.
    Hodge A., Stewart J., Robinson D., Griffiths B.S., Fitter A.H.,2000. Plant N capture and microfaunal dynamics from decomposing grass and earthworm residues in soil. Soil Biol. Biochem.32, 1763-1772.
    Iannelli M.A., Pietrini F., Fiore L.,2002. Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol. Bioch.40,977-982.
    Jegou D., Schrader S., Diestel H., Cluzeau D.,2001. Morphological, physical and biochemical characteristics of borrow walls formed by earthworms. Appl. Soil Ecol.17,165-174.
    Jensen M.B., Hansen H.C.B., Magid J.,2002. Phosphate sorption to macropore wall materials and bulk soil. Water Air Soil Poll.137,141-148.
    Jiang W.S., Liu D.H., Hou W.Q.,2001. Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresource Tech.76,9-13.
    Jiang X.C., Inouchi J., Wang D., Halpern M.,1990. Purification and characterization of a chemoattractant from electric shock-induced earthworm secretion, its receptor binding, and signal transduction through the vomeronasal system of garter snakes. J. Biol. Chem.265,8736-8744.
    Johanne N., Patrick L., Emmanuel L., Folkert van O.,2003. Effects of heavy metal soil pollution on earthworm communities in the north of France. Pedobiologia 47:663-669.
    Jose L.M., Antonio S.-M., Teresa H., Carlos G.,2006. Effect of cadmium on microbial activity and a ryegrass crop in two semiarid soils. Environ. Manage 37,626-633.
    Julia S., Seeber GU.H., Langel Re., Scheu S., Meyer E.,2008. The effect of macro-invertebrates and plant litter of different quality on the release of N from litter to plant on alpine pastureland. Boil. Fert. Soils 44,783-790.
    Kandeler E., Kampichler C., Horak O.,1997. Influence of heavy metals on the functional diversity of soil microbial communities. Boil. Fert. Soils 23,299-306.
    Kandeler E., Tscherko D., Bruce K.D.,2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Boil. Fert. Soils 32,390-400.
    Ketterings Q.M., Blair J.M., Marinissen J.C.Y.,1997. Effect of earthworms on soil aggregate stability and carbo and nitrogen storage in a legume cover crop agroecosystem. Soil Biol. Biochem.29, 401-408.
    Khan K.S.,1998. Effect of cadmium, lead on size of microbial iomass. Pedosphere 8,27-32.
    Kirkham M.B.,2006. Cadmium in plants on polluted soils:Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137,19-32.
    Klzilkaya, R.,2007. Dehydrogenase activity in Lumbricus terrestris casts and surrounding soil affected by addition of different organic wastes and Zn. Bioresource Tech.2007.03.004
    Knight B.,1997. Biomass caborn measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl. Environ. Microb.63,39-43.
    Krupa Z., Siedlecka A., Skorzynska-Polit E., Maksymiec W.,2002. Heavy metal interactions with plant nutrients. In:M.N.V. Prasad, K. Strzalka (Eds.), Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Kluwer Academic Publishers. AH Dordrecht, Netherlands, pp.287-301.
    Kuo S., Huang B., Bembenek R.,2004. The availability to lettuce of zinc and cadmium in a zinc fertilizer. Soil Sci.169,363-373.
    Lauricio E., Helenice M.,2003. Amino acid uptake and profile in bromeliads with different habits cultivated in vitro. Plant Physiol. Biochem.41,181-187.
    Lavelle P.,1997. Faunal activities and soil processes:adaptive strategies that determine ecosystem function. Adv Ecol Res 27,93-132.
    Lavelle P., Lattaud C., Trigo D., et al.,1995. Mutualism and biodiversity in soils. Plant Soil 170,23-33.
    Lavelle P., Rangel P., Kanyonyo J.,1983. Intestinal mucus production by two species of tropical earthworm:Millsonia lamtoiana(Megascolecidae) and Pontoscolex corethrurus (Glossoscolecidae). Proc.8th Intl Colloq Soil Zoology, Belgium 405-410.
    Lavelle P., Spain A.V., (Eds) 2000. Soil Ecology. Champan & Hall, London.
    Le Bayon P.C., Binet F.,2006. Erthworms changes the distribution and availability of phosphorous in organic substrates. Soil Biol. Biochem.38,235-246.
    Liu D.H., Kottke I.,2003. Subcellular localization of Cd in the root cells of Allium sativum by electron energy loss spectroscopy. Indian Academy of Sciences 28,471-478.
