黄土高原坡沟系统侵蚀产沙动力过程与调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对目前坡沟系统研究中的薄弱环节和亟待解决的问题,分别利用室内概化坡沟系统模型和野外天然变坡地形,采用放水冲刷试验来研究和完善坡沟系统的侵蚀产沙理论。根据黄土高原的坡沟地貌特征,建立室内坡沟系统概化模型,结合REE示踪技术,采用室内放水冲刷试验,研究了坡沟系统的径流水动力学特性、坡沟系统的侵蚀产沙过程、坡沟系统的径流侵蚀动力、坡沟系统侵蚀泥沙来源等问题。利用野外坡沟系统的放水冲刷试验,研究了草被覆盖对坡沟系统的水动力学特性的调控作用、坡沟系统的侵蚀产沙过程随坡底和沟底两种不同位置时侵蚀产沙的差异、坡沟系统的侵蚀产沙过程随着坡底和沟底草被覆盖度的变化、坡沟系统的侵蚀产沙过程随着坡沟系统不同坡长组合的变化等问题。用野外收集到的坡面改修梯田工程资料,研究了坡改梯工程措施的实施对坡沟系统的入渗过程、产流产沙过程的调控作用;根据收集到的沟道淤地坝工程资料,分析了淤地坝工程措施的实施对来自坝空流域坡沟系统径流泥沙和侵蚀产沙粒径的调控;应用有限元分析软件,研究了淤地坝工程措施对坡沟系统重力侵蚀的调控作用。通过三年来相关的试验与研究工作,取得以下结论:
     (1)在本论文试验的坡沟系统中,径流雷诺数Re、径流弗罗德数Fr和流速V随流量和坡位的不同变化较大。在实验流量范围内,坡沟系统的Re变化位于342.3~858.8之间,Re都小于900,说明整个试验过程中,坡沟系统的径流处于层流状态。Fr变化位于1.36~8.92之间;均都大于1,说明在整个试验过程中,坡沟系统径流处于急流状态。
     (2)REE示踪研究结果表明,坡沟系统的侵蚀量主要来自坡面,坡面顶端2m的侵蚀量占坡沟系统总侵蚀量的50%~75%;坡面各示踪侵蚀带侵蚀量大小顺序依次为:La元素示踪带(坡顶断面)>Ce元素示踪带(与坡顶断面相邻的坡中断面)>Tb元素示踪带(坡底断面)>Sm元素示踪带(与坡底断面相邻的坡中断面),但Q=12L/min时例外;沟坡各侵蚀带侵蚀量大小次序依次为:Eu元素示踪带(沟顶断面)>Yb元素示踪带(沟坡中间断面)>Dy元素示踪带(沟底断面),但小流量Q=6L/min和Q=8L/min时例外;流量相同时,随着冲刷历时的延长,坡沟系统侵蚀率呈波动变化趋势,陆续达到最大,然后又逐渐减小;且随冲刷流量的增大,侵蚀率达到最大值的时间越来越短。
     (3)坡沟系统中的侵蚀率与径流能耗或单宽水流功率之间呈现显著的幂函数关系,函数的通式为:y=ax~(-b),其中,y为侵蚀率,x为能耗或者单宽水流功率,a、b为大于零的常数。并且能耗与侵蚀率之间的相关性大于单宽水流功率与侵蚀率之间的相关性。坡沟系统中的侵蚀率与径流剪切力之间呈现出线性相关性,但是相关关系不如能耗和功率关系显著,本研究中的坡沟系统在用径流剪切力、径流能耗、水流功率三个参数进行描述时,径流能耗效果最好,水流功率次之,径流剪切力相对最差。
     (4)相同冲刷流量下,不论草被布设在坡沟系统的坡底还是沟底,随着草被覆盖度从30%增大至50%,坡沟系统的Re、Fr和V均呈现出明显的增长趋势,但随着草被覆盖度继续增大至70%时,Re、Fr、V又呈现出明显的递减趋势。相同流量相同草被覆盖度下,坡沟系统的Re、Fr和V随着冲刷历时的增大呈现出波动的变化趋势,增减趋势不是很明显;相同草被覆盖度下Re、Fr、V随着冲刷流量的增大而增大;草在沟时的Re、Fr、V略大于草在坡底时相应的Re、Fr、V。
     (5)不论草被布设在坡底还是沟底,当草被覆盖度相同时,随着放水流量的增大,坡沟系统的产流总量呈现出增大的趋势。同一流量下,坡沟系统的产流量随着草被覆盖度的变化不同,当草被在坡底时,坡沟系统的产流量的变化为:当Q=14L/min时,0%>50%>30%>原状>70%;当Q=18L/min和Q=22L/min时,50%>0%>原状>30%>70%。当草被在沟底时,坡沟系统的产流量的变化为:当Q=14L/min时,0%>50%>30%>原状>70%;当Q=18L/min和Q=22L/min时,原状>70%>50%>30%>0%。
     (6)坡沟系统的产沙总量随着草被覆盖位置的变化相差较大。当草被布设在坡底时,草被覆盖度为原状时,随着流量的增大,坡沟系统的产沙量呈现出先减小后增大的趋势;草被覆盖度为50%时,随着流量的增大,坡沟系统的产沙量呈现出先增大后减小的趋势;草被覆盖度为70%、30%和剪草裸坡时,随着放水流量的增大,坡沟系统的产沙总量呈现出逐渐增大的趋势。当草被布设在沟底时,草被覆盖度为原状、70%和剪草裸坡时,随着放水流量的增大,坡沟系统的产沙总量呈现出逐渐增大的趋势;草被覆盖度为50%和30%时,随着流量的增大,坡沟系统的产沙量呈现出先减小后增大的趋势。
     (7)在本实验设计的坡长和流量范围内,长坡长的产沙量大于短坡长的产沙量,相同草被覆盖度和相同流量下,长坡长的坡沟系统的侵蚀产沙过程较短坡长的侵蚀产沙过程剧烈,各坡长情况下产沙量随着流量和盖度的变化呈现出不同的变化趋势。
     (8)相同冲刷流量下,坡沟系统的侵蚀产沙过程随着坡面草被覆盖度的增大呈现先增大后减小的趋势。即当草被覆盖度由30%增大至50%时,坡沟系统的产沙速率增大,但随着草被覆盖度继续增大至70%时,坡沟系统的产沙速率又出现减小的趋势。坡沟系统的产沙速率随着沟坡的草被覆盖度的变化呈现出类似坡面草被覆盖度的变化,但这种变化不如坡面显著。相同覆盖度的草被布设在坡沟系统的沟底时的侵蚀产沙过程较草被布设在坡底时的侵蚀产沙过程剧烈,这说明在本实验设计的坡沟系统实验中,草被
     布设在坡底时的减沙作用较显著,而沟底的减沙作用不如坡底显著。
     (9)坡改梯工程措施能够增大坡沟系统的入渗量,伴随着入渗量的增多,土壤中的养分的流失量减小,利于作物高产稳产。在一定的暴雨洪水范围内,坡改梯措施改变了坡耕地原有的坡度,使坡面的产流产沙量大幅度减小,对坡面产流产沙量进行了有效控制,从而有效控制了相应坡沟系统的坡面(上方)来水来沙量。
     (10)沟道淤地坝工程措施的实施,能够就地拦蓄淤地坝所在坡沟系统的产流产沙量,使得出口的水沙量减小,长流水沟道的基流量增大,出口泥沙中值粒径减小,说明淤地坝不但能有效拦蓄洪水泥沙,而且可以减小粗泥沙对下游河道的危害。随着淤积厚度的增大,淤地坝系所在沟道两侧的坡沟系统的稳定性越来越好,重力侵蚀量或侵蚀潜力也越来越小,说明淤地坝工程措施对坡沟系统的重力侵蚀具有较强的调控作用。
On the basis of literatures reviewing on the slope-gully system development from domestic and abroad, the theory of erosion sediment yield of slope-gully system was researched and perfected by aiming at the weak neck and urgent problems to solve in the process of research of slope-gully systems, using slope-gully systems physical model and field crude slope-gully landform, adopting runoff scouring method. According to typical physiognomy of slope-gully systems in Loess Plateau, the slope-gully systems physical model was established. Hydrodynamics characteristic, the process of erosion sediment yield, erosion motivity, the origin of erosion sediment yield were all researched by integrating with rare-earth element tracing technology and adopting scouring method. The adjust-control effect of grassland coverage to hydrodynamics characteristic, the difference of sediment yield process under grassland in slope and gully, the variation of erosion sediment yield process with grassland coverage, the variation of erosion sediment yield process with slope length of slope-gully system were all studied by scouring with field slope-gully systems experiment. Furthermore, according to data of sloping fields reformed to terraced fields collected from field investigation, adjust and control effect of terrace on the process of infiltration , flow generation and sediment yield of slope-gully systems were studied . At the same time, adjust and control effect of check dam on flow generation and sediment yield from the slope-gully systems and its grain composition were studied by the collected data. Based on finite element software, adjust and control effect of check dam on gravity erosion. The following conclusions were obtained:
