区域水土流失模型敏感性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
区域水土流失模型是在借鉴国外坡面和小流域土壤侵蚀模型、大尺度水文模型研究成果基础上,利用GIS空间分析和计算机软件工程建立起来的。本文以甘肃天水市藉河示范区为研究区,对改进后的区域水土流失模型进行了敏感性分析。
     建立了区域水土流失模型所需参数数据库,并对参数进行了质量评价和不确定性分析,力图为模型输入精准的参数。分别以不同栅格尺寸和不同时间段运行模型,分析其变化对模型模拟结果所产生的影响,根据结果确定了适用于本研究的栅格尺寸和时间段。在此基础上,用扰动分析法分析了模型参数的敏感性,验证了模型的稳定性和通用性,为完善模型提供了依据。本研究主要结论为:
     (1)基于ANUDEM5.1生成了研究区Hc-DEM,结果表明Hc-DEM可以为水文和土壤侵蚀模拟提供更有力的支持,尽可能的降低了DEM对模型带来的不确定性。解译TM遥感影像并反演得到叶面积指数。在对土壤稳渗速率空间插值不确定性分析的基础上,基于ESDA工具分析了各数据,以反距离权重法完成抗冲系数空间插值、以普通克里格法完成土壤稳渗速率空间插值、以简单克里格法完成降雨量空间插值;
     (2)通过在不同栅格尺寸下运行模型,分析了栅格大小变化对模型模拟结果的影响。结果表明:随着DEM栅格尺寸变小,坡度随之变缓,最大洼地拦蓄水量、径流速度、携沙能力也随之减小,导致输沙量减小。输沙量减小的趋势与坡度减小的趋势一致。模型效率受栅格尺寸的影响较大,栅格尺寸越小所需时间越长。在栅格尺寸为75m处模拟值有一明显的变化,通过分析初步确定适合本研究的栅格尺寸为75m,模型运行时间与栅格尺寸的关系式为:y=53.773e-0.4125x;
     (3)通过在不同时间段下运行模型,分析不同时间步长对模型模拟结果的影响。随着时间段增多,模型模拟值单元格径流深、剥蚀量、输沙量、径流量都呈减小趋势。时间段从1到30,模型运行时间增大,且模拟结果在时间段为4时有明显的改变。模型运行时间与时间段的关系式为:y=0.4966x+6.3266,综合考虑模型运行效率和模拟结果,初步选定模型时间段为4;
     (4)以扰动分析法分析了降雨量、叶面积指数、抗冲系数和土壤稳渗速率等四个参数的敏感性。通过四象限分析法分析,结果表明,四个参数对输沙量影响程度顺序为:降雨量﹥抗冲系数﹥土壤稳渗速率﹥叶面积指数;四个参数对径流量影响程度的顺序为:降雨量﹥土壤稳渗速率﹥叶面积指数﹥抗冲系数。降雨量对输沙量和径流量而言是最敏感的,且为正相关。抗冲系数对输沙量的模拟影响小于降雨量,对径流量无影响。土壤稳渗速率对径流量的影响大于对输沙量的影响。叶面积指数对模拟输沙量和径流量影响相对较为微弱。
Based on GIS spacial analysis and computer software engineering, the regional soil erosion model was established by using study results of foreign slope and small watershed soil erosion model and large-scale hydrology model as a source of reference. Taking Ji river demonstration zone as a study area in Tianshui city Gansu province, this paper analyzed the sensitivity of the improved regional soil erosion model. The Geodatabase for regional soil erosion model was established and parameters’quality and uncertainty were analyzed in order to make the parameters more accurate. This paper analyzed the effects of the simulation result caused by changes of different grid size and time, the result simulated by the model respectively, and then determined the suitable grid size and time period for this study. Based on this, the sensitivity of the input parameters was analyzed through disturbance method, the stability and commonality of the model was validated, which provided foundation for perfecting the model. The main results are:
     (1) Hydrologically correct DEM(Hc-DEM) was set up based on ANUDEM5.1 software. The result showed that Hc-DEM could provide powerful support for hydrology and regional soil erosion simulation, which decreased the model uncertainty resulted from DEM as much as possible. On the basis of analyzing the uncertainty of spatial interpolation for soil steady infiltration rates, and each data using ArcGIS Exploratory Spatial Data Analysis(ESDA). Spatial interpolation for erosion-resisting coefficient was completed with inverse distance weighting method, soil steady infiltration rates using ordinary Kriging method and rainfall using simple Kriging method.
