含NDV F基因的MDV CVI988株转移质粒载体的构建及表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫是由新城疫病毒引起的鸡和火鸡的一种急性高度接触性传染病。20 世纪
    40 年代就开始使用新城疫疫苗,通常使用的疫苗为活病毒苗。但活疫苗会导致鸡群
    产生轻微呼吸道症状,从而继发细菌感染。这些疫苗产生的免疫反应持续时间短,必
    须进行多次免疫接种;且雏鸡具有较高的母源抗体,会干扰疫苗的免疫效果。因此,
    构建重组病毒来表达与新城疫病毒免疫有关的抗原基因,试图解决以上问题。
     马立克氏病是由马立克氏病病毒引起的鸡的一种高度接触性传染性肿瘤病。马立
    克氏病病毒疫苗株被认为是最有潜力的病毒载体之一,通过构建表达外源基因抗原的
    多价活疫苗来诱导免疫达到预防禽病的目的。
     考虑多价重组疫苗的诸多优点,本试验利用马立克氏病病毒的 gB 启动子控制新
    城疫病毒 F 基因的表达来构建重组马立克氏病病毒,使其能有效地预防新城疫和由马
    立克氏病病毒超强毒株引起的马立克氏病,且既可以避免病毒对外源启动子的排斥作
    用,又可以避免母源抗体的影响来提高疫苗对商品鸡的免疫保护作用。
     根据 GenBank 己发表的新城疫病毒 F48E9 株 F 基因序列,设计了一对引物,以含
    有新城疫病毒 F48E9 株 F 基因的质粒 pz1/z2 为模板,将扩增的 F 基因(1 678bp)片段
    克隆到真核表达载体 pIRES 中,构建成表达 F 基因的载体 pIRESF。再根据 GenBank
    己发表的载体 pIRES 基因序列,设计了一对引物,以载体 pIRESF 为模板将扩增的包
    含 F 基因及其上游的内含子和下游的 polyA 的 2 900bpDNA 片段,再克隆入包含马立
    克氏病病毒的 gB 启动子的 pBluescriptⅡSK 载体中,并使其克隆到 gB 启动子 580bp
    的下游,最后将包含gB 启动子和F基因表达盒3 500bp克隆到马立克氏病病毒CVI988
    非必需区 US10 基因中,并命名为 pUS10F。
     在试验中,我们选择 CVI988 疫苗株作为病毒载体来构建重组病毒,原因是致弱
    的 MDVI 型疫苗如 CVI988,它们的免疫效果明显优于 HVT,同时疫苗株 MDVI 型与 vvMDV
    的抗原有较高的同源性,理论上可以比其他血清型更能诱导具有针对性的免疫应答反
    应,特别是针对 vvMDV 和 vv+MDV。为进一步提高重组病毒的表达水平,将成功构建
    的转移质粒载体转染 293T 细胞后,对转染条件进行了优化,通过利用转染后 293T
    细胞的基因组作为模板进行 PCR,结果说明真核细胞中已有带 F 基因的细胞存在,质
    粒载体已经进入细胞 DNA。间接免疫荧光检测结果表明,转染质粒载体后的 293T 细
    胞可特异性地表达 NDV 的 F 基因,所表达基因的抗原性较好,能够与抗 NDV 的标准血
    清反应。从而说明转移质粒载体中的基因表达盒可以在细胞中有效地表达,为进一步
    开发新型的抗 ND 和 MD 疫苗的研究打下基础。
Newcastle disease is an acute infectious disease caused by Newcastle disease virus in chicken and
    turkey. Newcastle disease’ vaccination with live virus has been used since 1940s,which lead to
    respiratory complications and cause bacterium infection. These vaccines were used many times to
    produce immunity protection in chicken and their immunes were disturbed by mother’ antibody in
    chicken .So we construct recombinant virus which express NDV antigen gene to deal with these
    problem.
     Marek’s Disease is a highly contiguity infectivity tumour disease caused by Marek’s Disease Virus
    in chicken. The MDV vaccine viruses are considered one of the most potent vectors for polyvalent live
    vaccines expressing foreign antigens related to vaccine-induced immunity against poultry diseases.
    There are great homologue and similarity between MDV 1 type and vvMDV,so MDV1 can prevent
    MD efficiently.