     (1) Main runoff dynamic parameters, including Reynolds number, Froude numbers andvelocity in slope-gully systems, varied greatly with runoff discharge and slope position.
     In this experiment, Reynolds number varied between 342.3 and 858.8, all of which was smaller than 900, and indicated that runoff in the slope-gully system was laminar flow. Froude numbers varied between 1.36 and 8.92 in the erosion processes, and showed that the runoff of the slope-gully systems were turbulent flow.
     (2) Analysis of sediement source by rare-earth element tracing method indicated that the proportion of sediment from slope was greater than that from gully in the experiment, and sediment from the top two meters on the slope accounted for more than 50% of the total sediment yield. Except for sediment under the runoff discharge of 12L/min, sediment from various element tracing belt in the slope was in the order of La>Ce>Tb >Sm. Sediment from various element tracing belt in the gully was in order of Eu>Yb >Dy, excep for sediment under the runoff discharge of 6L/min and 8L/min. Erosion ratio increased fluctuantly with time under the same runoff discharge. And time sediment reached its peak value decreased with the increase of runoff discharge.
     (3) The relationship between the erosion rate of the slope-gully systems and the runoff energy consumption or the runoff power per unit width were all established as power function( y = ax~b, where a and b were constants; y was erosion rate of slope-gully systems; x was runoff energy consumption or runoff power per unit width of slope-gully systems). What's more, the correlation between the erosion rate and runoff energy consumption was larger than that the erosion rate and the runoff power per unit width. The relationship between the erosion rate of the slope-gully systems and the runoff shear stress was established as linear function. Result demonstrated that in the process of erosion description with three parameters were in the order of runoff energy consumption > runoff power > runoff shear stress.
     (4) Reynolds number Re, Fuluode number Fr and velocity of runoff V, were all showed a distinct increscent tendency with the grassland coverage increasing from 30% to 50 %, but were all showed a distinct decreasing tendency with the grassland coverage increasing from 50% to 70 % under the same condition of scouring flow without reference to the grass location of slope and gully in the slope-gully systems. Re, Fr and V were all showd a fluctuant tendency with the time duration, and the change was not very clear under the same condition of scouring flow and grassland coverage. The values of three parameters of Re, Fr and V gradully augmented with the increase of the scouring flow under the same grass coverage. When grassland in gully, the three parameters of Re, Fr and V was slightly larger than that in slope.
     (5) The gross amount of runoff generation from the slope-gully becomes large with the increasing scouring flow under the same grass coverage without reference to the grass location of slope and gully in the slope-gully systems. The gross amount of runoff generation from the slope-gully shows different change characteristics with the difference of the grass coverage under the same scouring flow. When grassland was in the slope, the change law of the gross amount of runoff generation with different grass coverage was as follows: 0%>50%>30%>original state>70% under the condition of Q=14L/min, 50% >0%> original state > 30% > 70% under the condition of Q=18L/minor Q=22L/min. When grassland was in the gully, the change law of the gross amount of runoff generation was as follows: 0%>50%>30%>original state>70% under the condition of Q=14L/min, original state>70%>50%>30%>0%under the condition of Q=18L/minor Q=22L/min.