     (2) By running regional soil erosion model the results caused by changes of grid size parameters was analyzed. The results showed that the slope became slower with the decrease in DEM grid size. Meanwhile, maximum depression storage, runoff velocity and transport capacity also reduced, which lessened sediment discharge. The trend of decrease in sediment discharge is consistant with the decrease in slope. The model efficiency was greatly influenced by grid size. The smaller the grid size, the longer time it required. As a result, there was a clear change in 75m, which was the appropriate size for this study.
     (3) The impacts of different time lengths on simulation model was analysed under different time period. The result showed that with time increasing, the value of the runoff depth, sediment discharge, denudation quantity, runoff was on the decrease. When the time period was from 1 to 30, the time for finishing running model became longer, and the simulation result had a significant change in the 4, the linear relationship between the running time of model and time period is y=0.4966x+6.3266. To consider the efficiency of model running and simulation result, 4 time period is the appropriate time period for the model.
     (4) The sensitivity of input parameters of was analyzed through antu-disturbance method. The experiment showed that rainfall is the most sensitive parameter to the sediment discharge and runoff, the erosion-resisting coefficient is less sensitive than rainfall for sediment discharge, but no influences on runoff, steady water infiltration rates is less effective to runoff. Comparatively speaking, the leaf area index had a weak impact on the sediment discharge and runoff.
引文
[1]陈雷.我国因水土流失年损失耕地百万亩[EB/OL]. http://www.mlr.gov.cn/xwdt/jrxw/200904 /t20090420_118446.htm,2009-4-26.
    [2]中华人民共和国水利部.土壤侵蚀分类分级标准.中华人民共和国行业标准SL190-2007[M].北京:中国水利水电出版社, 2008.
    [3]蔡强国,刘纪根.关于我国土壤侵蚀模型研究进展[J].地理科学进展,2003, 22(3):242-250.
    [4]杨勤科,李锐,曹明明.区域土壤侵蚀定量研究的国内外进展[J].地球科学进展,2006, 21(8):31-38.
    [5] De Roo, A.P.J.,C.G. Wesseling,C.J. Ritsema. LISEM: A single-event physically based hydrological and soil erosion model for drainage basins I: Theory, input and output[J]. Hydrological Processes,1996, 10(8):1107-1117.
    [6] Kirkby, M.J.,R. Abrahart,M.D. McMahon,et al. MEDALUS soil erosion models for global change[J]. Geomorphology,1998, 24(1):35-49.
    [7]刘宝元,史培军. WEPP水蚀预报流域模型[J].水土保持通报,1998, 18(5):6-12.
    [8] Veihe, A.,J. Quinton. Sensitivity analysis of EUROSEM using Monte Carlo simulation I: hydrological, soil and vegetation parameters[J]. Hydrological Processes,2000, 14(5):915-926.
    [9] de Jong, S.M.,M.L. Paracchini,F. Bertolo,et al. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data[J]. Catena,1999, 37(3-4):291-308.
    [10] Williams, M.,R.D. Yanai. Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model[J]. Plant and Soil,1996, 180(2):311-324.
    [11]崔琰,李锐,杨勤科,等.基于GIS的区域土壤侵蚀模型设计[J].中国水土保持科学,2009, 7(1):32-36.
    [12]姚文艺,陈界任,秦奋.黄河多沙粗沙区分布式土壤流失模型研究[J].水土保持学报,2008, 22(4):21-26.
    [13] Diodato, N.,G. Bellocchi. Estimating monthly (R)USLE climate input in a Mediterranean region using limited data[J]. Journal of Hydrology, 2007, 345(3-4):224-236.