     Considering polyvalent recombinant vaccine with much advantage to prevent poultry diseases
    efficiently,we try to construct recombinant MDV expressing NDV F gene controlled by MDV
    glycoprotein B promoter .we hope this recombinant virus can avoid virus rejecting to foreign promoter
    and avoid disturb of mother’ antibody to prevent NDV and vvMDV efficiently,
     One pair of primers were synthesized according fusion protein gene of NDVF48E9 strain
    nucleotide sequence published on GenBank The NDV F48E9 strain Fusion Protein gene was amplified
    and cloned into the multi clone site of eukaryotic expression vector pIRES to form pIRESF. One pair of
    the primers were synthesized according vector pIRES gene nucleotide sequence published on
    GenBank .This pair of primers were used to amplify 2900bp DNA fragment containing F gene with IVS
    and polyA and was cloned into multi clone site of vector pBluescprint II+SK with gB promoter of MDV.
    At last ,the DNVF gene expression cassette was inserted into us10 gene to give rise to the transferring
    vector pUS10F.
     We choose CVI988 strain as virus carrier to construct recombinant virus, because the immunity
    effect of CVI988 strain is better than HVT, at the same time, there are great homologue and similarity
    between antigen of MDVI and vvMDV .In theory,CVI988 strain has better pertinence immunity
    response reaction ,especially for vvMDV and vv+MDV. In order to improve expression level of
    recombinant virus ,the transferring vector was transfected 293T cells and the specific fluorescent and
    result of PCR in the transfected 293T cells was observed. The result is the basis of obtaining
    recombinant MDVCVI988 expressing NDV F gene.
引文
[1] 高福译.禽病学[M].北京:北京农业出版社,1991, 444-472.
    [2] 刘华雷, 王永坤, 严维巍,等.鹅副黏病毒 F 蛋白基因的克隆和序列分析 [J]. 中国预
     防兽医学报, 2000, 22 (6) : 404-407.
    [3] 苑纯秀, 刘宝全. 鸡 NDV F48E9 及东北分离株遗传变异分析.东北农大硕士论
     文,1997.
    [4] 蔡捷炫.鸡新城疫防治浅析[J].广东畜牧科技,1995,22(1):39-40.
    [5] 杨瑛.鸽新城疫野毒株的分离及生物学特性研究[J].畜牧与兽医,1998,30(5):198-200.
    [6] 胡祥壁.中华人民共和国家禽疾病预防与控制[J].中国兽医科技,1985,23(8):24-26.
    [7] 殷震, 刘景华. 动物病毒学(第二版)[M]. 科学出版社, 1997, 743-750.
    [8] 古长庆, 金宁一, 殷震. 鸡新城疫病毒的 F 和 HN 蛋白在细胞融合中的作用 [J]. 预防
     兽医学进展, 2001, 3 (1) : 5-7.
    [9] 刘开扬,刘芳,等 新城疫病毒抗癌作用及其应用的研究进展[J]. 中国肿瘤生物治疗
     杂志,2002,9(4):291-293.
    [10] 米志强,金宁一,龚 伟,等. 新城疫病毒HN基因构建的核酸疫苗抗肿瘤作用研
     究[J]. 中国肿瘤生物治疗杂志,2003,10(2):93-96.
    [11] 王忠田,等.新城疫病毒分子生物学最新研究进展.动物医学进展,2002,23(2):33-36.
    [12] 刘有放, 于明, 王恩秀,等. 新城疫病毒 F 蛋白中两段七肽重复序列的克隆和表达
     [J]. 生物工程学报, 2001, 17 (6) : 631-634.
    [13] 王兴龙.新城疫病毒分子生物学(待续). 动物科学与动物医学, 2001, 18 (3): 28-30
    [14] 刘惠莉, 刘洪云, 赵敏. 新成疫病毒分子生物学研究现状 [J]. 上海农学院学报,
     1999,17 (1): 68-71.
    [15] 凌育,郭予强. 疫苗免疫在禽病控制上的进展. 动物医学进展,2000,21(1):9-11
    [16] 刘长梅.新城疫病毒的研究现状,山东家禽: 2002,3:22-24
    [17] 孙一敏,边艳青,等.新城疫病毒基因工程疫苗的研究,河北畜牧兽医,2003,19(6):24-25
    [18] 殷震,刘景华主编.《动物病毒学》[M]第二版. 科学出版社,1997,1051-1065.