     (6) Sediment yield from the slope-gully systems varied a lot with with the changes of vegetation location. When the grass was located in the slope and the grassland coverage was same, the total sediment yield was showed several changing trendency as follows: 1) for the original state of grass coverage, the total sediment yield decreased firstly and then increased with the increase scouring flow; 2) for the 50 percent of grass coverage, the total sediment yield increased firstly and then decreased with the increase scouring flow; 3) for the other grass coverages, the total sediment yield increases with the increase scouring flow. When the grass was in the slope and the grassland coverage was same, the total sediment yield was showed several change trendency as follows: 1) for the 30 percent or 50 percent of the grass coverage, the total sediment yield decreased firstly and then increased with the increase scouring flow; 2) for the other grass coverages, the total sediment yield increased with the increase scouring flow.
     (7) Slope length and vegetation cover had deep effect on sediment yield. Results by runoff scouring indicated that sediment yield from long slope was larger than that from short slope. Under the same vegetation cover and same runoff discharge, sediment yield from long slope-gully system was more exquisite than that from short slope-gully system. That is to say, within the range of designed slope length and scouring discharge, sediment yield of slope-gully systems was more exquisite with the augmentation of slope length.
     (8) Under the same runoff discharge, soil erosion in the slope-gully systems increased firstly and then decreased with the increase of vegetation cover. When vegetation cover on the slope increased from 30% to 50%, sediment yield in the slope gully system increased, and then decreased when vegetation cover increased to 70%. Changes of runoff and sediment yield with vegetation cover on gully showed similar trendComparison of sediment yield with different vegetation cover location indicated that sediment reduction with vegetation cover at the bottom of the slope was much larger than that with vegetation cover at the bottom of the gully.
     (9) Reforming slopeland to terraced fields improved soil infiltration, reduced nutrient loss, and consequently improved land productivity. At the same time, terrace changed the slope gradient, reduced the runoff yield, and consequently reduced sediment yield and improved stability of slope-gully system.
     (10) Check dam was effective in reducing soil and water loss, resulted in increasing base flow and decrease in grain composition. Further analysis indicated that with the increase of alluvial height, stability of slope-gully system increased, and gravity erosion or potential was decreased too. That is to say, check dam can adjust and control gravity of slope-gully systems effectively.
引文
[1]方学敏.土壤侵蚀及其环境影响和控制模式的研究[D].中国水利水电科学研究院博士学位论文.1998.
    [2]丁文峰.黄土区坡面径流侵蚀的动力过程试验研究[D].中国科学院水利部水土保持研究所,2001.
    [3]蔡强国,王贵平,陈永宗.黄土高原小流域侵蚀产沙过程与模拟[M].科学出版社,1998.
    [4]刘秉正,吴发启.土壤侵蚀[M].陕西人民出版社,1997.
    [5]雷阿林.坡沟系统土壤侵蚀链动力机制模拟试验研究[D].中国科学院水利部水土保持研究所,1996.
    [6]肖培青,郑粉莉,姚文艺.坡沟产沙关系及其侵蚀机理研究进展[J].水土保持研究,2004,11(4):101-104.
    [7]陈浩.黄土丘陵沟壑区流域系统侵蚀与产沙的关系[J].地理学报,2000,55(3):354-363.
    [8]王晓燕,田均良,杨明义.示踪技术在流域泥沙研究中的应用[J].泥沙研究,2003,(1):18-23.
    [9]Collins,A.L.,Walling,D.E.,and Leeks,G.J.L.Composite fingerprinting of the fluvial suspended sediment:A case study of the Exe and Severn River basins,UK.In:Proceedings CNRS Conference on Floods,Slopes and River Beds,Paris,1995.Geomorphologie Relief Processes Environment,1996,2:41-54.
    [10]A.L.Collins,D.E.Walling,andG.J.L.Leeks.Use of composite fringerprints to determine the provenance of the contemporary suspended sediment load transported by rivers.Earth surface processes and landforms,1998,23:31-52.
    [11]Desmond E.Walling,Philip N.Owens,and GrahamJ.L.Leeks.Fingerprinting suspended sediment sources in the catchment of the River Ouse,Yorkshire,UK.Hydrol.Process.1999,13:955-975.
    [12]田均良,周佩华,刘普灵等.土壤侵蚀REE示踪法研究初报[J].水土保持学报,1992,6(4):23-27.
    [13]石辉.利用REE示踪法研究小流域泥沙来源[D].中国科学院水利部水土保持研究所,1995.
    [14]P.J.Wallbrink,and A.S.Murry.Distribution and variability of 7Be in soils under different surface cover condition processes.Water resources research,1996,2:467-476.
    [15]Wallbrink,P.J.,andA.S.Measuring soil loss using the inventory ratio of 210Pbex to ~(137)Cs.Soil Science Society of America Journal,1996,60(4):1201-1208.
    [16]Ritch,J.C.,Sprabeery,J.A.,etal.Estimating soil erosion from the redistribution of fallout ~(137)Cs.Soil Sci.Soc.Am.Proe.1974,38:137-139.
    [17]Loughran,R.J.,and B.L.Campbell.The identification of catchment sediment sources[A].In:I.L.Foster(ed.),Sediment and water quality in catchments[C].John Wiley and Sons,Chichester,1983:189-205.
    [18]Walling,D.E.,and J.C.Woodward.Tracing sources of suspended sediment inriver basins.Marineand Freshwater Research 1995,46:327-336.
    [19]Burch,G.J.Detection and prediction of sediment sources in catchments:use of 7Be and 137Cs.Paper presented at hydrology and water resources symposium,inst.Of Eng.,Aust.Nati.Univ.,Canberron,1988.dioactivity.Water Resouces Research,1993,29:1037-1043.