    [14] De Roo, A.P.J.,J.E. Offermans. LISEM: A single- event physically based hydrological and soil erosion model for drainage basins II: Sensitivity analysis, validation and application[J]. HYDROLOGICAL PROCESSES,1996, 10(8):1119-1126.
    [15] Lu, H.,C.L.a. Water. Prediction of Sheet and Rill Erosion Over the Australian Continent, Incorporating Monthly Soil Loss Distribution[R]. Canberra:CSIRO Land and Water, 2001.
    [16] Batjes, N.H. Global assessment of land vulnerability to water erosion on a 1/2 degree by 1/2 degree grid[J]. Land Degradation & Development,1996, 7(4):353-365.
    [17] Yang, D.,S. Kanae,T. Oki,et al. Global potential soil erosion with reference to land use and climate changes[J]. Hydrological Processes,2003, 17(14):2913-2928.
    [18] van der Knijff, J.M.,R.J.A. Jones,L. Montanarella,et al. Soil Erosion Risk Assessment in Italy [M]. European Soil Bureau: Joint Research Center of the European Commission, 2000.
    [19] Nusser, S.M.,J.J. Goebel. The National Resources Inventory: a long-term multi-resource monitoring programme[J]. Environmental and Ecological Statistics,1997, 4(3):181-204.
    [20] Zhang, X.,N.A. Drake,J. Wainwright,et al. Comparison of slope estimates from low resolution DEMs:scaling issues and a fractal method for their solution[J]. Earth Surface Processes and Landforms,1999, 24(9):763-779.
    [21] Dawdy, D.R.,T. O’Donnell. Mathematical models of catchment behavior[J]. Journal of Hydraul.Div.,American Society of Civil Engineers,1965, 91:113-137.
    [22] Kirkby, M.J.,Y. Le Bissonais,T.J. Coulthard,et al. The development of land quality indicators for soil degradation by water erosion[J]. Agriculture, Ecosystems and Environment,2000, 81(2):125-135.
    [23]刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持通报,2001, 21(1):57-59.
    [24]刘新华,张晓萍,杨勤科,等.不同尺度下影响水土流失地形因子指标的分析与选取[J].西北农林科技大学学报(自然科学版),2004, 32(6):107-111.
    [25]汪邦稳,杨勤科,刘志红,等.基于DEM和GIS的修正通用土壤流失方程地形因子值的提取[J].中国水土保持科学,2007, 5(2):18-23.
    [26]师维娟,杨勤科,赵东波,等.中分辨率水文地貌关系正确DEM建立方法研究——以黄土丘陵区为例[J].西北农林科技大学学报(自然科学版),2007, 35(2):143-148.
    [27]杨勤科,T.R. McVicar,T.G. VanNiel,等.用ANUDEM建立水文地貌关系正确DEM的方法研究[J].测绘科学,2006, 31(6):155-157.
    [28]杨勤科,R.M. Tim,G.V. Tom,等. ANUDEM和TIN两种建立DEM方法的对比研究[J].水土保持通报,2006, 26(6):84-88.
    [29]杨勤科,R.M. Tim,李领涛,等. ANUDEM—专业化数字高程模型插值算法及其特点[J].干旱地区农业研究,2006, 24(3):36-41.
    [30]张彩霞,杨勤科,段建军.高分辨率数字高程模型的构建方法[J].水利学报,2006, 37(8):1009-1014.
    [31]郭伟玲,杨勤科,汪翠英,等.适用于地形复杂地区水土流失评价的高分辨率DEM建立方法[J].干旱地区农业研究,2008, 26(3):246-252.
    [32]韦红波,李锐,杨勤科.我国植被水土保持功能研究进展[J].植物生态学报,2002, 26(4):489-496.
    [33]张科利,蔡永明,刘宝元,等.土壤可蚀性动态变化规律研究[J].地理学报,2001, 56(6):673-681.
    [34]卜兆宏,李全英.土壤可蚀性(K)值图编制方法的初步研究[J].农村生态环境(学报),1995, 11(1):5-9.
