河流渗滤系统对已污染河水净化作用的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是生命之源,随着世界范围的环境污染问题越来越受到广泛的关注,许多国家的地表水体都已不同程度地受到“三氮”和苯胺的污染。河流渗滤系统对入渗的地表水有一定的净化作用,目前国内外许多学者都在致力于这方面的研究,然而河流渗滤系统对氮和苯胺的去除机理研究未见报道,这是本文立项的依据。本文采用自行设计的室内土柱实验装置来模拟渭河渗滤系统,模拟研究了含有氮和苯胺污染的河水在渭河渗滤系统中的环境行为及净化机制,建立氮和苯胺在渗滤系统中迁移转化的数学模型,采用定性分析与定量分析相结合的方法,得到了一些重要结论与认识,对保护地下水资源,指导已污染河水入渗地下水的净化措施等具有重要理论价值和实践意义。
     1.作者对河流渗滤系统作了定义和解释。
     2.首次开展了含有氮污染的河水在模拟的渭河渗滤系统中的净化机制及净化效果的研究,不同结构的渗滤系统其净化效果及机制差异很大。
     ①NH_4~+-N在渭河渗滤系统中的环境行为包括阳离子交替吸附作用、硝化作用、反硝化作用,三者对氮的损失都有一定的贡献作用,其中反硝化作用引起氮损失量较大。
     ②由于NH_4~+-N的阳离子交替吸附作用以及硝化作用,使地下水钙镁离子浓度增加,引起地下水硬度的升高,对地下水环境产生负效应。
     ③影响矿化作用的因素很多,主要包括有机质含量、沉积层厚度、温度等等。有机质的矿化行为结果不仅引起地下水NH_4~+-N浓度的升高,而且引起地下水硬度升高。
     ④土柱渗滤系统中NO_3~--N的环境行为主要是反硝化作用。土柱渗滤系统中反硝化作用很强烈,对NO_3~--N的净化效果很好。而砂柱渗滤系统反硝化作用很微弱,对NO_3~--N的去除效果很差。
     ⑤氮在渗滤系统中的迁移转化过程,一般不会引起渭河渗滤系统的生物堵塞问题。
     3.首次开展含有苯胺污染的河水在模拟的渭河渗滤系统中的净化机制及净化效果的研究,不同结构的渗滤系统其净化效果及机制也不同。
     ①苯胺在土柱渗滤系统中的环境行为包括吸附作用和生物降解作用。真正去除苯胺的作用是生物降解作用。
     ②在以硝酸根为电子受体的情况下,苯胺在土柱渗滤系统中的生物降解能力很高,苯胺去除率达到100%,系统的反硝化作用同样也很强烈。砂柱渗滤系统中苯胺生物降解作用较微弱,苯胺的去除率为50%,以好氧生物降解为主。
     ③在厌氧环境中,以硫酸根作为电子受体的情况下,苯胺在渭河渗滤系统中生物降解作用不彻底,苯胺的去除率为76%。
    
     ④两种电子受体的反应能量不同,它们作为电子受体时,使苯胺降解程度存在很大
    差异。苯胺在以硝酸根为电子受体情况下降解完全,而硫酸根作为电子受体降解苯胺的
    情况不如硝酸根理想。
     ⑤苯胺通过渭河渗滤系统入渗时,易造成空隙的生物堵塞想象,但不是很严重。
     4.首次用数学模型模拟氨氮和苯胺在渗滤系统中的环境行为,得到下面几点认识:
     ①建立氨氮迁移转化的数学模型,通过求参得到确定性迁移方程,预测不同时间、
    不同深度氨氮相对浓度的变化情况,模型预测结果较合理,证明了氨氮数学模拟与所求
    参数可信。
     ②以硫酸根为电子受体的苯胺渗滤实验中,建立苯胺迁移转化的数学模型,通过求
    参得到确定性迁移方程,预测不同时间、不同深度苯胺相对浓度的变化情况,预测结果
    合理,说明苯胺数学模型和所求参数基本可信,可以用于指导野外实践
     ③用均衡法定量论述了硝态氮在不同结构的渗滤实验中,其反硝化能力存在很大差
    异。同样用均衡法定量说明以硝酸根为电子受体的土柱渗滤实验中,苯胺的生物降解作
    用的强度和反硝化作用的程度均很大。
Water is the resource of life, the more serious the environment is polluted, and the more people pay attention to the problem. Surface water in many countries is polluted by three nitrogen and aniline in different degree. River filtration systems purify surface water flowing through this system. At present, the research of the aspect is concerned by many scholars. However, purification mechanism has been not reported that river filtration system removes nitrogen and aniline, which is the basis of building item of this paper. The infiltration experiment instruments of laboratory soil column with river bed sediments or aquifer material the author used is designed and made by herself, the author regard it as Wei River filtration system, simulate and study environmental behavior and purification mechanisms of nitrogen and aniline penetrating into river filtration system. By modeling of migration and translation of nitrogen and aniline in filtration system, adopting method of combining qualitative analysis with q
    uantitative analysis, the author draws important conclusions and cognition, which is important of protecting groundwater resource, and has theory meaning and practice importance of studying the purification measure of groundwater of filtration contaminated river water.
    1. The author defines river filtration system.
    2. For researching of purification function and effect of river water contaminated by nitrogen in Wei River filtration system for the first time. The difference of mechanism and effect is great in different filtration system.
    (1)Environment behavior of ammonium-nitrogen in river filtration system includes cation exchange reaction, nitrification, denitrification, all of which have contribution to nitrogen loss. Nitrogen loss quantity caused by denitrification is the most.
    (2)The results of cation exchange and nitrification increase concentration of calcium and magnesium of output solution, add the hardness of groundwater, and bring environmental negative effect.
    (3)The factors affected on ammonification are organic content, thickness of sediments, temperature and so on. High ammonium-nitrogen concentration and hardness of groundwater result from mineralization of organic nitrogen.
    
    
    (4)Denitrification is dominant reaction of behavior of nitrate-nitrogen in soil column infiltration system. Evidence has been obtained that denitrification is great in soil column filtration system. The removal rate of nitrate-nitrogen arrives at 100 percent, but the removal efficiency is bad in sand column with aquifer material, in which denitrification is very wear.
    (5)the migration of nitrogen in river filtration system cannot result in biologic jam of interstitial.
    3. For studying of purification mechanism and effect of river water contaminated by aniline in Wei River filtration system for the first time. The difference of mechanism and effect is great in different filtration system.
    (1)The biogeochemistry reaction of aniline in river soil column filtration system is absorption and biodegradation, in which the biodegradation is major role in removing aniline actually.
    (2)It is clear aniline is degraded with nitrate as electron acceptor in soil column with Wei River bed sediments, and its bacteria degradation capability is very high. Anaerobic degradation of aniline is dominant. The experiments results have demonstrated that aniline is removed completely, its removal rate is 100 percent, and removal rate of nitrate is also 100 percent. In sand column filtration system, aniline biodegradation is very feeble; the removal rate of aniline is only 50 percent. It is aerobic biodegradation.
    (3)In reducing condition, biodegradation of aniline is incomplete under sulfate reducing condition; the purification rate is only 76 percent.
    (4)There are difference in reactive energetic of two electron acceptors. With sulfate and nitrate as electron acceptor, aniline biodegradation degree is different; the experiments have testified that biodegradation of aniline under nitrate reducing condition is superiority on sulfate electro
引文
[1].李佩成,试论人类水事活动的新思维,中国工程科学,2002,2 (2)
    [2].李金荣等,变差函数在底板标高估值中的应用,西安工程学院学报,2002,24 (4)
    [3].李金荣,李云峰,两种方法在地下水位估值中的应用,水文地质工程地质,2003 (3)
    [4].李云峰等,向西安调水对原受益区生态环境影响研究,西安工程学院学报,2001,23 (2)
    [5].郭建青,李云峰,钱会,一维河流水质方程解析解形态的初步分析,水文,1999 (6)
    [6].周少奇,周吉林,范家明,同时硝化反硝化生物脱氮技术研究进展[J],环境技术,2002 (2)
    [7].徐亚同,pH值、温度对反硝化的影响fJ],中国环境科学,1994,14 (4)
    [8].史家梁,徐亚同,张明,谢冰,充分发挥微生物技术在污染治理中的作用[J],环境保护,2000(10)
    [9].徐亚同,废水的硝化作用,环境科学进展[J],1994,2 (3)
    [10].徐亚同,生物反硝化除氮研究,环境科学学报[J],1994,14 (4) 周爱国,蔡鹤生,刘存富,硝酸盐中15N和18O的测试新技术及其在地下水氮污染防治研究中的进展[J],地质科技情报,2001,20 (4)
    [11].巨晓棠,李生秀,培养条件对土壤氮素矿化的影响[J],西北农业学报,1997,6 (2):64-67
    [12].巨晓棠,张福锁,中国北方土壤硝态氮的累积及其对环境的影响[J],生态环境,2003,12 (1)
    [13].杜建军,李生秀,李世清,高亚军,徐会善,不同肥水条件对旱地土壤供氮能力的影响[J],西北农业大学学报,1998,26 (6)
    [14].李世清,凌莉,李生秀,影响土壤中微生物体氮的因子[J],土壤与环境,2000,9(2):158-162
    [15].李世清,李生秀,有机物料在维持土壤微生物体氮库中的作用[J],生态学报,2001,21 (1)
    [16].蒋展鹏,杨宏伟,师绍琪,有机化合物厌氧生物降解性的测定[J],给水排水,1999,25 (6)
    [17].吴行知,师绍琪,蒋展鹏,杨宏伟,管运涛,有机物厌氧生物降解性研究[J],给水排水,2000,26 (7)
    [18].祝万鹏,杨津湘,杨志华,蒋展鹏,氨氮在饱水粉砂土和亚砂土层中吸附过程及其模拟[J],环境科学,1996,17 (2)
    [19].祝万鹏,陈燕波,杨志华,蒋展鹏,酚在饱水亚砂土层中迁移转化的研究[J],环境科学,1993,15 (5)
    [20].宋静,骆永明,赵其国,朱荫湄,吴龙华,吴胜春,沉积物——水界面营养盐释放研究[J],土壤学报,2000,37 (4)
    [21].庄恒扬,曹卫星,任正龙,黄丽芬,土壤有机氮矿化与有机物氮素释放的动态模拟[J],扬州大学学报(农业与生命科学版),2002,23 (2)
    [22].郑金来,李君文,晁福寰,苯胺、硝基苯和三硝基甲苯生物降解研究进展[J],微生物学通报,2001,28 (5)
    [23].任源,韦朝海,肖美兰,苯胺废水的生物降解性能研究[J],华南理工大学学报(自然科学版),1999,27 (7)
    [24].杨绍贵,赵元慧,程香菊,陆光华,雷彩虹,孟庆俊,部分取代苯定量结构.生物降解相关性(QSBR)研究[J],东北师大学报自然科学版,2000,32 (4)
    [25].张海连,刘孝波,可生物降解聚酯酰胺的合成及其对药物缓释作用的研究[J],合成化学,2002(10)
    [26].冯旭东,戴猷元,取代苯胺的生物降解性研究[J],水处理技术,2002,28 (5)
    [27].赵元慧,杨绍贵,松花江中取代苯酚和苯胺类的生物降解性及QSBR研究,环境科学学报[J],2002,22 (1)
    