    [20]Q.He,et al.Determination of suspended sediment provenance using unsupported lead-210 and radium-226:A numerical mixing model approach.In:sediment and water quality in fiver catchments,edited by I.D.Foster,et al.pp:207-227,John Wiley,New York,1995.
    [21]P.J.Wallbrink,et al.Use of fallout radionuclides as indicators of erosion process.J.Hydrol.Processes,1993,7:297-304.
    [22]P.J.Wallbrink,et al.Determing sources and transit times of suspended sediments in the Murrumbidgee River,New South Wales,Australia,using fallout ~(137)Cs and 210Pb.Water resources research,1998,vol.34,no.4:879-887.
    [23]P.J.Wallbrink,et al.Relating suspended sediment to its original soil depth using fallout radionuclides.Soil Sci.Soc.Am.J.,1999,vol.63,no.2:369-378.
    [24]张信宝等.黄土高原小流域泥沙来源的~(137)Cs法研究[J].科学通报,1989,(3):210-213.
    [25]杨明义,田均良,刘普灵等.应用~(137)Cs研究小流域泥沙来源[J].土壤侵蚀与水土保持学报,1999,5(3):49-53.
    [26]文安邦,张信宝,Walling,D.E.黄土丘陵区小流域泥沙来源及其动态变化的~(137)Cs法研究[J].地理学报.1999,53(增):124-133.
    [27]王晓.“粒度分析法”在小流域泥沙来源研究中的应用[J].水土保持研究,2002,9(3):42-43.
    [28]黄秉维.陕西黄土区域土壤侵蚀的因素和方式[J].科学通报,1958(9):53-59.
    [29]席承藩,程云生,黄直立.陕北绥德韭园沟土壤侵蚀情况及水土保持办法[J].土壤学报,1953,2(3):148-166.
    [30]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956,4(2):99-115.
    [31]罗来兴,祁延年.陕北无定河、清涧河黄土区域的侵蚀地形与侵蚀量[J].地理学报.1955,21(1):35-44.
    [32]朱震达.南阳盆地边缘花岗岩丘陵地区侵蚀地形的初步观察[J].地理学报.1955,21(1):45-51.
    [33]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988,161-180..
    [34]承继成.坡地流水作用的分带性.中国地理学套[C].北京:科学出版杜,1965.
    [35]刘元保.黄土高原坡面沟蚀的危害及其发生发展规律[D].中国科学院西北水土保持研究所,1984.
    [36]唐克丽.黄河流域的侵蚀与径流泥沙[M].北京:中国科学技术出版社,1993.
    [37]雷阿林,唐克丽.坡沟系统土壤侵蚀研究回顾与展望[J].水土保持通报,1997,17(3):37-43.
    [38]陈浩,王开章.黄河中游小流域坡沟侵蚀关系研究[J].地理研究.1999,18(4):363-372.
    [39]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报,1998,53(5):422-427.
    [40]方学敏,万兆惠,匡尚富.黄河中游淤地坝拦沙机理及作用[J].水利学报,1998(10):49-53.
    [41]胡建军,牛萍,曹炜.浅谈黄河上中游地区水土保持淤地坝工程的作用[J].西北水资源与水工程,2002,13(2):28-31.
    [42]李敏.淤地坝在黄河中游水土流失防治中的作用[J].人民黄河,2003,25(12):25-27.
    [43]刘正杰.黄土高原淤地坝建设现状及其发展对策[J].中国水土保持,2003(4):1-3.
    [44]黄河水利委员会绥德水土保持科学试验站,水土保持试验研究成果汇编[C]第二集,1985.
    [45]王晓燕,陈洪松,田均良,杨明义.侵蚀泥沙颗粒中~(137)Cs的含量特征及其示踪意义[J].泥沙研究,2005,(2):61-65.
    [46]孙秋来,王宏兴,马军旗.从淤地坝淤积调查推算坡面侵蚀状况[J].山西水土保持科技,2004,(1):28-30.
    [47]魏霞.淤地坝淤积信息与流域降雨产流产沙关系研究[D].西安:西安理工大学,2005,3.
    [48]唐克丽.杏子河流域坡耕地的水土流失及其防治[J].水土保持通报,1983,3(5):43-48.
    [49]李勉.坡面草被覆盖对坡沟侵蚀产沙过程的影响[J].地理学报,2005,60(9):725-732.
    [50]丁文峰.坡沟系统侵蚀产沙特征模拟试验研究[J].农业工程学报,2006,22,(3):10-14.
    [51]李勉,姚文艺,陈江南,丁文峰,杨剑锋,李莉,杨春霞.草被覆盖下坡沟系统坡面流能量变化特征试验研究[J].水土保持学报,2005,19(5):13-17.
    [52]陈浩.流域坡面与沟道侵蚀产沙研究[M].气象出版社,1993,12.
    [53]雷阿林,唐克丽,王文龙.土壤侵蚀链概念的科学意义及其特征[J].水土保持学报,2000,14(3):79-83.
    [54]Horton RE,Leach HR,Vliet VR.Laminar sheet-flow.Transactions of the American Geophysical U-nion,1934,15:393-404.
    [55]Horton,R.E..Erosional development of streams and their drainage basins;Hydrophysical approach to quantitative morphology.Bull.Geol.Soc.Am.,1945,Vol.56,275-370.
    [56]Yoon N Y,Wenzel G H.Mechanics of sheet flow under simulate drainfall[J].ASCE,1971,97(9):1367-1386.
    [57]姚文艺.坡面阻力规律试验研究[J].泥沙研究,1996,3(1):74-81.
    [58]Abrahams A D,Gang Li Parsin A J.Rill hydraulics on a semiarid hillsope in the Southem Arizona[J].Earth Surface Process and Landforms,1996,21:35-47.
    [59]Foster G R,Meyer L D.A closed-form soil erosion equation for upland areas[A].In:Shen H W(ed.).Symposium of Sedimentation[C],Colorado:State Univ.,Ft.Collins.Co.,1972.12-19.