    [35]黄义端.我国几类主要地面物质抗侵蚀性能初步研究[J].中国水土保持,1980, (1):41-43.
    [36]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社, 1997.
    [37]张爱国,张平仓,杨勤科.区域水土流失土壤因子研究[M].北京:地质出版社, 2003.
    [38]雷俊山,杨勤科.坡面薄层水流侵蚀试验研究及土壤抗冲性评价[J].泥沙研究,2004, 12(6):22-26.
    [39]雷俊山,杨勤科.土壤因子研究综述[J].水土保持研究,2004, 11(2):156-159.
    [40]雷俊山,杨勤科,郑粉莉.黄土坡面细沟侵蚀试验研究及土壤抗冲性评价[J].水土保持通报,2004, 4(2):1-4.
    [41]章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征[J].山地学报,2003, 21(1):33-40.
    [42]王万忠,焦菊英.黄土高原侵蚀产沙强度的时空变化特征[J].地理学报,2002, 57(2):210-217.
    [43]任洪玉,杨勤科,韩琳,等.全国水文计算单元空间数据库的建立与应用[J].水土保持通报,2003, 23(3):55-59.
    [44]韦红波,任红玉,杨勤科.中国多年平均输沙模数的研究[J].泥沙研究,2003, (1):39-44.
    [45] Wu, S.,J. Li,G. Huang. An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models[J]. Environmental Modeling and Assessment,2005, 10(1):33-42.
    [46] Matthews, C.,D. Newton,R. Braddock,et al. Analysing the sensitivity behaviour of two hydrology models[J]. Environmental Modeling and Assessment,2007, 12(1):27-41.
    [47] Roo, A.P.J.D.,R.J.E.O.N.H.D.T. Cremers. LISEM: A single-event, physically based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application[J]. Hydrological Processes,1996, 10(8):1119-1126.
    [48] Baffaut, C.,M.A. Nearing,J.C. Ascough, II,et al. The WEPP watershed model: II. Sensitivity analysis and discretization on small watersheds[J]. Transactions of the ASAE,1997, 40(4):935-943.
    [49] Tiscareno-Lopez, M.,V.L. Lopes,J.J. Stone,et al. Sensitivity analysis of the WEPP watershed model for rangeland applications I: Hillslope processes[J]. Transactions of the ASAE,1993, 36(6):1659-1672.
    [50] Tiscareno-Lopez, M.,V.L. Lopes,J.J. Stone,et al. Sensitivity analysis of the WEPP watershed model for rangeland applications. II. Channel processes[J]. Transactions of the ASAE,1994, 37(1):151-158.
    [51] Muleta, M.K.,J.W. Nicklow. Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model[J]. Journal of Hydrology,2005, 306(1-4):127-145.
    [52] Holvoet, K.,A. van Griensven,P. Seuntjens,et al. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT[J]. Physics and Chemistry of the Earth, Parts A/B/C,2005, 30(8-10):518-526.
    [53] Veihe, A.,J. Quinton,J. Poesen. Sensitivity analysis of EUROSEM using Monte Carlo simulation II: the effect of rills and rock fragments[J]. Hydrological Processes,2000, 14:927-939.
    [54] Diodato, N.,G. Bellocchi. Estimating monthly (R) USLE climate input in a Mediterranean region using limited data[J]. Journal of Hydrology,2007, 345(3-4):224-236.
    [55] Fu, B.J.,W.W. Zhao,L.D. Chen,et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study in the Loess Plateau of China[J]. Land Degradation & Development,2005, 16(1):73-85.
    [56] Ii, J.C.A.,C. Baffaut,M.A. Nearing,et al. The WEPP Watershed Model: I. Hydrology AND Erosion[J]. Transactions of the ASAE,1997, 40(4):921-933.
    [57] Liu, B.Y.,M.A. Nearing,C. Baffaut,et al. The WEPP watershed model: III. Comparisons to measured data from small watersheds[J]. Transactions of the ASAE,1997, 40(4):945-952.