    Liu X.L., Hu C.X., Zhang S.Z.,2005. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge. Environmental International 31,874-879.
    Lock K., Janssen C.R.,2003. Influence of aging on metal availability in soils. Rev. Environ. Contam. T 178,1-21.
    Lu H.L., Yan C.L., Liu J.C.,2007. Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ. Exp. Bot.61,159-166.
    Lukkari T., Taavitsainen M., Soimasuo M., Oikari A., Haimi J.,2004a. Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure:differences between population with and without earlier metal exposure. Environ. Pollut.129,377-386.
    Lukkari T., Taavitsainen M., Vaisanen A., Haimi J.,2004b. Effects of heavy metals on earthworms along contamination gradients in organic rich soils. Ecotox. Environ. Safe 59,340-348.
    Lukkari T., Teno S., Vaisanen A., Haimi J.,2006. Effects of earthworms on decomposition and metal availability contaminated soil:Microcosm studies of populations with different exposure histories. Soil Biol. Biochem.38,359-370.
    Luo C.L., Shen Z.G, Lou L.Q., Li X.D.,2006. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ. Pollut.144, 862-871.
    Ma Y., Dickinson N.M., Wong M.H.,2002. Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability. Biol. Ferti. Soils 36,79-86.
    Ma Y., Dickinson N.M., Wong M.H.,2003. Interactions between earthworms, trees, soil nutrition and metal mobility in amended Pb/Zn mine tailings from Guangdong, China. Soil Biol. Biochem.35, 1369-1379.
    Maenpaa K.A., Kukkonen J.V.K., Lydy M.J.,2002. Remediation of heavy metal-contaminated soils using phosphorus:Evaluation of bioavailability using an earthworm bioassay. Arch Environ Contam Toxicol 43,389-398.
    Martin A., Cortez J., Barois I., Lavelle P.,1987. Les mucus intestinaux de Ver de Terre, moteur de leurs interactions avec la microflore. Rev. Ecol. Biol. Soil.24,549-558.
    Martin B., Dianne F., Charles T.W.,2004. Free proline content is positively correlated with copper tolerance of the lichen photobiont Trebouxia erici (Chlorophyta). Plant Sci.167,151-157.
    Maruthi Sridhar B.B., Diehl S.V., Han F.X., Monts D.L., Su Y,2005. Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ. Exp. Bot.54,131-141.
    McGrath S.P., Chaushri A.M., Giller K.E.,1995. Long-term effects of metals in sewage on soils, microorganisms, and plants. J. Ind. Microbiol.14,94-101.
    McGrath S.P., Zhao F.J.,2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotech 14,277-282.
    McGrath S.P., Zhao F.J., Lombi E.,2002. Phytoremediation of metals, metalloids, and radionuclides. Adv. Arronomy 75,1-56.
    Meers E., Hopgood M., Lesage E., Vervaeke P., Tack F.M.G, Verloo M.G.,2004. Enhanced phytorextraction:in search of EDTA alternatives. Int. J. Phytoremediat.6,95-109.
    Mendez-Armenta M., Rios C.,2007. Cadmium neurotoxicity. Environ. Toxicol. Phar.23,350-358.
    Metka U., Domen L.,2007. The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Environ. Pollut 148,663-668.
    Metka U., Ziva P., Domen L.,2007. The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere 2007.06.044
    Morenoa J.L., Garcia C., Landib L.,2001. The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biol. Biochem.33,483-489.
    Morgan J.E., Morgan A.J.,1999. The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testing. Appl. Soil Ecol.13,9-20.
    Msttes J.M.,2000. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153(13),83-104.
    Mysliwa-Kurdzifl, B., Strzalka, K.,2002. Influence of metals on biosynthesis of photosynthetic pigments. In:M.N.V. Prasad, K. Strzalka (Eds.), Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Kluwer Academic Publishers. AH Dordrecht, Netherlands, pp.201-227.
    Nardi S., Pizzeghello D., Muscolo A., Vianello A.,2002. Physiological effects of humic substances in higher plants. Soil Biol. Biochem.34,1527-1537.
    Olaf S., Charles M.S., James P.C.,1999. Carbon and nitrogen stable isotope rations in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus). Oecologia 118,9-15.
    Olmos E., Martinez-Solano J.R., Piqueras A., Hellin E.,2003. Early steps in the oxidative burst induced by cadmium in cultured tobaccos cells (BY-2 line). J. Exp. Bot.54,291-301.