    [60]Gerard Govers.Relationship between discharge,velocity and flow area for rills eroding loose,non-layered materials[J].Earth Surface Processes and Landforms,1992,17:515-528.
    [61]Julien P Y,Simons D B.Sediment transport capacity of overland flow[J].Trans of ASAE.1985,28(3):775-761.
    [62]Lu J Y,Casol E A.Sediment transport relationships for shallow flow conditions[A].Proceedings of the fourth international symposium on river sedimentation[C].Beijing:China Ocean Press,1989.1923-1931.
    [63]Guy B T,Dickison W T,Rudra R P.The roles of rainfall and runoff in the sediment transport capacity of interrill flow[J].Transactions of the ASAE,1987,30:1378-1386.
    [64]Liebenow A M,Elliot W J,Laflen J M etal.Interrill erodibility:collection and analysis of data from cropland soils[J].Transctions of the ASAE,1990,33:1882-1888.
    [65]Rose C W,Willans J R.A mathematical model of soil erosion and deposition process[J].Soil Science Society of America Journal,1983,47:991-995.
    [66]Ellison W D.Soil erosion studies-Part Ⅰ:[J]Agric.Eng.,1947,28:145-146.
    [67]陈国祥.土壤侵蚀与流域产沙的物理过程及预报模型[A].全国泥沙基本理论研究学术讨论会会议论文集[C].北京:水利水电出版社,1992.242-243.
    [68]Meyer L D,Wischmeier W H.Mathematical simulation of the process of soil erosion by water[J].Trans ofASAE,1969,12:754-758.
    [69]Forster G R,Meyer L D,Onstad C A.An erosion equation derived from basic erosion principles[J].Trans.of ASAE.1977,20(4):678-672.
    [70]Ascogh J C,Baffaut C,Nearing M A.The WEPP watershed model:I Hydrology and erosion[J].Trans of the ASAE,1996,40(4):921-933.
    [71]Simpson.H.J.et al.Man-made radionuclides and sedimentations in the Hudson River estuary.Sciences 194:1976.179-183.
    [72]张信宝,李少龙,王成华.~(137)Cs测定梁峁坡农耕地土壤侵蚀初报[J].水土保持通报,1988,(5):5-8.
    [73]Cornett R.J.,L.A.Chant,B.A.Risto et al..Identifying suspended particles using isotope ratios[J].Hydrobiologia,1994,284:69-77.
    [74]Bruckmann Axel and Volkmar Wolters.Microbial immobilization and recycling of ~(137)Cs in the organic layers of forest ecosystems:relationship to environmental conditions,humification and invertebrate activity[J].The Science of the Total Environment,1994,157:249-256.
    [75]Papastefanou C.,M.Manolopoulou,S.Stoulos et al.Soil-to-plant transfer of ~(137)Cs,~(40)K and ~7Be[J].Journal of Environmental Radioactivity,1999,45:59-65.
    [76]Li Mian,Li Zhan-bin,Liu Pu-ling and Yao Wen-yi.Using cesium-137 technique to study the characteristics of different aspect of soil erosion in the wind-water erosion crisscross region on Loess Plateau of China[J].Applied Radiation and Isotopes,2005,62:109-113.
    [77]Owens P N,Walling D E,He Q,et al.Hydrological Sciences,1997,42:405-423.
    [78]万国江.~(137)Cs及~(210)Pbex方法湖泊沉积计年研究新进展地球科学进展[J].1995,10(2):188-192.
    [79]周佩华,田均良,刘普灵等.黄土高原土壤侵蚀与稀土元素示踪研究[J].水土保持研究,1997,4(2):2-9.
    [80]石辉,田均良,刘普灵,周佩华.利用REE示踪法研究小流域泥沙来源[J].中国科学E辑,1996,26(5):474-480.
    [81]杨明义,田均良,石辉等.核分析技术在土壤侵蚀研究中的应用,水土保持研究,1997,4(2):100-112.
    [82]张信宝,D.E.Walling,贺秀斌等.黄土高原小流域植被变化和侵蚀产沙的孢粉示踪研究初探[J].第四纪研究,2005,25(6):722-728.
    [83]张清春,刘宝元,翟刚.植被与水土流失研究综述[J].水土保持研究,2002,9(4):96-101.
    [84]王协康,方铎.植被措施控制水土流失机理及其效益研究[J].四川大学版学报(工程科学版),2000,32(3):13-16.
    [85]游珍,李占斌,蒋庆丰.植被在坡面的不同位置对降雨产沙量影响[J].水土保持通报,2006,26(6):28-31.
    [86]郭忠升.水土保持植被建设中的三个盖度:潜势盖度、临界盖度和有效盖度[J].中国水土保持,2000,(4):30-31.
    [87]沈玉芳,秦清军,吴永红.植被类型对黄土高原土壤侵蚀的影响研究[J].西北农业学报,2003,12(3):5-8.
    [88]游珍.不同土地利用格局对土壤侵蚀的影响[D].西北农林科技大学,2005.
    [89]李勇,张建辉,杨俊诚,等.陕北黄土高原陡坡耕地土壤侵蚀变异的空间格局[J].水土保持学报,2000,14(4):18-21.
    [90]王文龙,雷阿林,李占斌,等.黄土区不同地貌部位径流泥沙空间分布试验研究[J].农业工程学报,2003,19(4):40-43.
    [91]赵护兵,刘国斌,曹清玉.黄土丘陵区不同植被类型对水土流失的影响[J].水土保持研究,2004,11(2):53-55.
    [92]张永涛,王洪刚,李增印,王开增坡改梯的水土保持效益研究[J].水土保持研究,2001,8(3):9-11.
    [93]张涛,韩卫东.沟道侵蚀及泥石流[J].黑龙江水利科技,2005,33(2):54-55.
    [94]欧定良.岩土边坡稳定性分析方法综述[J].陕西科技,2006,(6):56-57.
    [95]江忠善,宋文经.黄河中游黄土丘陵沟壑区小流域产沙量计算[J].河流泥沙国际学术讨论会论文集.光华出版社,1980.