    [19] 崔治中,秦爱建.MDV 的 38KD 磷蛋白基因重组产物对雏鸡的免疫抑制作用. 畜牧兽
     医学报,1997,28(1):71-76。
    [20] 刘益娟,胡传伟,等. 鸡马立克氏病及其疫苗的发展概况. 山东家禽,2002,1:42-44
    [21] 韩凌霞. 鸡马立克氏病病毒毒力变异及疫苗的发展状况. 中国家禽, 2000,22,(12):35-37
    [22] 丁巧玲,陈溥言. 马立克氏病的发病机理及马立克氏病疫苗的免疫机理. 动物医学进
     展, 2002,23(3):1-4
    [23] 张雪莲,陈溥言. 预防禽病的多价重组马立克氏病疫苗研究进展. 畜牧与兽医,2003
    
    
    参考文献 43
     35(3):38-41
    [24] 钱莺娟. 串联表达 GA 株 MDV gB 主要表位基因重组鸡痘病毒的构建及其免疫保护
     用. 南京农业大学,2003,硕士论文.
    [25] 张雪莲. 表达血清 1、3 型马立克氏病病毒 gB 主要抗原表位的重组 CVI988 病毒构建
     及其免疫保护作用. 南京农业大学,2003,博士论文.
    [26] 吴晓丰.马立克氏病病毒的致病机理及疫苗免疫机理. 动物医学进展,1998 ,19(1):4-8
    [27] J 萨姆布鲁克,E F 弗里奇等著.金冬雁,黎孟枫等译.分子克隆实验指南(第 2 版)[M ].
     北京:科学出版社,1996.
    [28] C.W.迪芬巴赫,G S 德维克斯勒著,黄培堂, 俞炜, 陈添弥等译. PCR 技术实验指
     南.北京:科学出版社,1998.
    [29] 曹慧青. 多基因共表达载体的构建策略. 国外医学分子生物学分册,2002,24(1):1-4
    [30] 殷 震, 刘景华. 动物病毒学(第 2 版) [M ]. 北京: 科学出版社, 1997,380-400 .
    [31] 彭秀玲,袁汉英,谢毅,等.基因工程实验技术[M].第二版,湖南科学技术出版社,1997.
    [32] Calnek B W, John arnes, Charles Beard W, et al. Disease of Poultry (Tenth edition) [M].
     1997,541-562.
    [33] Alexandder J D J. Avian paramyxovirus other than Newcastle disease virus [J]. World
     Poultry Sci, 1982, 38: 97-104.
    [34] Lomniczi B, Wehmann E, Herczey J, et al. Newcastle disease outbreaks in recent years in
     Western Europe were caused by an old (Ⅱ) and a novel genotype (Ⅶ) [J]. Arch Virol,
     1998,143: 49-64.
    [35] Alexander D J. Antigenic and biological characterization of avian paramyxovirus type
     isolates from pigeons. An international collaborative study [J]. Avian Pathol, 1985, 14:
     365-376.
    [36] Alexander D J. Antigenic diversity and similarities detected in avian paramyxovirus type 1
     (NDV) isolates using monoclonal antibodies [J]. Avain Pathol, 1997, 26: 399-418.
    [37] Ballagi-Pordany A, Wehuman E, Herczeg J, et al. Identification and grouping if Newcastle
     disease virus strains by restriction site analysis of a region from the F gene [J]. Arch Virol,
     1996, 141: 243-261.
    [38] Schirrmacher V.in situ analysis of tumor-specific CTL effector and memory responses
     elicited by tumor vaccination[J].Int Oncol,1999,15(2):217-227
    [39] Schirrmacher U,Bai L,Umansky V,et al.Newcastle virus activates macrophages for
     anti-tumor activity[J].Int J Oncol,2000,16(2):363-373
    [40] McGinnesLW,MorrisonTG.,Modulation of the activities of HN protein of Newcastle
     disease virus by no conserved cysteinresidues[J].VirusResearch,1994,34:305-316
    [41] Colman P M,Hoyne P A,Lawrence M C.Sequence and structure alignment of
     paramyxovirus hemagglutinin-neuraminidase with influenza virus
    
    
    44 含 NDVF 基因的 MDVCVI988 株转移质粒载体的构建及表达
     neuraminidase[J].JVirol,1993,67:2972-2980
    [42] Peeters B Pde, Leeuw O S ,Koch G..Rescue of Newcastle disease virus from cloned
     Cdna:Evidence that cleavability of the Fusion protein is a major determinant for
     virulence[J].J Virol,1999,73(6):5001-5009
    [43] Schaper U M,Fuller F J,Ward M D W,etal.Nucleotide sequence of theenvolop protein genes
     of a highly virulentneuo tropic strains of Newcastle disease virus[J]. Virol,1988,
     165:291-295.