    
    [28].陆光华,李玉梅,松花江中有机污染物的生物降解性预测[J],水资源保护,2003 (2)
    [29].韦朝海,任源,谢波,吴超飞,陈惠中,陈焕钦,硝基苯与苯胺类废水生物降解协同作用研究[J],环境科学研究,1999,12 (3)
    [30].韦朝海,任源,吴超飞,谢波,陈惠中,专性好氧菌降解苯胺废水的动力学研究[J],环境科学研究,1999,12 (21)
    [31].童智尤,周集体,陈毓琛,有机污染物在大连近海海水中生物降解速度的研究[J],环境科学,1997 (18)
    [32].周集体,黄丽萍,王竞,张劲松,吕红,芳香族硝基化合物生物降解代谢研究现状与展望[J],大连理工大学学报,2000,40卷增刊1
    [33].冯旭东,林屹,瞿福平等,处理苯胺类稀溶液的萃取置换技术[J],环境科学,2001,22 (1):71-74
    [34].瞿福平,张晓建,吕日斤,顾夏声,氯代芳香化合物的生物降解性研究进展[J],环境科学,1997,18(2)
    [35].陈勇生,庄源益,戴树桂,氯代芳香化合物的微生物降解研究[J],环境科学进展,1997,5 (2)
    [36].王菊思,赵丽辉,匡欣,贾智萍,陈梅雪,某些芳香化合物生物降解性研究[J],环境科学学报,1995,15 (4)
    [37].胡宏韬,林学钰,张兰英,安胜姬,董春香,苏小四,环境污染治理中的生物技术[J],世界地质,2001,20 (1)
    [38].胡宏韬,林学钰,姜桂兰,王娟,农药污染地下水的微生物治理及含水层渗透性交化研究[J],环境污染治理技术与设备,2003,4 (2)
    [39].陈凤冈,李伟光,潘桂珉,刘俊新,金承基,缺氧——好氧生物膜法脱氮技术的研究[J],中国环境科学,1995,15 (2)
    [40].王海黎,生物标志物在水环境研究中的应用[J],中国环境科学,1999,19 (5):421-426
    [41].徐亚同,史家梁,张明,生物修复技术的作用机理和应用(上)[J],环境保护,上海化工,2001 (18)
    [42].徐亚同,史家梁,张明,生物修复技术的作用机理和应用(中)[J],环境保护,上海化工,2001 (19)
    [43].徐亚同,史家梁,张明,生物修复技术的作用机理和应用(下)[J],环境保护,上海化工,2001(20)
    [44].陈金霞,徐亚同,微生物在苏州河生态系统中的地位及作用[J],环境污染治理技术与设备,2002,3 (7)
    [45].胡大锵,同步硝化反硝化的总需氧量计算方法探讨,中国给水排水[J],2003,19 (2)
    [46].李光贺,张旭,卢晓霞,土壤残油生物降解性与微生物活性[J],地球科学——中国地质大学学报,2002,27 (2)
    [47].胡道伟,江振然,刘凌,常天俊,利用超声波促进苯胺生物降解[J],微生物学杂志,2003,23 (3)
    [48].刘凌,崔广柏,土地生物处理有机污染物过程模拟研究[J],环境科学学报,2001,21 (1)
    [49].刘凌,崔广柏,郝振纯,多氯联苯在土壤水环境中生物降解过程规律研究[J],水利学报,2000 (6)
    [50].刘凌,崔广柏,吸附对土壤水环境中有机污染物生物降解过程的影响研究[J],水科学进展,2000,11 (4)
    [51].刘凌,李大勇,崔广柏,有机污染物湿地生物降解实验规律研究,环境污染治理技术与设备,2002,3 (2)
    [52].刘凌,王瑚,王则成,土壤与水环境间离子交换过程中模拟研究[J],土壤学报,1996,33 (3)
    [53].刘凌,王瑚,王则成,污水灌溉过程中离子交换问题的研究[J],河海大学学报,1996,24 (3)
    [54].姜翠玲,夏自强,刘凌,赵胜领,王磊,万正成,郑文兰,污水灌溉土壤及地下水三氮的变化
    
    动态分析[J],水科学进展,1997,8 (2)
    [55].刘凌,夏自强,姜翠玲,王磊,万正成,污水灌溉中氮化合物迁移转化过程的研究[J],水资源保护,1995
    [56].孙贤波,赵庆祥,周军,有机物生物降解极限浓度的探讨[J],城市环境与城市生态,2002,15 (4)
    [57].刘凌,崔广柏,夏自强,有机污染物土地生物处理过程动态规律模拟研究[J],环境科学,2001,22 (2)
    [58].刘凌,崔广柏,有机物在土壤水环境中生物降解规律实验研究[J],河海大学学报,2000,28 (6)
    [59].孟范平,李科林,吴晓芙,胡日利,有效微生物群对生活污水中有机物的降解能力研究[J],中南林学院学报,1997,17 (4)
    [60].于德爽,彭永臻,张相忠,崔有为,孔范龙,刘栋,中温短程硝化反硝化的影响因素研究[J],中国给水排水,2003,9 (1)
    [61].赵启美,何佳,顾向阳,李顺鹏,高效苯胺降解菌筛选方法研究[J],河南农业大学学报,2000,34 (2)
    [62].李尔炀,史乐文,一株苯胺降解菌的研究[J],环境导报,2000 (6)
    [63].徐卫东,钟佐,饱和带有机污染的厌氧反硝化微生物降解[J],环境科学,1998 (19)
    [64].吴永锋,钟佐,汪民,卢晓霞,徐卫东,污水快速渗滤处理系统对某些微量有机污染物的净化[J],环境科学,1996,17 (6)
    [65].巨晓棠,张福锁,关于氮肥利用率的思考.生态环境[J],2003,12 (2)
    [66].于飞健,闵顺耕,巨晓棠,张福锁,近红外光谱法分析土壤中的有机质和氮素[J],分析试验室,2002,21 (3)
    [67].裘兆蓉,王车礼,承民联等,H103树脂吸附废水中苯胺[J],高校化学工程学报,1999,13(3):277-280
    [68].陶红,周仕林,高廷耀,1 3X分子筛处理含苯胺废水的实验研究[J],环境科学学报,2002,22 (3):408-411
    [69].阳小燕,陈国树,彭在姜,环境中苯胺类污染物的分析方法现状[J],环境与开发,1999,14 (3)
    [70].陈国树,阳小燕,C T S改性瓷土吸附水中苯胺的研究[J],江西科学,2000,18 (3):158-161
    [71].徐洪秋,王思人,汪平等,用废炭黑吸附处理二苯胺生产废水[J],化工环保,1998,18(6):323-327
    [72].朱利中,徐霞,胡松,邹忠利,鲍卫民,陈宝梁,西湖底泥对水中苯胺、苯酚的吸附性能及机理[J],环境科学,2003 (2)
    [73].吴耀国,地下水环境中的反硝化作用[J],环境污染治理技术与设备,2002,3 (3)
    [74].吴耀国,王超,王惠民,李云峰,地下渗流系统的除污功能研究[J],中国给水排水,2002,18 (1)
    [75].吴耀国,王超,王慧民,李云峰,河流——地下水渗流系统对城市污水的净化作用及机理[J],环境科学学报,2002,22 (1)
    [76].顾传辉,陈桂珠,石油污染土壤生物降解生态条件研究[J],生态科学,2000,19 (4)
    [77].沈东升,徐向阳,冯孝善,微生物共代谢在氯代有机物生物降解中的作用[J],环境科学,1993,15 (4)
    [78].叶辉,许建华,饮用水中的氨氮问题[J],中国给水排水,2000,16 (11)
    [79].穆兴民,樊小林,土壤氮素矿化的生态模型研究[J],应用生态学报,1999,10 (1)
    [80].刘忠翰,彭江燕,化肥氮素在水稻田中迁移与淋失的模拟研究[J],农村生态环境,2000,16 (2)
    [81].张树兰,杨学云,吕殿青,同延安,几种土壤剖面的硝化作用及其动力学特征[J],土壤学报,2000,37 (3)
    [82].宋建国,刘伟,赵紫娟,林杉,吴文良,毛达如,土壤干燥过程对土壤易矿化有机态氮的影响[J],植物营养与肥料学报,2001,7 (2):183-188
    