    [58] ITC. LISEM Model[EB/OL]. http://www.itc.nl/lisem/container_download.html,2008-1-5.
    [59] Rosenbrock, H.H. An automatic method for finding the greatest or least value of a function[J]. The Computer Journal,1960, 3(3):175-184.
    [60]李向阳.水文模型参数优选及不确定性分析方法研究[D].大连:大连理工大学,2006.
    [61]谭炳卿.水文模型参数自动优选方法的比较分析[J].水文,1996, (5):8-14.
    [62] Duan, Q.,S. Sorooshian,V.K. Gupta. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology(Amsterdam),1994, 158(3):265-284.
    [63]刘昌明,李道峰,田英,等.基于DEM的分布式水文模型在大尺度流域应用研究[J].地理科学进展,2003, 2(5):437-445.
    [64]刘昌明,夏军,郭生练,等.黄河流域分布式水文模型初步研究与进展[J].水科学进展,2004, 15(4):495-500.
    [65]石朋,芮孝芳,瞿思敏,等.一个网格型松散结构分布式水文模型的构建[J].水科学进展,2008, 19(5):662-670.
    [66]王光谦,刘家宏,李铁键.黄河数字流域模型原理[J].应用基础与工程科学学报,2005, 13(1):1-8.
    [67]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅰ)——模型开发与验证[J].水利学报,2006, 37(5):534-542.
    [68]贾仰文,王浩,严登华.黑河流域水循环系统的分布式模拟(Ⅱ)——模型应用[J].水利学报,2006, 37(6):655-661.
    [69]马海波,董增川,张文明,等. SCE-UA算法在TOPMODEL参数优化中的应用[J].河海大学学报(自然科学版),2006, 34(4):361-365.
    [70]孙翠梅,刘晶淼. TOPMODEL在水阳江流域的应用及模型对DEM的敏感性检验[J].中国农村水利水电,2007, (2):102-105.
    [71]王中根,夏军,刘昌明,等.分布式水文模型的参数率定及敏感性分析探讨[J].自然资源学报,2007, 22(4):649-655.
    [72]王中根,郑红星,刘昌明,等.基于GIS/RS的流域水文过程分布式模拟——Ⅰ模型的原理与结构[J].水科学进展,2004, 15(4):501-505.
    [73]郑红星,王中根,刘昌明,等.基于GIS/RS的流域水文过程分布式模拟——Ⅱ模型的校检与应用[J].水科学进展,2004, 15(4):506-510.
    [74]庞靖鹏,刘昌明,徐宗学.基于SWAT模型的径流与土壤侵蚀过程模拟[J].水土保持研究,2007, 14(6):89-95.
    [75]王海龙,余新晓,武思宏,等. SWAT模型灵敏度分析模块在黄土高原典型流域的应用[J].北京林业大学学报,2007, 29(S2):238-242.
    [76]张续军,吴志勇,陆桂华. VIC模型参数的敏感性分析[EB/OL]. http://www.paper.edu.cn/en/down loadpaper.php?serial_number=200603-343&type=1,2007-12-20.
    [77]李致家,周轶,哈布·哈其.新安江模型参数全局优化研究[J].河海大学学报:自然科学版,2004, 32(4):376-379.
    [78]刘毅,陈吉宁,杜鹏飞.环境模型参数识别与不确定性分析[J].环境科学,2002, 23(6):6-10.
    [79]朱新军,王中根,李建新,等. SWAT模型在漳卫河流域应用研究[J].地理科学进展,2006, 25(5):105-111.
    [80]邓义祥,王琦,赖斯芸,等.优化、RSA和GLUE方法在非线性环境模型参数识别中的比较[J].环境科学,2003, 24(6):9-15.
    [81] Kim, S.,J.W. Delleur. Sensitivity analysis of extended TOPMODEL for agricultural watersheds equipped with tile drains[J]. Hydrological Processes,1997, 11(9):1243-1261.
    [82] Sieber, A.,S. Uhlenbrook. Sensitivity analyses of a distributed catchment model to verify the model structure[J]. Journal of Hydrology,2005, 310(1-4):216-235.