    [44] Liu X,Zhang R,Yu S.Development of polyethylene Glyoolmedicated ELISA based on
     monoclonal antibodies against NDV for the detecting of viral antigens in checked
     specimen[J].JGViral,1997,62-72.
    [45] Liu J J,Cepica A.Current approaches to vaccine preparation[J].CanVetJ,1990,31:181-189
    [46] Chambers P, Pringle C R and Eastoo A J. Heptad repeat sequences are located adjacent to
     hydrophobic regions in several types of virus fusion glycoproteins [J].Gen.Virol, 1990, 71:
     3075-3080.
    [47] Sergel-German T, McQuain C and Morrison T. Mutations in the fusion peptide and heptad
     repeat regions of the Newcastle disease virus fusion protein block fusion [J]. Virol, 1994,
     68: 7654-7658.
    [48] Dutch R E, Leser G P, Lamb R A. Paramyxovirus Fusion Protein: Characterization of the
     Core Trimer, a Rod-Sbaped Complex with Hehces in Anti-Parallel Orientation [J]. Virology,
     1999, 25: 147-159.
    [49] LeBlois H,Tuffereau C,BlancouJ,etal.Oral immunization of foxes with a virulent rabies
     virus mutants[J].VetMicrobiol,1990,23:259-266
    [50] Jarecki-Black J C,Benuett J D,PalmieriS.Anoveloligo nucleotide probe for the detection of
     NDV[J].AvianDis,1992,36:134-138
    [51] Jerecki-Black J C,King D J.Anoligo nucleotide probe that distinguishes isolates of low
     virulence from the more path ogenic strains of NDV[J].AvianDis,1993,37:724-730
    [52] Gorman J J,Corino G L,Selleck P W.Comparison of the positions and efficiency of
     cleavage activation of fusion protein precursors of virulent and a virulent strains of
     Newcastle disease[J].virus: insights into the specificities of activating
     proteases .Virol,1990,177:339-351
    [53] Hodder A N,Liu Z Y,Selleck P W,etal.Characterization of field isolates of Newcastle
     disease virus using antipeptides antibodies[J].JVirol,1994,162:272-281
    [54] Jestin V,JestinA .Detection of NDVRNA in infected all antoicfluids by in vitro enzymatic
     amplification(PCR)[J].ArchVirol,1991,118:151-161
    
    
    参考文献 45
    [55] Pringle. Birology-A Practical Approach [M]. IRL Press. Oxford, United Kingdom, 1985,
     95-117.
    [56] Yoshida T, Nagai Y, Maeno K, et al. Studies on the role of M protein in assembly using a ts
     mutant of HVJ(Sendai virus) [J]. Vriol, 1979, 92: 139-154.
    [57] Morrison T G, Simpson D. Structure, function and intracellular processing of
     para-myxovirus membrance proteins [J]. Virus Res, 1988, 10: 113-136.
    [58] Toyoda T M, Hamaguchi M, Nagai Y. Detection of polycistronic transcript in Newcastle
     disease virus infected cells and identification of the sequence content [J]. Arch Virol, 1987,
     95: 97-110.
    [59] Collins P L, Hightower L E and Ball L A. Transcriptional map for Newcastle disease virus
     [J]. J Virol, 1980, 35: 682-693.
    [60] Sergel T,McGinnes L M,Peeples M E,etal.The attachment function of the Newcastle
     disease virus hemagglutinin-neuraminidase protein can be separated from fusion promotion
     by mutation[J].Virology,1993,193:717-726
    [61] Mc Ginnes L,Sergel T,MorrisonT.Mutations in the transmembrane domain of the HN
     protein of Newcastle disease virus affect the structure and activity of the
     protein[J].Virology,1993,196:101-110
    [62] Collins M S,Strong I,Alexander D J.Evaluation of the molecular basis of path ogenicity of
     the variant Newcastle disease viruse stermed pigeon P M
     V-1viruses[J].ArchVirol,1994,134:403-411
    [63] McMillar B C,Hanson R P.RNA oligo nucleotide ingerprinting:Aproposed method of
     identifying strains of Newcastle disease virus[J].AvianDis,1980,24:1016-1020.
    [64] Jarecki-Black J C,Benntt J D,Palmieri S.Anovel oligo nucleotide probe for thed etection of
     Newcastle disease virus[J].AvianDis,1992,36:134-138.