    [96]蒋德麒,赵诚信,陈章霖.黄河中游小流域泥沙来源初步分析[J].地理学报,1966,32(1):20-35.
    [97]龚时旸,熊贵枢.黄河泥沙的来源于输移[J].河流泥沙国际学术讨论会论文集.光华出版社,1980.
    [98]陈永宗.黄河中游黄土丘陵沟壑地区坡地的侵蚀发育[J].地理集刊,1976(10).
    [99]王光谦,李铁键,薛海,贺莉.流域泥沙过程机理分析[J].应用基础与工程科学学报,2006,14(4):55-62.
    [100]高建恩,杨世伟,吴普特,王广周,舒若杰.水力侵蚀调控物理模拟试验相似律的初步确定[J].农业工程学报.2006,22(1):27-31.
    [101]陈浩.黄河中游小流域的泥沙来源研究[J].土壤侵蚀与水土保持学报.,1999,5(1):19-26.
    [102]黄土高原地区土壤侵蚀区域特征及其治理途径[M].中国科学技术出版社,1990.
    [103]吕文舫,郭雪宝,柯葵.水力学[M].上海,同济大学出版社,1999:60-61.
    [104]吴普特,刘普灵.沟坡侵蚀REE示踪法试验研究初探[J].水土保持研究,1997,4(2):69-74.
    [105]李勉.坡沟系统草被覆盖及空间分布减蚀机理试验研究[D].西安理工大学.2004.
    [106]刘普灵,田均良.周佩华等.土壤侵蚀稀土元素示踪法操作技术研究[J].水土保持研究,1997,4(2):10-20.
    [107]李雅琦,刘普灵.土壤侵蚀示踪稀土元素的中子活化分析技术[J].水土保持研究,1997,4(2):21-25.
    [108]陆中臣.安塞县的侵蚀与地貌演化趋势预测[J].陈光伟主编.黄土高原遥感调查试验研究[M].北京:科学出版社,1989.201-202.
    [109]陈浩,Y.Tsui,蔡强国,L.G.Tham,胡文生,Z.Q.Yue,黄建国.沟道流域坡面与沟谷侵蚀演化关系——以晋西王家沟小流域为例[J].地理研究,2004,23(3):329-338.
    [110]龚时旸,蒋德麒.黄河中游黄土丘陵沟壑区沟道小流域的水土流失及治理[J].中国科学,1978,(6):671-678.
    [111]曾伯庆.晋西黄土丘陵沟壑区水土流失规律及治理效益[J].人民黄河,1980,(2):20-25.
    [112]徐雪良.韭园沟流域沟间地、沟谷地来水来沙量的研究[J].中国水土保持,1987,(8):23-26.
    [113]张科利.黄土坡面侵蚀产沙分配及其与降雨特征关系的研究[J].泥沙研究,1991,(4):39-45.
    [114]焦菊英,刘元宝,唐克丽.小流域沟间地与沟谷地径流泥沙来量的探讨[J].水土保持学报,1992,6(2):24-28.
    [115]吴普特.黄土高原动力水蚀系统研究的思路和框架[J].水土保持研究,1995,2(4):75-78.
    [116]G.R.Foster.L.D.Meyer,C.A.Onstad.An Erosion Equation Derived from Basic Erosion Principles[J].Trans of the ASAE.1997,20(4).
    [117]M.A.Nearing G.R.foster,L.Lane,S.C.Finker.A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology[J].Transactions of the ASAE,1989,32(5).
    [118]王宣,李占斌,丁文峰,刘峰.土壤剥蚀率与水流剪切力关系试验研究[J].沈阳农业大学学报,2004-10,35(5-6):592-594.
    [119]郑良勇.黄土地区陡坡水蚀动力过程试验研究[D].西北农林科技大学,2003.
    [120]江忠善,贾志伟,刘志.降雨和地形因素与坡地水土流失关系的研究黄土丘陵沟壑区水土保持型生态农业研究(上册)[M].陕西:杨凌天则出版社,1990:76-86.
    [121]丁文峰.黄土区坡面径流侵蚀动力过程试验研究[D],西北农林科技大学.2001.
    [122]LiZhanbin,LuKexin,DingWenfeng.Study on the Dynamic Process of Rill Erosionon Loess Slope Surface[J].International Journal of Sediment Research,2001,16(1):308-314.
    [123]李鹏,李占斌,郑良勇,鲁克新.坡面径流侵蚀产沙动力机制比较研究[J].水土保持学报,2005,19(3):66-69.
    [124]Bagnold R.An approach to the sediment transport problem from general physics[R].U.S.Geol.Surv.Prof.Paper,1966:422-437.
    [125]王宣,李占斌,李雯,郑良勇.土壤剥蚀率与水流功率关系室内模拟实验[J].农业工程学报,2006,22(2):185-187.
    [126]Yang C.T.Incipient motion and sediment transport[J].Journal of the Hydraulics Division,ASCE, 1973,99(10):919-934.
    [127]Moor,I.P.and G.I.Burch.Sediment transport capacity of sheet and rill flow:Application of unit stream power theory[J].Water Resources Research,1986,22(8),1350-1360.
    [128]Elliot W.J,.Laflen J M.A process-based rill erosion model[J].Trans ASAE,1993,36(1):65-72.
    [129]Nearing M A,Simanton J R,Norton L D,etal.Soil erosion by surface water flow on a stony,semiarid hillslope[J].Earth Surf Process Landforms,1999,24:677-686.
    [130]蔡强国.小流域侵蚀产流过程模型[A].第二届全国泥沙基本理论研究学术讨论会论文集[C].北京:中国水利水电出版社,1995:233-238.
    [131]张科利,唐克丽.黄土坡面细沟侵蚀能力的水动力学试验研究[J].土壤学报,2000,37(1):9-15.
    [132]张光辉,刘宝元,张科利.坡面径流分离土壤的水动力学试验研究[J].土壤学报,2002,39(6):882-886.