    Parkin T.B., Berry E.C.,1999. Microbial nitrogen transformations in earthworm burrows. Soil Biol. Biochem.31,1765-1771.
    Parmelee R.W., Crossley D.A.Jr.,1988. Earthworm production and role in the nitrogen cycle of a no-tillage agroecosystem on the Georgia Piedmont. Pedobiologia 32,353-361.
    Qiu R.L., Zhao X., Tang Y.T., Yu F.M., Hu P.J.,2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74,6-12.
    Quaggiotti S., Ruperti B., Pizzeghello D., Francioso O., Tugnoli V., Nardi S.,2004. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp. Bot.55,803-813.
    Rai V.K.,2002. Role of amino acids in plant responses to stresses. Biologia Plantarum 45,481-487.
    Ramos I., Elvira E., Jose J.K., Garate A.,2002. Cadmium uptake and subcellular distribution in plants Lactuca sp. Cd-Mn interaction. Plant Sci.162,761-767.
    Raphael L., Cynthia G, Sebastien S.,2007. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers. Sci. Total Environ.378,293-305.
    Richard N.C.,2004. Separation of low-molecular mass organic acid-metal complexes by high-performance liquid chromatography. J. Chromatogr. A 1059,1-12.
    Roane T.M., Pepper I.L.,1999. Microbial responses to environmentally toxic. Microbial Ecol 38(4), 358-364.
    Robimson C.H., Ineson P., Piearce T.G.,1996. Effects of earthworm on cation and phosphate mobilization in limed peat soil sunder Picea sitchensis. Forest Ecol Manage 86,253-258.
    Salt D.E., Prince R.C., Pickering I.J., Raskin I.,1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol.109,1427-1433.
    Salt D.E., Smith R.D., Raskin I.,1998. Phytoremediation. Annu. Rev. Plant Phys.49,643-668.
    Sandalio L.M., Dalurzo H.C., Gomez M.,2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot.52,2115-2126.
    Sandra J., Torgny N., Kerstin H.-D.,2008. Characteristics of amino acid uptake in barley. Plant Soil 302, 221-231.
    Sandrine S.,2001. Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils. Boil. Fert. Soils 34,304-310.
    Sandrine S., Ponge J.-F.,2001. Earthworm excreta attract soil springtails:laboratory experiments on Heteromurus Nitidus (Collembola:Entomobryidae). Soil Biol. Biochem.33,1959-1969.
    Sanita di Toppi L.S., Gabbrielli R.,1999. Response to cadmium in higher plants. Environ. Exp. Bot.41, 105-130.
    Sappin-Didier V., Vansuyts G., Mench M., Briat J.F.,2005. Cadmium availability at different soil pH to transgenic tobacco overexpresing ferritin. Plant Soil 270,189-197.
    Sauve S., Norvell W.A., McBride M., Hendershot E.,2000. Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Technol.34,291-296.
    Scheu S.,2003. Effects of earthworms on plant growth:patterns and perspectives. Pedobiologia 47, 846-856.
    Schmidt O., Curry J.P.,2001. Population dynamics of earthworms (Lumbricidae) and their role in nitrogen turnover in wheat and wheat-clover cropping systems. Pedobiologia 45,174-187.
    Seuntjens P., Nowack B., Schulin R.,2004. Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 265,61-73.
    Shah K., Kumar R.G., Verma S.,2001. Effect of cadmium on lipid peroxidation, superoxide anion generation activities of antioxidant enzymes in growing rice seedlings. Plant Sci.161,1135-1144.
    Sharma S.S., Schat H., Vooijs R.,1998. In vitro alleviation of heavy metal-induced enzyme inhibition by proline. Phytochemistry 49,1531-1535.
    Shipitalo M.J., Le Bayon R.C.,2004. Quantifying the effects of earthworms on soil aggregation and porosity. In:Edwards C.A. (Ed.), Earthworm Ecology. CRC Press, Boca Raton, pp.183-200.
    Shuster W.D., Shipitalo M.J., Subler S., Aref S., McCoy E.L.,2003. Landscape and watershed process: Earthworm additions affect leachate production and nitrogen loss in typical Midwestern agroecosystems. J Environ Qual.32,2132-2139.
    Shweta S., Arvind M., Kayasha D.,2001. Response of microbial organism to metal contained soil. J. Microbiol. Biotechn.17,667-672.