    
    [83].宋建国,林杉,吴文良,毛达如,土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价[J],生态学报,2001,21 (2)
    [84].张璐,沈善敏,廉鸿志,宇万太,有机物料中有机碳、氮矿化进程及土壤供氮力研究[J],土壤通报,1997,28 (2):71-73
    [85].梅志平,施正峰,池塘生态系基质C/N比对游离细菌群落生长和有机N矿化作用的影响,上海水产大学学报,1994,3 (1-2)
    [86].张小玲,彭党聪,王志盈,传统与短程反硝化的影响因素及特性研究[J],中国给水排水,2002,18 (9)
    [87].张小玲,彭党聪,王志盈,袁林江,低DO紊动床内有机物对硝化过程的影响[J],中国给水排水,2002,18 (5)
    [88].董悦安,沈照理,钟佐鑫,粗粒饱气带结构对地下水污染影响的模拟实验研究[J],环境科学学报,1999,19 (6)
    [89].刘志培,杨惠芳,周培谨,微生物降解苯胺的特性及其降解代谢途径[J],应用与环境生物学报,1999 (5)
    [90].郑西来,田春声,地下水水质模拟中阻滞系数的实验研究[J],水文地质工程地质,1995 (4)
    [91].周根娣,吴静波,运河(杭州段)底泥污染物含量分布调查[J],环境污染与防治,2001,23 (1)
    [92].朱广伟,陈英旭,周根娣,秦伯强,运河(杭州段)沉积物耗氧物质释放的模拟实验研究[J],环境污染与防治,2002,24 (8)
    [93].周庆元,河口生态环境与疏浚[J],水运工程,2002,总345期第10期
    [94].范成新,相崎守弘,好氧和厌氧条件对霞浦湖沉积物——水界面氮磷交换的影响[J],湖泊科学,1997,9 (4)
    [95].李东艳,钟佐,孔惠,刘菲,王艳玲,反硝化条件下苯生物降解的微环境研究[J],地球科学——中国地质大学学报,2000,25 (5)
    [96].章卫华,李广贺,邵辉煌,张旭,卢晓霞,包气带土层中石油污染物的微生物降解研究[J],环境科学研究,2002,15 (2)
    [97].邵辉煌,李广贺,章卫华,张旭,包气带土层中重质油的生物可降解性[J],清华大学学报(自然科学版),2002,42 (5)
    [98].程金平,郑敏,张兰英,邹连春,王西民,孙浩,苯系化合物好氧生物降解性实验研究[J],干旱环境监测,2002,16 (2)
    [99].白晓慧,钟卫国,陈群燕,杨虹,城市内河水体污染修复中沉积物的影响与控制[J],环境科学,2002,23卷增刊
    [100].陈余道,朱学愚,大武水源地地下水生物降解烃污染物的机理[J],广西地质,1999,12 (2)
    [101].王东胜,沈照理,钟佐鑫,陈亮,氮迁移转化对地下水硬度升高的影响[J],现代地质,1998,12 (3)
    [102].王志盈,彭党聪,袁林江,李久义,周游,低溶氧下硝化生物膜中菌群的竞争增殖模型[J],中国给水排水,1999,15 (12)
    [103].谢曙光,张晓建,王占生,地表水处理中的好氧反硝化[J],中国给水排水,2002,18 (3)
    [104].陈秀成,曹瑞钰,地下水污染治理技术的进展[J],中国给水排水,2001,17 (4)
    [105].张金丽,郑天凌,多环芳烃污染环境的控制与生物修复研究进展[J],福建环境,2002,19 (4)
    [106].董瑞斌,许东风,刘雷,何宗健。齐美富。曾惠卿,多环芳烃在环境中的行为[J],环境与开发,1999,14 (4)
    
    
    [107].李萍,刘俊新,废水中难降解性有机污染物的共代谢降解,环境污染治理技术与设备,2002,3(11)
    [108].赵宗升,刘鸿亮,李炳伟,袁光钰,高浓度氨氮废水的高效生物脱氮途径[J],中国给水排水,2001,17(5)
    [109].王建龙,施汉昌,钱易,固定化微生物技术在难降解有机污染物治理中的研究进展[J],环境科学研究,1999,12(1)
    [110].李春,国外地下水资源的保护与管理研究动态[J],中国人口·资源与环境,2001,11(51)
    [111].范彬,黄霞,化学反硝化法脱除地下水中的硝酸盐[J],中国给水排水,2001,17(11)
    [112].崔中利,李顺鹏,化学农药的微生物降解及其机制[J],江苏环境科技,1998(3)
    [113].李小明,陈昭宜,环境生物技术与水污染控制[J],湖南大学学报,1998,25(5)
    [114].潘乃礼主编,冯绍元,周文斌编,地下水水质现状和预测评价的理论与方法[M],原子能出版社,1995
    [115].李云峰,供水水文地质计算,长安大学,2001
    [116].李云峰,黄土渗透性与空隙性关系的研究,北京,地质出版社,1994
    [117].李云峰等,引黄回灌研究,西安,陕西科技出版社,1996
    [118].朱广伟,运河(杭州段)沉积物污染特征、释放规律及其环境效应的研究[M],浙江大学博士学位论文,2001
    [119].夏凤毅,邻苯二甲酸酯生物降解性研究[M],浙江大学博士学位论文,2002
    [120].易秀,黄土类土对铬、砷的净化机理及地下水防污安全埋深的研究[M],长安大学博士学位论文,2003
    [121].吴玉成,钟佐,陈亮,加强反硝化条件下地下水中常见有机污染物苯和甲苯微生物降解研究[J],长春科技大学学报,1999,29(1)
    [122].白晓慧,利用好氧颗粒污泥实现同步硝化反硝化[J],中国给水排水,2002,18(2)
    [123].曾薇,彭永臻,王淑莹,张乃东,两段SBR法去除有机物及短程硝化反硝化[J],环境科学,2002,23(2)
    [124].刁治民,浅谈土壤微生物的净化作用[J],青海环境,1996,6(2)(总第20期)
    [125].张清敏,胡国臣,强化土壤生态系统净化机能的研究进展[J],环境科学进展,1999,7(1)
    [126].谢曙光,张晓建,王占生,生物滤池系统内生化作用机理综合研究[J],环境科学学报,2002,22(5)
    [127].贾青竹,全焱,天然水沉积物中吸附态多氯芳烃缺氧脱氯生物降解研究进展[J],天津轻工业学院学报,2002(1)(总第40期)
    [128].王宏,叶常明,雷志芳,天然水中有机污染物的生物降解模拟实验方法[J],环境化学,1994,13(3)
    [129].李文利,王忠彦,胡永松,土壤和地下水石油污染的生物治理[J],重庆环境科学,1999,21(2)
    [130].陈玉成,土壤净化功能的原理及其利用[J],四川环境,1994,13(4)
    [131].何良菊,魏德洲,张维庆,土壤微生物处理石油污染的研究[J],环境科学进展,1999,7(3)
    [132].王冠慧,土壤中的微生物生物降解与利用的探讨[J],郑州工业大学学报,1997,18(2)
    [133].高杰,微生物对环境污染物的分解作用[J],四川环境,1996,15(3)
    [134].吴洁,俞剑莹,陈芳,微生物对环境污染物的降解作用[J],环境污染与防治,1999,21(增刊)
    [135].陈晓畅,王洪媛,杨翔华,微生物絮凝剂的研究与应用进展[J],抚顺石油学院学报,2002,22(4)
    [136].周毅,杨开,杨德勇,污水生物处理过程中的同步消化反硝化研究概况[J],环境科学与技术,2001(6)
    [137].胡枭,樊耀波,王敏健,影响有机污染物在土壤中的迁移、转化行为的因素[J],环境科学进展,1998,7(5)
    