    [133]李占斌,鲁克新,丁文峰.黄土坡面土壤侵蚀动力过程试验研究[J].水土保持学报,2002,16(2):5-7,49.
    [134]唐克丽等.杏子河流域的土壤侵蚀方式及其分布规律[J].水土保持通报,1984(5).
    [135]范瑞瑜.黄土高原坝系工程的相对稳定性[J].中国水土保持科学,2005,3(3):103-109.
    [136]刘卓颖.黄土高原分布式水文模型的研究与应用[D].清华大学,2005.
    [137]付凌.黄土高原典型流域淤地坝减沙减蚀作用研究[D].河海大学,2007.
    [138]冉大川,刘斌,王宏.黄河中游典型支流水土保持措施减洪减沙作用研究[M].郑州:黄河水利出版社,2006.
    [139]黄河上中游管理局淤地坝试验研究北京中国计划出版社,2000.
    [140]方学敏,万兆惠,匡尚富.黄河中淤地坝拦沙机理及作用[J].水利学报.2002,26(10):49-52.
    [141]曾茂林 朱小勇 唐玲玲等.水土流失地区淤地坝的拦泥减蚀作用及发展前景[J].水土保持研究.1999,6(2):126-133.
    [142]孟庆枚.黄土高原水土保持[M].郑州:黄河水利出版社,1996.
    [143]康玲玲,吴卿,罗中伟.黄土高原水土保持生态环境建设生态效益监测方法探讨[J].水土保持通报,2004,24(3):40-44.
    [144]曹文洪,胡海华,吉祖稳.黄土高原地区淤地坝坝系相对稳定研究[J].水利学报,2007,38(5):606-610.
    [145]左仲国,董增川,王好芳.淤地坝系水资源系统分析模型研究[J].河海大学学报,2001,29(4):81-83.
    [146]龚时旸,熊贵枢.黄河泥沙来源和地区分布[J].人民黄河,1997,(1):66-68.
    [147]钱宁,王可钦,阎立德.黄河中游粗泥沙来源区对黄河下游的影响[J].第一次河流泥沙国际学术讨论会文集.北京:光华出版社,1980.
    [148]韩鹏,倪晋仁.黄河中游粗泥沙来源探析[J].泥沙研究,1997,(3):48-55.
    [149]王健,徐建华,龙虎,等.黄河中游水利水保工程对下游的影响[J].西北水资源与水工程,2002,13 (2):36-38.
    [150]魏霞,李占斌,沈冰,李勋贵,鲁克新.陕北子洲县典型淤地坝淤积过程和降雨关系的研究[J].农业工程学报,2006,22(9):80-84.
    [151]李江风,袁玉江,由希尧.树木年轮水文学研究与应用[M].北京:科学出版社,2000.
    [152]李占斌,符素华,鲁克新.秃尾河流域暴雨洪水产沙特性的研究[J].水土保持学报,2001,15(2):88-91.
    [153]李占斌,符素华,靳顶.流域降雨侵蚀产沙过程水沙传递关系研究[J].土壤侵蚀与水土保持学报,1997,3(4):44-49.
    [154]李占斌.黄土地区小流域次暴雨侵蚀产沙研究[J].西安理工大学学报,1996,12(3):177-183.
    [155]谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6-11.
    [156]张超,杨秉根.计量地理学基础(第2版)[M].北京:高等教育出版社,1993.145-153.
    [157]邓聚龙,灰色系统基本方法[M].华中理工大学出版社,1987:17-34.
    [158]Deng Julong.Essential Model for Grey Forecasting Control[J].The Journal of Grey System,1990,(1):1-10.
    [159]田永宏,郑宝明,王煜,陈增莲.黄河中游韭园沟流域坝系发展过程及拦沙作用分析[J].土壤侵蚀与水土保持学报,1999,5(6):24-28.
    [160]张金慧,徐立青.韭园沟流域坝系效益分析[J].人民黄河,2003,25(11):37-38.
    [161]任建斌,田永宏,郭玉梅.从韭园沟流域坝系实践看沟道相对稳定的发展前景[J].陕西水力发电,2002,18(4):47-49.
    [162]冉大川,左仲国,上官周平.黄河中游多沙粗沙区淤地坝拦减粗泥沙分析[J].水利学报,2006,37(4):443-450.
    [163]贾恒义.中国梯田的探讨[J].农业考古,2003,(1):156-162,174.
    [164]赵存兴主编.中国黄土高原地区坡耕地坡度分级数据库[M].海洋出版社,1990.
    [165]陆兆熊,蔡强国.黄土高原地区土壤侵蚀及土地管理研究进展[J].水土保持学报,1992,6(4):86-95.
    [166]焦菊英,王万中.黄土高原水平梯田质量及水土保持效果的分析[J].农业工程学报,1999,15(2):59-63.
    [167]张玉斌.黄土高原南部水平梯田环境效应研究[D].西北农林科技大学.2003.
    [168]徐乃民,张金慧.水平梯田蓄水减沙效益计算探讨[J].中国水土保持,1993(3):32-34.
    [169]卫三平.黄土丘陵沟壑区梯田系统雨水优化利用模式研究[D].西北农林科技大学,2005.
    [170]游修岭.中国稻作史[M].北京:中国农业出版社,1995.
    [171]刘忠义.古代梯田的称谓[J].陕西水利,2003,(1):46-47.
    [172]唐克丽.中国水土保持[M].北京:科学出版社,2004.
    [173]毛延寿.梯田史料[J].中国水土保持,1983(2):31-32.
    [174]高荣乐.黄河流域水土保持梯田建设[J].中国水土保持,1996,(10):30-32.
    [175]蒋定生.三川河和无定河流域的基本农田建设述评[J].水土保持学报,1989,3(4):61-66.
    [176]黄河水利委员会黄河中游治理局.黄河水土保持志[M].黄河志,卷八[C].郑州:河南人民出版社,1993.
    [177]唐克丽,张科利,雷阿林.黄土丘陵区退耕上限坡度的研究论证[J].科学通报,1998,43(2):200-203.