    [83] Beven, K.,J. Freer. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology[J]. Journal of Hydrology,2001, 249(1-4):11-29.
    [84]李胜,梁忠民. GLUE方法分析新安江模型参数不确定性的应用研究[J].东北水利水电,2006, 24(2):31-33.
    [85] McKay, M.D.,R.J. Beckman,W.J. Conover. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code[J]. Technometrics,2000, 42(1):55-61.
    [86] van Griensven, A.,T. Meixner,S. Grunwald,et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models[J]. Journal of Hydrology,2006, 324(1-4):10-23.
    [87] Thiemann, M.,M. Trosset,H. Gupta,et al. Bayesian recursive parameter estimation for hydrologicmodels[J]. Water Resources Research,2001, 37(10):2521-2535.
    [88]史文中.空间数据与空间分析不确定性原理[M].北京:科学出版社, 2005.
    [89] Goodchild, M.F. Issues of quality and uncertainty[J]. Advances in cartography,1991, 113-140.
    [90]承继成,郭华东,史文中.遥感数据的不确定性问题[M].北京:科学出版社, 2004.
    [91]赵人俊.流域水文模型的比较分析研究[J].水文,1989, (6):1-5.
    [92]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社, 2004.
    [93]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997, 8(1):94-98.
    [94]王德,傅伯杰,赵文武,等.土壤侵蚀模型研究中的几个问题[J].干旱区地理,2007, 30(3):406-413.
    [95]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验和教训[J].科学通报,1955, (12):15-12.
    [96]程凯.关于“耤”字的几点说明[EB/OL]. http://www.tsrb.com.cn/tsrb/content/20090111/Articel01005 TB.htm,2009-4-20.
    [97]李子伟.被复杂化了的方言——我也谈谈“藉河”的用字[EB/OL]. http://www.tsrb.com.cn/tsrb /content/20090215/Articel03001TB.htm,2009-4-20.
    [98]马建东.关于地名、水名用字之我见——也谈“藉河”的用字[EB/OL]. http://www.tsrb.com.cn/tsrb /content/20090118/Articel03003TB.htm,2009-4-20.
    [99]黄河水利委员会天水水土保持科学试验站.黄土丘陵沟壑第三副区水土流失原型观测及规律研究[M].郑州:黄河水利出版社, 2004.
    [100]崔琰,李锐,杨勤科.基于GIS的区域水土流失模型初步研究[J].西安文理学院学报:自然科学版,2006, 9(2):5-8.
    [101]姚志宏,杨勤科,吴喆,等.区域尺度侵蚀产沙估算方法研究[J].中国水土保持科学,2007, 5(4):13-17.
    [102]吴喆.基于GIS的区域水土流失模型设计与开发[D].西安:西北大学,2006.
    [103]张宏鸣.基于GIS的区域水土流失模型的优化与改进[D].陕西杨凌:西北农林科技大学,2008.
    [104]杨勤科,李锐,徐涛,等.区域水土流失过程及其定量描述的初步研究[J].亚热带水土保持,2006, 18(2):20-23.
    [105]姚志宏,杨勤科,吴喆,等.区域尺度降雨径流估算方法研究Ⅰ-算法设计[J].水土保持研究,2006, 13(5):306-308.
    [106]刘光.地理信息系统二次开发教程——组件篇[M].北京:清华大学出版社, 2003.
    [107] Cameron, E.,C. Davies. ArcGIS Engine Developer Guide[M]. New York: Environment systems Research Institute, Inc, 2004.
    [108]刘任义,刘南. AcrGIS开发宝典——从入门到精通[M].北京:科学出版社, 2006.
    [109]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社, 2000.
    [110]商瑶玲,王东华,吉建培,等.国家1:50 000地形数据库的数据设计与建库[J].测绘科学,2006,增刊.
    [111]王东华,吉建培,刘建军,等.论国家1:50 000数字高程模型数据库建设[J].地理信息世界,2003, 1(2):12-15.
    [112] Geoway数据加工平台用户手册[Z].北京吉威数源软件开发有限公司.