    
    [138].陈余道,刘建立,吴剑锋,朱学愚,淄博地下水中生物降解作用的水化学判别[J],高校地质学报,1999,5(3)
    [139].陈余道,朱学愚,刘建立,淄博市大武水源地地下水中苯的归宿与治理建议[J],科学通报,1998,43(1)
    [140].张胜,张翠云,肖宇,包气带土体反硝化作用对NO_3~-转化的试验研究[J],农业环境保护,2002,21(3):254-256)
    [141].张建,黄霞,魏杰,胡洪营,施汉昌,地下渗滤污水处理系统的氮磷去除机理[J],中国环境科学,2002,22(5):438-441
    [142].刘世亮,骆永明,曹志洪,丁克强,将先军,多环芳烃污染土壤的微生物与植物联合修复研究进展[J],土壤,2002(5)
    [143].李任伟,李原,张淑坤,李禾,黄河三角洲沉积物烃类污染及来源[J],中国环境科学,2001,21(4):301-305
    [144].姜翠玲,崔广柏,湿地对农业非点源污染的去除效应[J],农业环境保护,2002,21(5):471-473
    [145].成徐洲,吴天宝,陈天柱,杨天竹,土壤渗滤处理技术研究现状与进展[J],环境科学研究,1999,12(4)
    [146].吴永锋,钟佐,王继党,曹文炳,刘恕直,生活污水快速渗滤处理现场试验研究[J],环境科学学报,1996,16(3)
    [147].黄泽春,陈同斌,雷梅,陆地生态系统中水溶性有机质的环境效应[J],生态学宝,2002,22(2)
    [148].邹联沛,刘旭东,王宝贞,范延臻,MBR中影响同步硝化反硝化的生态因子[J],环境科学,2001,22(4)
    [149].晏维金,章申,王嘉慧,长江流域氮的生物地球化学循环及其对输送无机氮的影响——1968-1997年的时间变化分析[J],地理学报,2001,56(5)
    [150].张建,黄霞,施汉昌,胡洪营,钱易,地下渗滤系统在污水处理中的应用研究进展[J],环境污染治理技术与设备,2002,3(4)
    [151].吴剑,齐鄂荣,程晓如,黄明海,废水生物脱氮技术的研究进展[J],武汉大学学报(工学版),2002,35(1)
    [152].丁爱中,傅家谟,盛国英,好氧生物反硝化反应的实验证据[J],科学通报,2000,45(增刊)
    [153].付明胜,张金柱,康清海,耿绥和,论植被建设在改善黄河生态环境中的地位和作用[J],水土保持学报,2002,16(5)
    [154].梁青武,米玉华,排污河道对沿岸地下水水质的影响[J],水资源保护,2000,3期(总第61期)
    [155].吕锡武,李丛娜,稻森悠平,溶解氧及活性污泥浓度对同步硝化反硝化的影响[J],城市环境与城市生态,2001,14(1)
    [156].张素荣,丁卫华,王成,王亚中,霍飞,水温及污泥龄对生物处理系统运行的影响[J],工业安全与环保,2002,28(5)
    [157].邢光熹,曹亚澄,施书莲,孙国庆,杜丽娟,朱建国,太湖地区水体氮的污染源和反硝化[J],中国科学(B辑),2001,31(2)
    [158].吕锡武,稻森悠平,水落元之,同步硝化反硝化脱氮及处理过程中N_2O的控制研究[J],东南大学学报(自然科学版),2001,31(1)
    [159].高宗军,高洪阁,李白英,张希勤,污染河水对地下水化学环境的影响[J],中国地质灾害与防治学报,2002,13(1)
    
    
    [160].周毅,杨开,杨德勇,污水生物处理过程中的同步硝化反硝化研究概况[J],环境科学与技术,2001(6)总第98期
    [161].张翠云,张胜,贾秀梅。叶思源,三氮吸附性能对比实验研究[J],勘察科学技术,2001(5)
    [162].孙振世,柯强,陈英旭,SBR生物脱氮机理及其影响因素[J],中国沼气,2001,19(2)
    [163].姜桂花,徐凌云,包气带人工微生物反硝化除氮实验研究[J],长春地质学院学报,1997,27(4)
    [164].张夫道,氮素营养研究中几个热点问题[J],植物营养与肥料学报,1998,4(4):331-338
    [165].王志盈,刘超翔,彭党聪,袁林江,高氨浓度下生物流化床内亚硝化过程的选择特性研究[J],西安建筑科技大学学报,2000,32(1)
    [166].张彤,曹国民,赵庆祥,固定化微生物脱氮技术进展[J],城市环境与城市生态,2000,13(2)
    [167].杨林,薛栋森,C.L.Henry,R.B.Harrison,生物固体对土壤氮循环和硝态氮淋洗的影响[J],农业环境保护,1997,16(4):182-186
    [168].张鹏,周琪,屈计宁,顾国维,同时硝化与反硝化研究进展[J],重庆环境科学,2001,23(6)
    [169].王彩绒,田霄鸿,李生秀,土壤中氧化亚氮的产生及减少排放量的措施[J],土壤与环境2001,10(2):143-148
    [170].李霞,微生物在氮循环中的作用[J],松辽学刊(自然科学版),1998(4)
    [171].唐光临,孙国新,徐楚韶,亚硝化反硝化生物脱氮[J],工业水处理,2001,21(11)
    [172].范彬,曲久辉,刘锁祥,蒙光辉,饮用水中硝酸盐的脱除[J],环境污染治理技术与设备,2000,1(3)
    [173].胡宇华,丁富新,范轶,陈筛林,杨海光,邢新会,有机碳源对同时硝化/反硝化(SND)过程的影响[J],环境工程,2001,19(4)
    [174].李小明,陈坚,伦世仪,降解对苯二甲酸厌氧微生物群快速驯化与富集技术[J],环境科学与技术,2001(3)总第95期
    [175].金芳澄,气相色谱法测定环境样品中苯系物[J],现代科学仪器,1999(5)
    [176].孙菽芬,洪钟祥,李家伦,地下含水层中污染物生物降解的机制和数值模拟[J],中国环境科学 1997,17(6)
    [177].冷文华,成少安,张鉴清,曹楚南,光电催化和光产生过氧化氢联合降解苯胺[J],环境科学学报,2001,21(5)
    [178].盛多红,张素琴,刘海舟,一株高浓度苯胺降解菌的分离[J],应用与环境生物学报,1999,5(增刊):18-20
    [179].曾科,高健磊,雷文雪,石化污水生化出水深度净化回用的可行性[J],工业水处理,1999,19(4)
    [180].施冬梅,李再兴,多金环,纳米TiO_2光催化降解水体污染物研究进展[J],工业水处理,2002,25(5)
    [181].吕殿青,同延安,孙本华,氮肥施用对环境污染影响的研究[J],植物营养与肥料学报,1998,4
    [182].刘丹,姜云,陈岳,成都市新都镇傍河地下水自净规律研究[J],地质灾害与环境保,1995,6(1)
    [183].刘德启,彭波,唐乃红,汪艳,污灌系统氮素在土壤中的转化与渗漏污染[J],西北师范大学学报,1995,31(2)
    [184].元晓红,王超,朱亮,氮在饱和土壤层中迁移转化特征研究[J],河海大学学报,1995,24(2)
    [185].白军红,王庆改,余国营,吉林省向海沼泽湿地土壤中氮素分布特征及生产效应研究[J],土壤通报,2002,33(2)
    [186].陈刚才,甘露,王仕禄,万国江,土壤氮素及其环境效应[J],地质地球化学,2000,9(1)
    [187].李家伦,孙菽芬,洪钟祥,地下水污染生物处理方法研究综述[J],气候与环境研究,1998,3(2)
    [188].赵林,王榕树,林学钰,地下水中氮的表现形式及其污染的微生物控制[J],环境科学学报,
    