    [178]焦菊英,王万中,李靖.黄土丘陵区不同降雨条件下水平梯田的减水减沙效益分析[J].土壤侵蚀与水土保持学报,1999,5(3):59-63.
    [179]陈桂波.浅谈水平梯田在水土保持中的作用[J].吉林水利,2001,(9):22,33.
    [180]康玲玲,张宝,甄斌,董飞飞,刘红梅,王云璋.多沙粗沙区梯田对径流影响的初步分析[J].水力发电,2006,32(12):16-19.
    [181]Robert J L.Measurement methods for soil erosion.Progress in Physical Geography,1989(2):5-9.
    [182]Sharpley A N,Troeger W W,Smith S J.Themeasurement of bioavailable phosphorus in agricultural runoff.J.Environ.Qual.,1991,20:235-238.
    [183]M.利著,余新晓等译.侵蚀与环境[M].北京:中国环境科学出版社,1987.
    [184]焦菊英,王万中.黄土高原水平梯田质量对其减水减沙效益的影响[J].国土开发与整治,1999,9(4):52-56.
    [185]陈乃政,曲继宗,王征兰.晋西王家沟流域梯田综合效益调查初步分析[J].中国水土保持.
    [186]GB/T1645311-1996,坡耕地治理技术[S].
    [187]潘起来,牛晓君.土坎水平梯田最优断面设计[J].青海大学学报(自然科学版),2005,23(2):22-24.
    [188]刘洪波,菅瑞卿,郑合英.黄丘一区水平梯田田坎侧坡的稳定性研究[J].中国水土保持,2005,(11):39-40.
    [189]熊运阜,王宏兴,白志刚,田永宏.梯田、林地、草地减水减沙效益指标初探[J].中国水土保持,1996,8.10-14.
    [190]刘东海.小流域治理中的水平梯田效益分析[J].甘肃农业科技,1994,(2):28-29.
    [191]张永涛,王洪刚,李增印,王开增.坡改梯的水土保持效益研究[J].水土保持研究,2001,8(3):9-11.
    [192]刘绪军,刘丙友,景国臣,陈棣,周艳明.新修梯田对土壤理化性质及作物产量的影响[J].水土保持研究,2007,14(1):276-277.
    [193]刘海福.干旱地区提高新修梯田土地生产力的措施[J].甘肃科技,2006,22(1):178-179.
    [194]西北黄河工程局.西北黄土区坡地固体径流和液体径流形成过程的初步研究[J].黄河建设,1957,12:17-21.
    [195]罗来兴.甘肃华亭粮食沟坡面细沟侵蚀量的野外测定及其初步分析结果[J].地理学资料,1958,2:111-118.
    [196]牟金泽,等.陕北小流域产沙量预报及水土保持措施拦沙计算[M].北京:水利出版社,1981.
    [197]蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989,4:52-56.
    [198]蔡强国.黄土坡耕地上坡长对径流侵蚀产沙过程的影响[A].水土流失规律与坡地改良利用[M]. 北京:中国环境科学出版社,1995.
    [199]蔡强国.坡长对坡耕地侵蚀产沙过程的影响[J].云南地理环境研究,1998,10(1)::24-43.
    [200]郑宝明等编著.黄土丘陵沟壑区第一副区小流域坝系建设理论与实践[M].郑州:黄河水利出版社,2004.
    [201]张胜利,于一鸣,姚文艺,著.水土保持减水减沙效益计算方法[M].北京:中国环境科学出版社,1994.
    [202]刘汉喜,田永宏,程益民.绥德王茂沟流域淤地坝调查及坝系相对稳定规划[J].中国水土保持,1995,12:16-21
    [203]方学敏,曾茂林.黄河中游淤地坝坝系相对稳定研究[J].泥沙研究,1996,3:12-20.
    [204]范瑞瑜主编.黄土高原坝系生态工程[M].郑州:黄河水利出版社,2004.
    [205]唐克丽主编.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993.
    [206]张胜利,于一鸣,姚文艺,著.水土保持减水减沙效益计算方法[M].北京:中国环境科学出版社,1994.
    [207]魏霞,李占斌,沈冰,李勋贵,鲁克新.陕北子洲县典型淤地坝淤积过程和降雨关系的研究[J].农业工程学报,2006,22(9):80-84.
    [208]李江风,袁玉江,由希尧.树木年轮水文学研究与应用[M].北京:科学出版社,2000.
    [209]李占斌,符素华,鲁克新.秃尾河流域暴雨洪水产沙特性的研究[J].水土保持学报,2001,15(2):88-91.
    [210]李占斌,符素华,靳顶.流域降雨侵蚀产沙过程水沙传递关系研究[J].土壤侵蚀与水土保持学报,1997,3(4):44-49.
    [211]李占斌.黄土地区小流域次暴雨侵蚀产沙研究[J].西安理工大学学报,1996,12(3):177-183.
    [212]谢云,刘宝元,章文波.侵蚀性降雨标准研究[J].水土保持学报,2000,14(4):6-11.
    [213]张超,杨秉根.计量地理学基础(第2版)[M].北京:高等教育出版社,1993.145-153.
    [214]邓聚龙,灰色系统基本方法[M].华中理工大学出版社,1987:17-34.
    [215]Deng Julong.Essential Model for Grey Forecasting Control[J].The Journal of Grey System,1990,(1):1-10.
    [216]曹银真.黄土地区重力侵蚀的机理及预报[J],中国水土保持,1984.(4):19-22.
    [217]张信宝等.黄土高原重力侵蚀的地形与岩性组合因子分析[J].水土保持通报,1989,9(5):40-44.
    [218]朱同新,陈永宗.晋西黄土地区重力侵蚀产沙分区的模糊聚类分析[J].水土保持通报,1989,9(2):27-34.
    [219]付炜.土壤重力侵蚀灰色系统模型研究[J].土壤侵蚀与水土保持学报,1996,2(4):9-17.
    [220]姚文艺.坡面流阻力规律试验研究[J].泥沙研究,1996(1):74-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700