    [65] Hodder A N,Liu Z Y,Selleck P W,etal.Characterization of field isolates of Newcastle
     disease virus using antipeptide antibodies[J].AvianDis,1994,38:103-118.
    [66] Jestin V,Jestin A.Detection of Newcastle disease virus RNA in infected all antoicfluids by
     invitro enzymatic amplification(PCR)[J].ArchVirology,1991,118:151-161.
    [67] Espion D S,Henau D,Letellier C,etal.Expression at the cell surface of native fusion protein
     of the NDV strains Italien from cloned C dna[J].ArchViol,1987,95:79-95.
    [68] Meulemans G C,Letellier C,Gonze M,etal.NDV F glycoprotein expressed from a
     recombinant vaccine virus vector protects chickens against
     live-virus-challenge[J].AvianDis,1988,17:821-827.
    [69] Boursnell M E G,Green P F,Samson A C R,etal.A recombinant fowl pox virus expressing
    
    
    46 含 NDVF 基因的 MDVCVI988 株转移质粒载体的构建及表达
     the HN gene of NDV protects chickens against challenge by
     NDV[J].Virol,1990,178:297-300.
    [70] Morgan R W,Gelb J J,Pope C R,etal.Efficacy in chickens of Herpesvirus of turkey r
     ecombiant vaccine containing the fusion gene of NDV: Onset of protection and effect of
     maternal antibodies[J].AvianDis,1988,37:1032-1040.
    [71] Epstein M A, Achong, B G , Churchill, A E ,et al. Structure and development
     of the herpes-type virus of Marek’s disease. J. Natl Cancer Inst ,1968 ,41:805-820.
    [72] Nazarian K,Solomon J J,Witter R L, et al. Studies on the etiology of Marek’s disease II :
     Finding of a herpesvirus in cell culture. Proc. Soc. Exp. Biol. Med,1968,127:177-182.
    [73] Buckmaster A E,Scott,S D,Sanderson,M J,et al. Gene sequence and mapping data from
     Marek’s disease virus and herpevirus of turkeys: implications for herpesvirus classification. J.
     Gen. Virol,1988 ,69:2033-2042.
    [74] Bulow,V V,Biggs, P M. Differentiation between strains of Marek’s disease virus and
     turkey herpesvirus by immunofluorescence assays. Avian Pathol,1975, 4:133-146.
    [75] Churchill,A E,Payne L N,Chubb,R C. Immunization against Marek’s disease using a live
     attenuated virus. Nature ,1969,221:744-747.
    [76] Okazaki W,Purchase H G.,Burmester,B R. Protection against Marek’s disease by
     vaccination with a herpesvirus of turkeys. Avian Dis,1970, 14:413-429.
    [77] Calnek B W,Schat K A,Peckham MC, et al. Field trails with a bivalent vaccine (HVT and
     SB-1) against Marek’s disease. Avian Dis,1983,27:844-849.
    [78] Witter R L,Sharma J M,Lee L F,et al. Field trials to test the efficacy of polyvalent Marek’s
     disease vaccines in broilers. Avian dis,1984,28:44-60.
    [79] Rispens B H,Van Vloten J,Mastenbroek N,et al. Control of Marek’s disease in the
     Netherlands. I. Isolation of an avirulent Marek’s disease virus and its use in laboratory
     vaccination trials. Avian Dis,1972,16:108-125.
    [80] Witter R L. Increased virulence of Marek’s disease virus field isolates. Avian Dis,1997,
     41:149-163.
    [81] Biggs P M,Payne L N. Transmission experiments with Marek’s disease (fowl paralysis). Vet.
     Rec,1963,75:177-179.
    [82] Calnek B W,Adldinger H K,Kahn D E. Feather follicle epitheliuma source of enveloped and
     infectious cell-free herpesvirus from Marek’s disease. J Natl Cancer Inst,1970,14:219-233.
    [83] Calnek B W, Ubertini T, Adldinger H K. Viral antigen,virus particles and infectivity of
     tissues from chickens with Marek’s disease. J Natl Cancer Inst,1970,45:341-351.
    [84] Witter,R L,Nazerian K,Purchase H G,et al. Isolation from turkeys of a cell-associated
    
    
    参考文献 47
     herpesvirus antigenically related to Marek’s disease virus. Am J Vet Res,1970,31:525-538.
    [85] Purchase,H G,Burmester B R,Cunningham C H. Response of cell cultures from various
     avian species to Marek’s disease virus and herpesvirus of turkeys. Am J Vet Res,1971,
     32:1811-1823.