    1999,19(4)
    [189].束善治,袁勇,污染地下水原位处理方法:可渗透反应墙[J],环境污染治理技术与设备,2002,3(1)
    [190].姚建文,徐子恺,王建生,21世纪中叶中国需水展望[J],水科学进展,1999,10(2)
    [191].于秀娟,张熙琳,王宝贞,闫伟波,臭氧——生物活性炭工艺去除水中有机微污染物[J],环境污染与防治,2000,22(4)
    [192].贵蝉,叶裕才,云桂春,金光宇,城市污水深度处理中有机物的去除[J],环境科学,2000,21(6)
    [193].李辉信,胡锋,刘满强,蔡贵信,范晓晖,红壤氮素的矿化和硝化作用特征[J],土壤,2000(4)
    [194].王其兵,李凌浩,白永飞,邢雪荣,气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J],植物生态学报,2000,24(6):687-692
    [195].田光明,人工土快滤滤床对耗氧有机污染物的去除机制[J],土壤学报,2002,39(1)
    [196].常志州,何加骏,石油污染对土壤氮素矿化和硝化作用的影响[J],农村生态环境,1998,14(1)
    [197].林力,杨惠芳,贾省芬,石油污染土壤的生物整治研究[J],上海环境科学,2000,19(7)
    [198].殷士学,陈川,王春生,叶军志,吴俊杰,胥拥军,淹水土壤微生物生物量的形成与肥料氮的转化1-盆栽试验[J],江苏农学院学报,1997,18(4):37-40
    [199].周建斌,陈竹君,李生秀,土壤微生物量氮含量、矿化特性及其供氮作用[J],生态学报,2001,21(10)
    [200].汤炎,殷士学,郭东歌,袁庆武,张浩,淹水培养对土壤微生物生物量形成与肥料氮转化的影响[J],江苏农学院学报,1997,18(1)
    [201]..钟佐,汤鸣淏,张建立,淄博煤矿矿坑排水对地表水体的污染及对地下水水质影响的研究[J],地学前缘,1999,6(增刊)
    [202].雷志芳,叶常明,苯胺在水体悬浮颗粒物上吸附特征[J],环境科学,1998(6)
    [203].雷志芳,杨克武,莫汉宏等,水体颗粒物以及土壤对有机物吸附常数的测定.环境化学[J],1994,13(3):225-2284
    [204].戴家银,王连生,张正,苯甲酰苯胺类化合物溶解度和分配系数的测定及定量结构-性质相关研究[J],环境化学,1998,17(4)
    [205].赵林,魏连伟,林学钰,不同状态下包气带除氮及阻止氮污染能力的实验研究[J],环境科学学报,2001,21(2)
    [206].漆新华,庄源益,袁有才,杨克莲,谷文新,朱坦,超临界水氧化法处理苯胺废水[J],环境污染与防治,2001,23(2)
    [207].王红旗,陈家军,城市污水不同土地处理条件下土壤.作物系统中氮净化模拟模型与模拟分析[J],北京师范大学学报(自然科学版),1998,34(3)
    [208].吴俊锋,王燕枫,李勇,低铵污水灌溉下土壤中硝化作用试验研究[J],江苏环境科技,2003,16(2)
    [209].张丽萍,袁文权,张锡辉,底泥污染物释放动力学研究[J],环境污染治理技术与设备,2003,4(2)
    [210].周明华,吴祖成,汪大晕,难生化降解芳香化合物废水的电催化处理[J],环境科学,2003,24(2)
    [211].乌武贤,对关中近期水资源开发利用的思考[J],陕西水利,1999,5(21)
    [212].赵伯友,新世纪陕西五大水源工程[J],陕西水利,2001,3(19)
    [213].李景印,高太忠,郭玉凤,磁河有机污染物在饱和土壤中迁移转化试验研究[J],环境科学研究,2002,15(3)
    [214].王庆仁,刘秀梅,崔岩山,董艺婷,土壤与水体有机污染的生物修复及其应用研究进展[J],生态学报,2001,21(1)
    [215].张晓健,雷晓玲,何苗,焦化废水中几种难降解有机物的厌氧生物降解特性[J],环境工程,
    
    1996,14(1)
    [216].王超,李勇,包振琪,河道污染物饱和入渗对沿岸地下水环境影响规律的试验研究[J],A辑,水动力学研究与进展,2002,17(1)
    [217].吴玉成,钟佐,张建立,反硝化条件下微生物降解地下水中的苯和甲苯[J],中国环境科学,1999,19(6)
    [218].钟佐,地下水有机污染控制及就地恢复技术研究进展(二)[J],水文地质工程地质,2001(4)
    [219].黄国强,李鑫钢,李凌,李天成.地下水有机污染的原位生物修复进展[J],化工进展,2001(10)
    [220].李东艳,钟佐焱木,鞠秀敏,地下水有机污染的天然生物恢复综述[J],焦作工学院学报,1999,18(4)
    [221].田秀萍,关连珠,须湘成,颜丽.北方淹育水稻土不同施肥处理氮矿化位势的研究[J],土壤通报,1998,29(5):209-211
    [222].陈祥伟,陈立新,刘伟琦,不同森林类型土壤氮矿化的研究[J],东北林业大学学报,1999,27(1)
    [223]. EL-GHAMRYAM, XU Jian-min, HUANG Chang-yong, Influence of Herbicides on Microbial Biomass and Nitrogen Mineraliza-tionin Soils[J], Journal of zhejiang University(Agric & Life Sci)浙江大学学报(农业与生命科学版),1999,25(6):639-644
    [224].杨忠芳,朱立,陈岳龙编著,现代环境地球化学[M],北京:地质出版社,1999
    [225].刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣编著,元素地球化学[M],科学出版社,1986
    [226].时红,孙新忠,范建华,张永波编著,水质分析方法与技术[M],地震出版社,2001
    [227].夏北成编著,环境污染物生物降解[M],北京:化学工业出版社,2002
    [228].中国土壤学会农业化学专业委员会编,土壤农业化学常规分析方法[M],科学出版社,1989
    [229].王秉忱,陈曦主编,刘德明,张璇,姜广良,地下水水质模型[M],辽宁科学技术出版社,1985
    [230].戴树桂主编,环境化学[M],高等教育出版社,1995
    [231].王云,魏复盛等编著,土壤环境元素化学[M],北京:中国环境科学出版社,1995
    [232].城乡建设环境保护部环境保护局,环境监测分析方法[M],北京:中国环境科学出版社,1986
    [233].于天仁,陈志诚主编,土壤发生中的化学过程[M],科学出版社,1990
    [234].陈履安译,水质试验法[M],中国环境科学出版社,1990
    [235].[美]P.F.劳著,土壤物理化学[M],北京:农业出版社
    [236].孙讷正著,地下水污染——数学模型和数值方法[M],地质出版社,1989
    [237].林年丰,李昌静,钟佐炎木,田春声等编,环境水文地质学[M],地质出版社,1988
    [238].严健汉,詹重慈编著,环境土壤学[M],华中师范大学出版社,1984
    [239].何燧源,金云云,何方编著,环境化学[M],华东理工大学出版社,1997
    [240].周群英,高延耀编著,环境工程微生物学[M],高等教育出版社,2000
    [241].司全印,冉新权,周孝德等著,区域水污染控制与生态环境保护研究[M],北京:中国环境科学出版社,2000
    [242].陈崇希,李国敏编著,地下水溶质运移理论及模型[M],武汉:中国地质大学出版社,1995
    [243]. Vessela Nedelcheva et al, Metabolism of benzene in human liver microsomes: individual variations in relation to CYP2E1 expression[J], Arch Toxicol, 1999 (73): 33-40
    [244]. R.Boopathy, Formation of Aniline as a Transient Metabolite During the Metabolism of Tetryl by a Sulfate-Reducing Bacterial Consortium[J], Current Microbiology, 2000 (40): 190-193
    [245]. Oliver Drzyzga, Karl-Heinz Blotevogel, Microbial Degradation of Diphenylamine Under Anoxic Conditions[J], Current Microbiology, 1997 (35): 343-347
    