    [113] Hutchinson, M.F. ANUDEM version 5.1 User Guide[M]. Canberra:Centre for Resource and Environmental Sutdies: The Australian National University, 2004.
    [114] National Mapping Program Technical Instructions. Digital Elevation Model Standards[EB/OL]. http://rockyweb.cr.usgs.gov/nmpstds/demstds.html,2008-9-28.
    [115]方秀琴,张万昌.叶面积指数(LAI)的遥感定量方法综述[J].国土资源遥感,2003, (3):58-62.
    [116]常庆瑞,蒋平安,周勇,等.遥感技术导论[M].北京:科学出版社, 2004.
    [117] Lu, H.,M.R. Raupach,T.R. McVicar,et al. Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series[J]. Remote Sensing of Environment,2003, 86(1):1-18.
    [118] Yang, Q.,T.G. Van Niel,T.R. McVicar,et al. Developing a digital elevation model using ANUDEM for the Coarse Sandy Hilly Catchments of the Loess Plateau, China[R]. Canberra:CSIRO Land and Water, 2005.
    [119]蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986, 23(4):299-305.
    [120]蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试[J].水土保持通报,1984, 4(4):7-9.
    [121]曾光.基于GIS区域水土流失模型土壤抗侵蚀性因子研究[D].陕西杨凌:中国科学院水利部水土保持研究所,2008.
    [122]程新文,陈性义.手持式GPS定位精度研究[J].测绘通报,2004, (9):20-22.
    [123]陈俊勇.中国现代大地基准——中国大地坐标系统2000(CGCS2000)及其框架[J].测绘学报,2008, 37(3):269-271.
    [124]姜明,张义军.手持式GPS接收机应用中坐标系统的转换[J].林业调查规划,2008, 33(1):7-10.
    [125]朱会义,刘述林,贾绍凤.自然地理要素空间插值的几个问题[J].地理研究,2004, 23(4):425-432.
    [126]李艳,史舟,徐建明,等.地统计学在土壤科学中的应用及展望[J].水土保持学报,2003, 17(1):178-182.
    [127]连纲,郭旭东,傅伯杰,等.黄土高原县域土壤养分空间变异特征及预测——以陕西省横山县为例[J].土壤学报,2008, 45(4):577-584.
    [128]汤国安,杨昕. ArcGIS地理信息系统空间分析试验教程[M].北京:科学出版社, 2006.
    [129]吴秀芹,张洪岩,李瑞政,等. ArcGIS 9地理信息系统应用与实践(下册)[M].北京:清华大学出版社, 2007.
    [130]汪翠英,杨勤科,郭伟玲,等.区域水土流失研究中降雨量空间插值方法选取[J].水土保持研究,2008, 15(2):88-91.
    [131]朱会义,贾绍凤.降雨信息空间插值的不确定性分析[J].地理科学进展,2004, 23(2):34-42.
    [132]张雪松,郝芳华,杨志峰,等.径流模拟对DEM分辨率的敏感性分析[J].水土保持通报,2004, 24(1):32-35.
    [133]吴险峰,刘昌明,王中根.栅格DEM的水平分辨率对流域特征的影响分析[J].自然资源学报,2003, 18(2):148-154.
    [134]吴军,张万昌. DEM分辨率对AVSWAT2000径流模拟的敏感性分析[J].遥感信息,2007, (3):8-13.
    [135]程媛华.基于不同DEM空间分辨率的TOPMODEL研究[D].南京:河海大学,2005.
    [136]任希岩,张雪松,郝芳华,等. DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004, 11(1):1-4.
    [137]汪翠英.区域水土流失模型敏感性分析[D].陕西杨凌:西北农林科技大学,2008.
    [138]石朋,芮孝芳.降雨空间插值方法的比较与改进[J].河海大学学报:自然科学版,2005, 33(4):361-365.
    [139]刘志红,L. Lingtao,T.R. McVicar,等.专用气候数据空间插值软件ANUSPLIN及其应用[J].气象,2008, 34(2):92-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700