    [86] Bulow V V,Biggs P M. Precipitation antigens associated with Marek’s disease viruses and a
     herpersvirus of turkeys. Avian Disease,1975,4:147-162.
    [87] Silva R F,Barnett J C. Restriction endonuclease analysis of Marek’s disease virus DNA
     differentiation of viral strains and determination of passage history. Avian
     Disease,1991,35:487-495.
    [88] Witter R L. Characteristics of Marek’s disease viruses isolated from vaccinated commercial
     chicken flocks: Association of viral pathotype with lymphoma frequency. Avian
     Disease,1983, 27:113-132.
    [89] Witter R L. Evolution of virulence of Marek’s disease virus: evidence for a novel pathotype.
     Current Reseach in Marek’s Disease Proc 5th International Symp on Marek’s disease,1996,
     86-91.
    [90] Witter R L. Increased virulence of Marek’s disease virus field isolates. Avian Disease. 1997,
     41:149-163.
    [91] Biggs P M. Marek’s disease herpesvirus: oncogenesis and prevention. Phil Trans R Soc Lond
     B,1997,m352:1951-1962.
    [92] Cantello J L,Anderson A S, Morgan R W. Identification of latency-associated transcripts
     that map antisense to the ICP4 homolog gene of Marek’s disease virus. J Virol,1994,
     68:6280-6290.
    [93] Fukuchi K. Structure of Marek’s disease virus DNA: detailed restriction enzyme map. J
     Virol,1984,51:102-109.
    [94] van Regenmortel MHV, Fauquet C M, Bishop DHL, et al. Virus taxonomy. Seventh
     report of the international committee on taxonomy of viruses. Academic Press, NewYork,
     NY, 1999.
    [95] Sui D, Wu P, Kung HJ, et al. Identification and characterization of a Marek’s disease
     virus gene encoding DNA polymerase. Virus Res,1995, 36(2-3):269-278.
    [96] Haffey M L,Novotny J,Bruccoleri R E,et al. Structure function studies of the herpes
     simplex virus type1 DNA polymerse. J Virol,1990,64(10):5008-5018.
    [97] Schat K A,Schinazi R F,Calnek B W. Cell-specific antiviral activity of FIAC against
     Marek;s disease herpesvirus and turkey herpesvirus. Antivirol Res,1984,4(5):259-270.
    [98] Heineman T C,Cohen J I. Deletion of the varicella zoster virus larger subunit of
    
    
    48 含 NDVF 基因的 MDVCVI988 株转移质粒载体的构建及表达
     ribonucleotide reductase impairs growth of virus in vitro.J Virol,1994,68(5):3317-3323.
    [99] Leader D P,Katan M. Viral aspects of protein phosphorylation. J Gen Virol,1988,
     69:1461-1464.
    [100] Reddy S M,Sui D,Wu P,et al. Identification and structure analysis of a MDV gene
     encoding a protein kinase. Acta Virol,1999,43(2-3):174-180.
    [101] Chen X,Velicer L F. Expression of the Marek’s disease virus homolog of herpes simplex
     virus glycoprotein B in E coli and its identification as B antigen. J Virol,1992,66(7):
     4390-4398.B
    [102] Nazerian,K.,L F Lee,N Yanagida and R. Ogawa. Protection against Marek’s disease by a
     fowlpox virus recombinant expressing the glycoprotein B of Marek’s disease virus. J.
     Viol,1992,66:1409-1413.
    [103] Ross L J,M M Binns,P Tyers,J Pastorek and S Scott. Construction and properties of a
     turkey herpesvirus recombinant expressing the Marek’s disease virus homologue of
     glycoprotein B of herpes simplex virus. J. Gen. Virol,1993,74:371-377.
    [104] Ross L J N ,Sanderson M., Scott S D,et al. Nucleotide sequence and characterization
     of the Marek’s disease virus homologue of glycoprotein B of herpes simplex virus. J. Gen.
     Virol,1989,70:1789-1804.
    [105] Wilson M R,Southwick R A,Pulaski J T,et al. Molecular analysis of the glycoprotein C
     negative phenotype of attenuated Marek’s disease virus. Virology,1994, 199(2):393-402.
    [106] Morgan R, Anderson A,Kent J,et al. Characterization of Marek’s disease virus RB1B based
     mutants having destructed glycoprotein C or glycoprotein D homology genes. In: Current
     research on Marek’s disease. Proc.5th International Symposium on Marek’s disease,east
     lansing. 1996,MI.pp207-212.