    
    [246]. Nico Boon et al, Genetic Diversity among 3-Chloroaniline- and Aniline-Degrading Strains of the Comamonadaceae[J], Applied and Environmental Microbiology, 2001 (5): 1107-1115
    [247]. Paige J.Novak et al, Kinetics of alachlor transformation and identification of metabolites under anaerobic conditions[J], Water resources, 1997, 31(12): 3107-3115
    [248]. A.A.M.Daifullah, B.S.Girgis, Impact of surface characteristics of activated carbon on adsorption of B TEX. Colloids and Surfaces A: Physicochemical Aspects[J], Wat Res, 2003 (214): 181-193
    [249]. H.Bornick et al, Simulation of biological degradation of aromatic amines in fiver bed sediments[J], Wat Res, 2001, 35(3): 619-624
    [250]. R.A.Sheets, R.A.Damer, B.L.Whieetbery, Lag times of bank filtration at a well field, Cincinnati, Ohio, USA[J], Journal of Hydrology, 2002 (266): 162-174
    [251]. HomenauthOP, McBrideMB, Adsorption of Aniline on Layer Silicate Clay sand Organic Soil[J], Soil Sci Sco, 1994, 58:347-3583
    [252]. David, S.Kosson, Stephen, VByrne, Interactions of Aniline with Soil and Groundwater at an Industfial Spill Site[J], Environ Health Perspect, Suppl, 1995, 103:71-735
    [253]. ChiouCT, PorterPE, Schmedding DW, Partition Equilibrium of Nonionic Organic Compounds between Soft Organic Matter and water[J], Environ Sci Techno., 1983, 17:22-76
    [254]. ChiouCT, ShoupTD, Soil Sorption of Organic Vapors and Effects of Humidity on Sportive Mechanism and Ca-pacity[J], Environ Sci Technol., 1985, 19:1196
    [255]. NATHAIJE TUFENKJI, JOSEPHN. RYAN, MENACHEM ELIMELECH, The promise of Bank Filtration[J], Environmental science & technology, 2002, 11, 423a-428a
    [256]. ICM.Hiscock, T.Gfischek, Attennation of Groundwater Pollution by Bank Filtration[J], Journal of Hydrology, 2002 (266), 139-144
    [257]. Michael E E, Adsorption of Aniline and Poluidines on Montm or illonite[J], Soil Science, 1994, 158 (3): 181-1882
    [258]. Song-Bae Kim, Yavuz Corapcioglu, Contaminant Transport in Riverbank Filtration in the Presence of Dissolved Organic Matter and Bacteria: a Kinetic Approach[J], Journal of Hydrology, 2002(266) 269-283
    [259]. T.Grischek et al, Factors affecting denitrification during infiltration of fiver water into a sand and gravel aquifer in SAXONY, GERMANY[J], Water resource, 1998, 32 (2), 450-460
    [260]. H.Bornick, P.Eppinger, T.Gfiscber, E.Worck, Simulaton of Biological Degradation of Aromatic Amines in River Bed Sediments[J], Water Research, 2001, 35 (3): 619-624
    [261]. Wolfgang kuehn, Uwe Mueller, Riverbank Filtration-an overview[J], Journal Awwa, 2000 (1): 61-69
    [262]. IM Verstraeten, JD Carr, GV Steele, EM Thurman, Surface Water-Ground Water Interaction: Herbicide Transport into Municipal Collector Wells[J], Journal of Environmental Quality, 1999, 1396-1408
    [263]. F.Juttner, Elimination of Trapezoid Odorous Compounds by Slow Sand and River Bank Filtration of the Ruhr River, Germany[J], Water Science and Technology, 1995, 31 (11): 211-217
    [264]. Chittaranjan Ray, Thomas Griscbek, Jurgen Schubert, Jack Z Wang, Thomas F Speth, A Perspective of Riverbank Filtration[J], Applied Science and Tech Plus, 2002, 149-161
    
    
    [265]. John D.Coates et al, Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas[J], Nature, 2001 (411), 1039-1043
    [266]. Walton R. Kelly, Janet S, Herman, Aaron L. Mills, The geochemical effects of benzene, toluene, and xylene (BTX) biodegradation[J], Applied Geochemistry, 1997 (12): 291-303
    [267]. John W.Davis & Steve Madsen, Factors affecting the biodegradation of toluene in soil[J], Chemosphere 1996, 33(1): 107-130
    [268]. D.R.VanStempvoort et al, Humic acid enhanced remediation of an emplaced diesel source in groundwater: Ⅰ .Laboratory-based pilot scale test[J], Journal of Contaminant Hydrology 54(2002), 249-276
    [269]. J.W.Molson, E.O.Frind, D.R.Van Stempvoort, S.Lesage, Humic acid enhanced remediation of an emplaced diesel source in groundwater: 2.Nurmerieal model development and application[J], Journal of Contaminant Hydrology, 2002 (54): 277-305
    [270]. I.M.Cozzarelli et al, Progression of natural attenuation processes at a crude-oil spill site: Ⅰ.Geochemical evolution of the plume[J], Journal of Contaminant Hydrology, 2001 (53): 369-385
    [271]. B.A.Bekins et al, Progression of natural attenuation processes at a crude oil spill site: Ⅱ .Controls on spatial distribution of microbial populations[J], Journal of Contaminant Hydrology, 2001 (53): 387-406
    [272]. James K Fredrickson, Yuri A Gorby, Environmental processes mediated by iron-reducing bacteria[J], Environmental biotechnology, 1996 (7): 287-294
    [273]. T.H.Christensen et al, Biogcoehemistry of landfill lcaehate plumes[J], Applied Geochemistry, 2001 (6): 659-718
    [274]. K.L.Skubal et al, An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect[J], Journal of Contaminant Hydrology, 2001 (49): 151-169
    [275]. D.A.Barry et al, Modelling the fate of oxidisable organic contaminants in groundwater[J], Advances in Water Resources, 2002 (25): 945-983
    [276]. Boll, Fuchs, Heider, Anaerobic oxidation of aromatic compounds and hydrocarbons[J]. Environmental biotechnology, 2002 (6): 604-611
    [277]. M.Sivagurunathan et al, Biological waste-treatment of hydrocarbon residues: effects of humic acids on the degradation of toluene[J], Applied Energy, 2003 (75): 267-273
    [278]. J.G.Leahy, R.H.Olsen, Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration and the effect of nitrate[J], FEMS Microbiology Ecology, 1997 (23): 23-30
    [279]. M.Schirmer et al, A relative-least-squares technique to determine unique Monod kinetic parameters of BETX compounds using batch experiments[J], Journal of Contaminant Hydrology, 1999 (37): 69-86
    [280]. M.S.Elshahed, MJ.Mclnerney, Is interspecies hydrogen transfer needed for toluene degradation under sulfate-reducing conditions [J]? FEMS Microbiology Ecology, 2001 (35): 163-169
    [281]. Katrin Althoff et al, Microcosms-experiments to assess the potential for natural attenuation of contaminated groundwater[J], WatRes, 2001, 35(3): 720-728
    [282]. A.D.Koussis et al, Modeling biodegradation of hydrocarbons in aquifers: when is the use of the
    
    instantaneous reaction approximation in justified[J]? Journal of Contaminant Hydrology, 2003 (60): 287-305
    [283]. H.Wilkes et al, Anaerobic degradation and carbon isotopic fractionation of alhylbenzenes in crude oil by sulphate-reducing bacteria[J], Organic Geochemistry, 2000 (31): 101-105
    [284]. K.T.B.MacQuarrie et al, Numerical simulation of a fine-grained denitrification layer for removing septic system nitrate from shallow groundwater[J], Journal of Contaminant Hydrology, 2001 (52): 29-55
    [285]. Craig D. Phelps, Junko Kazumi, Lily Y. Young, Anaerobic degradation of benzene in BTX mixture dependent on sulfate reduction[J], FEMS Microbiology Letters, 1996 (145): 433-437
    [286]. Takashi Kameya, Takeshi Murayama, Kohei Urano, Masaru Kitano. Biodegradation ranks of priority organic compounds under anaerobic conditions[J], The Science of the Total Environment, 1995 (170): 43-51
    [287]. S.J.Johnson, K.J.Woolhouse, H.Prommer, D.A.Barry, N.Christofi, Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater[J], Engineering Geology, 2003 (2186):1-7
    [288]. J ohn D.Coates, Robert T Anderson, Emerging techniques for anaerobic bioremediation of contaminated environments[J], Tibtech, 2000 (18)
    [289]. Christof Holliger, Alexander JB Zehnder, Anaerobic biodegradation of hydrocarbons[J], Environmental biotechnology, 1996 (7): 326-330
    [290]. R Boopathy, Anaerobic degradation of No.2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions [J], Bioresource Technology, 2003 (86): 171-175
    [291]. A.A.M.Langenhoff et al, Microbial reduction of manganese coupled to toluene oxidation [J], FEMS Microbiology Ecology, 1997 (22): 119-127
    [292]. R.Boopathy, Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil[J], International Biodeterioration & Biodegradation, 2003
    [293]. John D.Coates, Roma Chakraborty, Michael J.Mclnemey, Anaerobic benzene biodegradation——a new era[J], Research in Microbiology, 2002 (153): 621-628
    [294]. Hui Li, Linda S.Lee, Jose R.Fabrega, Chad T.Jafvert., Role of pH in partitioning and cation exchange of aromatic amines on water-saturated soils[J], Chemosphere, 2001 (44): 627-635
    [295]. Siobhan M.Burland, Elizabeth A.Edwards, Anaerobic Benzene Biodegradation Linked to Nitrate Reduction[J], Applied and Environmental Microbiology, 1999, 65 (2): 529-533
    [296]. Lee R.Krumholz, Joseph M.Suflita, Anaerobic Aquifer Transformations of 2,4-Dinitrophenol Under Different Terminal Electron Accepting Conditions[J], Anaerobe, 1997 (3): 399-403
    [297]. Johann Heider, Alfred M.Spormann, Harry R.Beller, Friedrich Widdel, Anaerobic bacterial metabolism of hydrocarbons [J], FEMS Microbiology Review, 1999 (22): 459-473
    [298]. Lorenz Adrian, Helmut Gorisch, Microbial transformation of chlorinated benzenes under anaerobic conditions[J], Research in Microbiology, 2002 (153): 131-137
    [299]. Matthew E.Caldwell, Ralph S, Tanner, Joseph M.Suflita, Microbial Metabolism of Benzene and the Oxidation of Ferrous Iron under Anaerobic Conditions: Implications for Bioremediation[J],
    