    Siedlecka A., Krupa Z.,1999. Cd/Fe interaction in higher plants:its consequences of the photosynthetic apparatus. Phytosynthetica 36,321-331.
    Silvia Q., Benedetto R., Diego P., Ornella F., Vitaliano T., Serenella N.,2004. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). J. Exp. Bot.55,803-813.
    Sneller F.E.C., Noordover E.C.M., TenBookum W.M.,1999. Quantitative relationship between phytochelatin accumulation and growth during prolonged exposure to cadmium in Silene vulgaris. Ecotoxicology 8,167-175.
    Somashekaraiah B.V., Padmaja K., Prasad A.R.K.,1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris):Involvement of lipid peroxides in chlorophyll degradation. Physiol. Plantarum 85,85-89.
    Spurgeon D.J., Hopkin S.P.,1999. Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Appl. Soil Ecol.11, 227-243.
    Stephens P.M., Davoren C.W.,1997. Influence of the earthworm Aporrectodea trapezoids and A. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass. Soil Biol. Biochem. 29,511-516.
    Stohs S.J., Bagchi D., Hassoun E.,2001. Oxidative mechanisms in the toxicity of chromium and cadmium ions. Journal of Environmental Pathology, Toxicol. Oncology 20,77-88.
    Subler S., Baranski C.M., Edwards C.A.,1997. Earthworm additions increased short-term nitrogen availability and leaching in two grai-crop agroecosystems. Soil Biol. Biochem.29,413-421.
    Surgeon D.J., Svendsen C, Rimmer V.R., Hopkin S.P., Weeks J.M.,2000. Relative sensitivity of life-cycle and biomarker response in four earthworm species exposed to zinc. Environ Tox Chem 7, 1800-1808.
    Svennerstam H., Ganeteg U., Bellini C., Nasholm T.,2007. Comprehensive screening of Arabidopsis mutant suggests the lysine histidine transporter 1 to be involved in plant uptake of amino acids. Plant Physiol.143,1853-1860.
    Taylor M.D.,1997. Accumulation of cadmium derived from fertilizers in New Zealand. Soil Sci. Total Environ.208,123-126.
    Theodore K.R., David A.L., Russell K.M.,1999. Soil amino acid utilization among species of the Cyperaceae:plant and soil processes. Plant Soil 80,2408-2419.
    Thierry B., Dai J., Cecile Q., Lavelle P.,2005. Sources of bioavailable trace metals for earthworms from a Zn-, Pb-and Cd-contaminated soil. Soil Biol. Biochem.37,1564-1568.
    Timothy B.P., Edwin C.B.,1999. Microbial nitrogen transformations in earthworm burrows. Soil Biol Biochem.31,1765-1771.
    Tiunov A.V., Bonkowski M., Alphei J., Scheu S.,2001. Microflora, Protozoa and Nematoda in Lumbricus terrestris burrow walls:a laboratory experiment. Pedobiologia 45,46-60.
    Tiunov A.V., Dobrovolskaya T.G,2002. Fungal and bacterial communities in Lumbricus terrestrial burrow walls:a laboratory experiment. Pedobiologia 46,595-605.
    Tiunov A.V., Scheu S.,1999. Microbial respiration, biomass, biovolume and nutrient status in burrow walls of Lumbricus terrestris L. (Lumbricidae). Soil Biol. Biochem.31,2039-2048.
    Tiunov A.V., Scheu S.,2000. Microbial biomass, biovolume and respiration in Lumbricus terrestris L. cast material of different age. Soil Biol. Biochem.32,265-275.
    Tomati U., Grappelli A., Galli E.,1988. The hormone-like effect of earthworm casts on plant growth. Boil. Fert. Soils 5,228-294.
    Toshihiro Y., Hirotaka H., Yoshiyuki M., Kazuhiro S., Hiroaki S., Fumiyuki G.,2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep 25,365-373.
    Tsadilas C.D., Karaivazoglou N.A., Tsotsolis N.C., Stamatiadis S., Samaras V.,2005. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation. Environ. Pollut.134,239-246.
    Tudoreanu L., Phillips C.J.C.,2004. Modeling cadmium uptake and accumulation in plants. Adv. Agron. 84,121-157.
    Tuomas L., Sanara T., Ari V., Jari H.,2006. Effects of earthworms on decomposition and metal availability in contaminated soil:Microcosm studies of populations with different exposure histories. Soil Biol. Biochem.38,359-370.