    [107] Brunocskis P,Velicer L F. The Marek’s disease virus unique short region: alphaherpesvirus
     homologous,fowlpox virus-homoologous and MDV specific genes. Virology,1995,
     206(1):2534-2542.
    [108] Niikura M, Witter R L, Jang H K, et al. MDV glycoprotein D is expressed in the feather
     follicle epithelium of infected chickens. Acta Virol,1999,43(2-3):159-163.
    [109] Tan X,Velicer L F. Mrek’s disease virus gD expression of down-regulated at the
     transcription level in cell. In: Current research on Marek’s disease. Proc.5th International
     Symposium on Marek’s disease, east lansing,1996. MI.pp213-218.
    [110] Anderson A S,Parcells M S,Morgan R W, et al. The glycoprotein D homoolog is not
     essential for oncogenicity or horizontal transmission of Marek’s disease virus. J Virol,1998,
     72(3): 2548-2553
    
    
    参考文献 49
    [111] Wu P,Reed W M,Yoshida S, et al. Identification and characterization of glycoprotein H
     of MDV1 GA strain. Acta Virol,1999,43(2-3):152-158.
    [112] Yoshida S,Lee L F,Yanagida N,et al. Identification and characterization of a Marek’s
     disease virus gene homologous to glycoprotein L of herpes simplex virus. Virology,1994,
     204(1):414-419.
    [113] Johnson D C,Feenstra V. Identification of a novel herpes simplex virus type1 induced
     glycoprotein which complexes with gE and binds immunoglobulin. J Virol,1987,
     61(7):2208-2216.
    [114] Whitbeck J C,Knapp A C,Enquist L W,et al. Systhesis, processing and oligomerization
     of boving herpesvirus 1 gE and gI membrance proteins. J Virol,1996,67(7):3786-3797.
    [115] Dingwell K S,Brunetti C R,Hendricks R L,et al. Herpes simplex virus glcoproteins E and
     I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol,1994,
     68(2):834-845.
    [116] Cui Z Z,Lee L F,Liu J L,et al. Structural analysis and transcriptional mapping of the
     Marek’s disease virus gene encoding pp38,an antigen associated with transformed cells. J
     Virol,1991, 65(12):6509-6515.
    [117] Zhu G S,Iwata A,Gong M,et al. Marek’s disease virus type1 specific phosphotylated
     proteins pp38 and pp24 with common amino acid termini are encoded from the opposite
     junction regions between the long unique and inverted repeated sequences of viral genome.
     Virology,1994, 200(2):816-820.
    [118] Smith G D,Zelnik V,Ross L,et al. Gene organization in herpesvirus of turkey:
     Identification of a novel open reading frame in the long unique region and a truncated
     homolog of pp38 in the internal repeat. Virology,1995,207:205-216.
    [119] Qing X,Anderson A S,Morgan R W,et al. Marek’s disease virus ICP4,pp38,meq are
     involved in the maintenance of transformation of MDCC-MSB1 MDV transformed
     lymphoblastoid cell. J Virol,1996,70(2):1125-1131.
    [120] Jones D,Lee L,Liu J L,et al. Marek’s diseae virus encodes a basic-leucine zipper gene
     resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc
     Natl Acad Sci USA,1992,89(9):4042-4046.
    [121] Qian Z,Brunovskis P,Rauscher F,et al. Transactivation activity of Meq, a marek’s
     disease herpesvirus bzip protein persistently expressed in latently infected transformed T
     cells. J Virol,1995,69(7):4037-4044.
    [122] Liu J L,Lee L F,Ye Y,et al. Nucleolar and nuclear localization properties of a herpesvirus
     bzip oncoprotein,MEQ. J Virol,1997,71(4):3188-3196.
    
    
    50 含 NDVF 基因的 MDVCVI988 株转移质粒载体的构建及表达
    [123] Liu JL,Lee L F,Ye Y,et al. Transforming potential of the herpesvirus oncoprotein MEQ:
     morphological transformation, serum independent growth, and inhibition of apoptosis. J
     Virol, 1998,72(1):388-395.
    [124] Silva,R F ,Witter,R L. Genomic expansion of Marek’s disease virus DNA is associated
     with serial in vitro passage. J. Virol,1985 ,54:690-696.
    [125] Sugaya K.,Bradley G.,Nonoyama M.,et al. Latent transcripts of Marek’s disease virus are
     clustered in the short and long repeat regions. J. Virol,1990,64:5773-5782.