    Anaerobe, 1999 (5): 595-603
    [300]. Daniel Hunkeler, Dominik Jorger, Katharina Haberli, Patrick Hohener, Josef Zeyer, Petroleum hydrocarbon mineralization in anaerobic laboratory aquifer columns[J], Journal of Contaminant Hydrology, 1998 (32): 41-61
    [301]. M.E.Schreiber, J.M.Bahr, Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: Parameter estimation from natural-gradient tracer experiments[J], Journal of Contaminant Hydrology, 2002 (55): 29-56
    [302]. H.Prommer, D.A.Barry, G.B.Davis, Modelling of physical and reactive processes during biodegradation of a hydrocarbon plume under transient groundwater flow conditions[J], Journal of Contaminant Hydrology, 2002 (59): 113-131
    [303]. Kevin E.O'Shea et al, The degradation of MTBE-BTEX mixtures by gamma radiolysis, A kinetic modeling study[J], Radiation Physics and Chemistry, 2002 (65): 343-347
    [304]. H. Prommer, D.A.Barry, G.B.Davis, A one-dimensional reactive multi-component transport model for biodegradation of petroleum hydrocarbons in groundwater[J], Environmental Modelling & Soltware, 1999 (14): 213-223
    [305]. Robert T.Anderson, Derek R.Loeley, Anaerobic bioremediation of benzene under sulfate-reducing conditions in a petroleum-contaminated aquifer[J], Environ. Sci.Technol, 2000 (34): 2261-2266
    [306]. R.D.Stapleton, G.S.Ssyler, Assessment of the Microbiological Potential for the Natural Attenuation of Petroleum Hydrocarbons in a Shallow Aquifer System[J],Microbial Ecology, 1998 (36): 349-361
    [307]. C.-I Chert R.T.Taylor, Batch and fed-batch bioreactor cultivations of a thermos species with thermophilic BTEX-degrading activity[J], Applied Microbial Biotechnology, 1997 (47): 726-733
    [308]. Matthew E.Caldwell, Joseph M.Suflita, Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions[J], Environ. Sci.Technol, 2000 (34): 1216-1220
    [309]. C.M.Kao, Y.S.Wang, Field investigation of the natural attenuation and intrinsic biodegradation rates at an underground storage tank site[J], Environmental Geology, 2001 (40)
    [310]. M.Schirmer, B.J.Bufler, J.F.Barker, C.D.Church, K.Schirmer, Evaluation of Biodegradation and Dispersion as Natural Attenuation Processes of MTBE and Benzene at the Borden Field Site[J], Phys.Chem.Earth, 1999, 24(6): 557-560
    [311]. Brian S Hooker, Rodney S Skeen, Intrinsic bioremediation: an environmental restoration technology[J], Environmental biotechnology, 1996 (7): 317-320
    [312]. Don H.Kampbell, T.H.Wiedemeier, J.E.Hansen, Intrinsic bioremediation of fuel contamination in ground water at a field site[J], Journal of Hazardous Materials, 1996 (49): 197-204
    [313]. Bea-Ven Chang, Wen-Bin Wu, Shaw-Ying Yuan, Biodegradation of Benzene, Toluene, and Other Aromatic Compounds by Pseudmonas SP.D8[J], Chemosphere, 1997, 35(12): 2807-2815
    [314]. Niaz Mohammed, Rashid I. Allayla, Modeling transport and biodegradations of BTX compounds in saturated sandy soil[J], Journal of Hazardous Materials, 1997 (54): 155-174
    [315]. Barbara Morasch et al, The use of a solid adsorber resin for enrichment of bacteria with toxic substrates and to identify metabolites:degradation of naphthalene, o-, and m-xylene by sulfate-reducing bacteria[J], Journal of Microbiological Methods, 2001 (44): 183-191
    
    
    [316]. Rebecca K.Costura, Pedro J.J.Alvarez, Expression and longevity of toluene dioxygenase in PSEUDOMONAS PUTIDA F1 induced at different dissolved oxygen concentrations[J], War Res, 2000, 34(11): 3014-3018
    [317]. C.M.Kao, C.C.Wang, Control of BTEX migration by intrinsic bioremediation at a gasoline spill site[J], Wat.Res, 2000, 34(13): 3413-3423
    [318]. R.Schmitt et al, Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow sand and gravel aquifer of the Lower Rhine Valley, Germany[J], Org Geo Chem, 1996, 25(1/2): 41-50
    [319]. Mario Schirmer et al, Biodegradation modeling of a dissolved gasoline plume applying independent laboratory and field parameters[J], Journal of Contaminant Hydrology, 2000 (46): 339-374
    [320]. Huanxin Weng, Xunhong Chen, Impact of polluted canal water on adjacent soil and groundwater systems[J], Environmental Geology, 2000, 39(8): 945-950
    [321]. U.Beyerle et al, Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs[J], Journal of Hydrology, 1999 (220): 169-185
    [322]. Eckhard Worch et al, Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration[J], Journal of Hydrology, 2002 (266): 259-268
    [323]. Jurgen Schubert, Hydraulic aspects of riverbank filtration——field studies[J], Journal of Hydrology, 2002 (266): 145-161
    [324]. Jorg Pietsch et al, Polar nitrogen compounds and their behavior in the drinking water treatment process[J], Wat.Res, 2001, 35(15): 3537-3544
    [325]. Thomas Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:a review of recent research data[J], Toxicology Letters, 2002 (131): 5-17
    [326]. Anke Putschew, Sabine Wischnack, Martin Jekel, Occurrence of triiodinated X-ray contrast agents in the aquatic environment[J], The Science of the Total Environment, 2000 (255): 129-134
    [327]. Verstraeten, J D Carr, G V Steele, E M Thurman et al, Surface water-ground interaction:Herbicide transport into municipal collector wells,Journal of Environmental Quality[J],1999,28(5): 1396-1408
    [328]. M.J.Miller et al, The adsorption of cyanobacterial hepatotoxins from water onto soil during batch experiments[J], Wat Res, 2001, 35(6): 1461-1468
    [329]. Jacques A.M et al, Integrated multi-objective membrane systems for surface water treatment: pre-treatment of nanofiltration by riverbank filtration and conventional ground water treatment[J], Desalination, 1998 (118): 239-248
    [330]. Wang-Hsien Ding, Jennifer Wu, Marco Semadeni, Martin Reinhard, Occurrence and behavior wastewater indications in the santa ana river and the underlying aquifers[J], Chemosphere, 1999, 39(11): 1781-1794
    [331]. W.A.M.Hunen, RJong, D.Van Der Kooij, Bromate removal in a denitrifying bioreactor used in water treatment[J], Wat.Res, 1999, 33(4): 1049-1053
    [332]. M.I.M.Soares, Denitrification of groundwater with elemental sulfur[J], Water Research, 2002 (36): 1392-1395
    [333]. I.M.Verstraeten et al, Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply[J], Journal of Hydrology, 2002 (266): 190-208
    