    Vallee B.I,, Ulmer D.D.,1972. Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem.41,91-128.
    Verma S., Dubey R.S.,2001. Effect of camium on soluble sugars and enzymes of their metabolism in rice. Biological Plant 44,117-123.
    Vijver M.G., Wolterbeek H.T., Vink J.P.M., Van Gestel C.A.M.,2005. Surface adsorption of metals onto the earthworm Lumbricus rubellus and the isopod Porcellio scaber is negligible compared to absorption in the body. Sci. Total Environ.340,271-280.
    Wang D.D., Li H.X, Wei Z.G., Wang X., Hu F.,2006. Effects of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard. Boil. Fert. Soils 43,120-123.
    Wang M., Zou J.H., Duan X.H., Jiang W.S., Liu D.H.,2007. Cadmium accumulation and its effects on metal uptake in maize(Zea mays L.). Bioresource Tech.98,82-88.
    Wang X., Liu Y.G., Zeng GM., Chai L.Y., Song X.C., Min Z.Y., Xiao X.,2008. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot.62,389-395.
    Wei Z.G., Wong J.W., Chen D.Y.,2003. Speciation of heavy metal binding non-protein thiols in Agropyron elongatum by size-exclusion HPLC-ICP-MS. Microchem. J.74,207-213.
    Wei Z.G., Wong J.W., Hong F.S., Zhao H.Y., Li H.X., Hu F.,2007. Determination of inorganic and organic anions in xylem saps of two constrasting oilseed rape (Brassica juncea L.) varieties:Roles of anions in long-distance transport of cadmium. Microchem. J.86,53-59.
    Weiler M., Naef F.,2003. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrol Process 17,477-493.
    Wen B., Hu X.Y., Liu Y., Wang W.S., Feng M.H., Shan X.Q.,2004. The role of earthworms (Eisenia fetida) in influencing bioavailability of heavy metals in soils. Biol. Fert. Soils 40,181-187.
    Wen B., Liu Y., Hu X.Y., Shan X.Q.,2006. Effect of earthworms(Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils. Chemosphere 63,1179-1186.
    Whalen J.K., Janzen H.H.,2002. Labeling earthworms uniformly with 13C and 15N:implications for monitoring nutrient fluxes. Soil Biol. Biochem.34,1913-1918.
    Whalen J.K., Parmelee P.W., McCartney D.A., VanArsdale J.L.,1999. Movement of N from decomposing earthworm tissue to soil, microbial and plant N pools. Soil Biol. Biochem.31,487-492.
    Winding A., R(?)nn R., Hendriksen N.B.,1997. Bacteria and protozoa in soil microhabitats as affected by earthworms. Biol. Fert. Soils 24,133-140.
    Winsome T., McColl J.G.,1998. Changes in chemistry and aggregation of a California forest soil worked by the Argilophilus papillifer Eisen (Megascolecidae). Soil Biol. Biochem.30,1677-1687.
    Wolter V., Scheu S.,1999. Changes in bacterial numbers and hyphal lengths during the gut passage through Lumbricus terrestris (Lumbricidae, Oligochaeta). Pedobiologia 43,891-900.
    Wu F.B., Chen F., Wei K., Zhang GP.,2004, Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57,447-454.
    Wu F.B., Dong J., Qian Q.Q., Zhang G.P.,2005. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere 60,1437-1446.
    Wu F.B., Zhang G.P., Dominy P.,2003. Four barley genotypes respond differently to cadmium:Lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot.50,67-77.
    Yeung A.T., Hsu C.-n.,2005. Electrokinetic remediation of cadmium-contaminated clay. J. Environ. Eng. 131,298-304.
    Yu H., Wang J.L., Fang W., et al.,2006. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Sci. Total Environ.370,302-309.
    Yu X.Z., Cheng J.M., Wong M.H.,2005. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol. Biochem.37,195-201.
    Zarcinas B.A., Ishak C.F., McLaughlin M.J., Cozens G,2004. Heavy metals in soils and crops in southeast Asia.1. Peninsular Malaysia. Environ. Geochem. Health 26,343-357.
    Zheng Y.H., Jia A.J., Ning T.Y., Xu J.L., Li Z.J., Jiang GM.,2008. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol. 165,1455-1465.
    Zhou Z.G., Zhou J.M., Li R.Y., Wang H.Y, Wang J.F.,2007. Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant Soil 292,105-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700