    
    [334]. Bernhard Wett, Hannes Jarosch, Kurt Ingerle, Flood induced infiltration affecting a bank filtrate well at the River Enns,Austria[J], Journal of Hydrology, 2002 (266): 222-234
    [335]. M.J.Spence et al, Denitrification and phenol degradation in a contaminated aquifer[J], Journal of Contaminant Hydrology, 2001 (53): 305-318
    [336]. C.Ray, T.W.Soong, Y.Q.Lian, G.S.Roadcap, Effect of flood-induced chemical load on filtrate quality at bank filtration sites[J], Journal of Hydrology, 2002 (266): 235-258
    [337]. P.J.Dillon, M.Miller, H.Fallowfield, J.Hutson, The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers[J], Journal of Hydrology, 2002 (266): 209-221
    [338]. Thomas Schwartz, Sandra Hoffmann, Ursula Obst, Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems[J], Water resource, 1998, 32(9): 2787-2797
    [339]. Mohamed A.A.Mohamed et al, Natural denitrification in the Kakamigahara groundwater basin, Gifu prefecture, central Japan[J], The Science of the Total Environment, 2002
    [340]. K.M.Hiscock, T.Grisehek, Attenuation of groundwater pollution by bank filtration[J], Journal of Hydrology, 2002 (266): 139-144
    [341]. Hyung-Yeel Kahng et al, Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline[J], FEMS Microbiology Letters, 2000 (190): 215-221
    [342]. M.Reinhard et al, In Situ BTEX Biotransformation under Enhanced Nitrate-and Sulfate-Reducing Conditons[J], Environmental Science & Technology, 1997, 31(1): 28-36
    [343]. ILKKA T. MIETFINEN et al, Bacterial enzyme activities in ground water during bank filtration of lake water[J], Water resource, 1996, 30(10): 2495-2501
    [344]. F.Juttner, Efficacy of bank filtration for the removal of fragrance compounds and aromatic hydrocarbons[J], Water resource, 1999, 40(6): 123-128
    [345]. I.T.Miettinen et al, Mutagenicity and amount of chloroform after chlorination of bank filtered lake water[J], The Science of the Total Environment, 1998 (215): 9-17
    [346]. M.J.Miller, H.J.Fallowfield, Degradation of cyanobacterial hepatotoxins in batch experiments[J], Water Science and Technology, 2001, 43(12): 229-232
    [347]. PURNENDU BOSE et al, Degradation of RDX by various advanced oxidation processes: Ⅱ .organic by-products[J], Water resource, 1998, 32(4): 1005-1018
    [348].Teppei Fukada et al, A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site[J], Water research, 2003 (37): 3070-3078
    [349]. Alain C.M.Bourg, Clotllde Bertin, Biogeochemical Processes during the Infiltration of River Water Into an Alluvial Aquifer[J], Environmental Science & Technology, 1993 (27): 661-666
    [350]. DR Lovley, Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers[J], Journal of Industrial Microbiology & Biotechnology, 1997 (10) 75-81
    [351]. M.Vidali, Bioremediation: An overview[J], Pure Applied.Chem, 2001, 73(7): 1163-1172
    [352]. Lucija Doglar, Felicita Briski, Wastewater denitrification proces——the influence of methanol and kinetic analysis[J], Process Biochemistry, 2003 (00): 1-9
    [353]. B.COSOVIC et al, Transformation of organic matter and bank filtration from a polluted stream[J],
    
    Water resource, 1996, 30(12): 2921-2928
    [354]. Thomas Heberer, Tracking persistent pharmaceutical residues from municipal sewage to drinking water[J], Journal of Hydrology, 2002 (266): 175-189
    [355]. Ying-Xune Chen et al, Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater[J], Water research, 2003 (37): 2489-2495
    [356]. Claude Doussan et al, River bank filtration: modeling of the changes in water chemistry with emphasis on nitrogen species[J], Journal of Contaminant Hydrology, 1997 (25): 129-156
    [357]. Wen Jianping et al, The denitrification of nitrate contained wastewater in a gas-liquid-solid three-phase flow airlift loop bioreactor[J], Biochemical Engineering Journal, 2003 (3689): 1-5
    [358]. Robin Gerlach et al, Low aqueous solubility electron donors for the reduction of nitro aromatics in anaerobic sediments[J], Journal of Contaminant Hydrology, 1999 (36): 91-104
    [359]. Rainer U.Meckenstock, Fermentative toluene degradation in anaerobic defined syntrophic cocultures[J], FEMS Microbiology Letters, 1999 (177): 67-73
    [360]. Johann Heider, Georg Fuchs, Microbial anaerobic aromatic metabolism[J], Anaerobe, 1997 (3): 1-22
    [361]. C.Doussan, E.Ledoux, M.Detay, River-groundwater exchanges, bank filtration, and groundwater quality: ammoninmbehavior[J], Applied Science & Technology, 1998, 27 (6): 1418-1427
    [362]. H.Pathak, D.L.N.Rao, Carbon and nitrogen mineralization from added organic matter in saline and alkalis oils[J], Soil Biol.Vioche, 1998, 30(6): 695-702
    [363]. G.B.Davis et al, The variability and intrinsic remediation of a BTEX plume in anaerobic sulphate-rich groundwater[J], Journal of Contaminant Hydrology, 1999 (36): 265-290
    [364]. Vasili Travkin et al, Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines[J], FEMS Microbiology Letters, 2002 (209): 307-312
    [365]. Karl.J.Rockne, Stuart E.Strand, Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture[J], Water resource, 2001, 35(1): 291-299
    [366]. Fdedrich Widdel, Ralf Rabus, Anaerobic biodegradation of saturated and aromatic hydrocarbons, Environmental biotechnology[J], 2001 (12): 259-276
    [367]. Richard M.Gersberg et al, Biomonitoring of toxicity reduction during in situ bioremediation of monoaromatic compounds in groundwater[J], Water resource., 1995, 29(2): 545-550
    [368]. A.R.Bielefeldt, H.D.Stensel, Modeling competitive inhibition effects during biodegradation of BTEX mixtures[J], Water resource, 1999, 33(3): 707-714
    [369]. Kavita G.Mester, David S.Kosson, Anaerobic biodegradation of toluene under denitrifying conditions in contaminated groundwater and soil[J], Journal of Hazardous Materials, 1996 (45): 219-232
    [370]. Gunther Springob, Holger Kirchmann, Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy atable soils[J], Soil Biology & Biochemistry, 2003 (35): 629-632
    [371]. J.Bauhus, C and N mineralization in an acid forest soil along a gap-stand gradient[J], Soil Biol.Biochem, 1996, 28(7): 923-932
    [372]. Gregory M.Bonito et al, Can nitrogen budgets explain differences in soil nitrogen mineralization
    
    rates of forest stands along an elevation gradient[J].Forest Ecology and Management, 2003 (176): 563-574
    [373]. Joann K.Whalen et al, Carbon and nitrogen mineralization from light-and heavy-fraction additions to soil[J], Soil Biology & Biochemistry, 2003 (32): 1345-1352
    [374]. V.P.Yakovchenko et al, Carbon and nitrogen mineralization of added particulate and macroorganic matter[J]., Soil Biology & Biochemistry, 1998, 30(14): 2139-2146
    [375]. M.C.Leiros et al, Dependence of mineralization of soil organic matter on temperature and moisture[J], Soil Biology and Biochemistry, 1999 (31): 327-335
    [376]. Song-Bae Kim, M.Yavuz Corapcioglu, Contaminant transport in dual-porosity media with dissolved organic matter and bacteria present as mobile colloids[J], Journal of Contaminant Hydrology, 2002 (59): 267-289
    [377]. Jonathan M.Weiner, Derek R.Lowley, Rapid Benzene Degradation in Methanogenic Sediments from a Petroleum-Contaminated Aquifer[J], Applied and Environmental Microbiology, 1998 (413): 1937-1939
    [378]. Hedeff I.Essaid et al, Inverse modeling of BTEX dissolution and biodegradation at the Bimidji, MN crude-oil spill site[J], Journal of Contaminant Hydrology, 2003,
    [379]. S.DE Neve, G.Hofman, N mineralization and nitrate leaching from vegetable crop residues under field conditions: A model evaluation[J], Soil Biol Biochem, 1998, 30(14): 2067-2075
    [380]. R.W.O'Dowd, D.Barraclough, D.W.Hopkins, Nitrogen and carbon mineralization in soil amenden with D-and L-leucine[J], Soft Biology and Biochemistry, 1999 (31): 1573-1578
    [381]. Kusum Maithani et al, Nitrogen mineralization as influenced by climate, soil and vegetation in a subtropical humid forest in northeast India[J], Forest Ecology and Management, 1998(109): 91-101
    [382]. Huilin Li, Yong Han, Zucong Cai, Nitrogen mineralization in paddy soils of the Taihu Region of China under anaerobic conditions: dynamics and model fitting[J], Gonderma, 2003 (115): 161-175
    [383]. Denis Curtin et al, Effects of acidity on mineralization pH-dependence of organic matter mineralization in weakly acidic soils[J], Soil Biol.Biochem, 1998, 30(1): 57-64
    [384]. Harry H.Schomberg, Miguel L.Cabrera, Modeling in situ N mineralization in conservation tillage fields: comparison of two versions of the CERES nitrogen sub model[J], Ecological Modeling, 2001 (145): 1-15
    [385]. S.DE Nave, G.Hofman, Modeling N mineralization of vegetable crop residues during laboratory incubations[J], Soil Biol.Biochem, 1996, 28(10/11): 1451-1457
    [386]. Sridhar Susarla et al, Reductive transformation of halogenated aromatics in anaerobic estuarine sediment: kinetics, products and pathways[J], Water resource, 1998, 32(3): 639-648
    [387]. Ralph E.Beeman, Charles A.Bleckmann, Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results[J], Journal of Contaminant Hydrology, 2002 (57): 147-159
    [388]. F.Dilek Sanin et al, The fate of toluene, acetone and 1,2-dichloroethae in a laboratory-scale simulated landfill[J], Water resource, 2000, 34(12): 3063-3074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700