    [126] Kawamura, M.Hayashi, M. Furuichi T. et al. The inhibitory effects of oligonucleotides,
     complementary to the Marek’s disease virus mRNA transcribed from the BamHI-I region,
     on the proliferation of transformed lymphoblastoid cells,MDCC-MSB1. J.Gen. Virol,
     1991,72:1105-1111.
    [127] Peng F, Donovan J ,Specter S. et al. Prolonged proliferation of primary chicken embryo
     fibroblasts transfected with cDNAs from the BamHI-H gene family of Marek’s disease virus.
     Intl. J. 1993 Oncology 3:587-591.
    [128] Peng F, Bradley G.,Tanaka A,et al. Isolation and characterization of cDNAs from
     BamHI-H gene family RNAs associated with the tumourigenicity of Marek’s disease virus. J.
     Virol. 1992, 66:7389-7396.
    [129] Peng F,Donovan J,Specter S,et al. A 7Kda protien encoded by the BamHI-H gene family of
     Marek’s disease virus is produced in lytically and latently infected cells. Intl. J.
     1994,Oncology 4:799-802.
    [130] Baek S H,Kwak J Y,Lee S H,et al. Lisase activities of p37 the major envelope protein of
     vaccinia virus. J Biol Chem. 1997,272(51): 32042-32049
    [131] Cantello J L,etal.Isolationofa Marek’s disease virus(MDV) recombinanetcontainingthe
     LacZ geneof Escherichia Colitablyinsertedwithinthe MDVUS2 gene.Jvirol.1999 ,
     65:1584-1588
    [132] Nazerian K.Protection and synergism by recombinant fowlpox vaccines expressing genes
     from Marek's disease virus[J].AvianDisease,1996,40:368-376.
    [133] Nilkura M,Matsura Y,Endoh D,etal.Expression of the Marek's disease virus(MDV)
     homolog of glycoprotein Bofherpes simplex virus by a recombinant baculovirusandits
     identification at the Bantigen ofMDV[J].JVirol,1992,66(5):2631-2638.
    [134] Ross LJN,Binns M M,Typers P,etal.Construction and properties of a turkey herps virus
     recombinant expressing the Marek's disease virus homologue of glycoprotein B of herpes
     simples virus[J].JGenVenVirol,1993,74:371-377.
    [135] LeeS I,Ohashi K,Morimura T,etal.Re-isolation of Marek's disease virus from T cell subsets
    
    
    参考文献 51
     of vaccinated and non-vaccinated chickens[J].ArchVirol,1999,144:45-54.
    [136] Karel A,ZhengXing.Specific and nonspecific immune responses to Marek's disease
     virus[J].Developmemtaland Compractive Immunology,2000,24:201-221.
    [137] Mester J C,Rowse B T.The mouse model and an derstandung immunity to herpes simplex
     virus[J].RevInfDis,1991,13:935-945.
    [138] Omar A R,Schat K A.Charaterization of Marek's disease herpes virus-specific cytotoxic T
     lymphocytes in chickens in oculated with a non-oncogenic vaccine strain of
     MDV[J].Immunology,1997,90:579-585.
    [139] Sclammas R,Kodukula P,Tang Q.T cell receptor gamma/delta cells protect mice from herpes
     simplex virus type1 induced lethal encephalitis[J].JExpMed,1997,185:1969-1975.
    [140] de Boer G F,Pol JMA,Jeurissen SHM.Marek’s disease vaccination strategies using vaccine
     made from three avian herpesvirus serotype.In;Advancees in Marek’s disease
     research.Japanese association on Marek’s disease,Osaka, Japan,1988,pp405-413.
    [141] Witter R L.Attenuated revertant serotype1 Marek’s desease virus:safety and protective
     efficacy.AvianDis,1991,35:877-891.
    [142] Sakaguchi M,Hirayama Y,Maeda H,et al.Construction of recombinant Marek’s disease
     virus type1(MDV1)expressing the E coli LacZ gene as a possible live vaccine vector:the
     US1o gene of MDV1 as a stable insertion site.Vaccine,1994,12:953-957.
    [143] Bayliss,C D ,Peters R W ,Cook J K.,et al. A recombinant fowlpox virus that expresses
     the VP2 antigen of infectious bursal disease virus induces protection against mortality caused
     by the virus. Arch. Viral,1991,120:193-205.
    [144] Boyle D B and H G. Heine. Recombinant fowlpox virus vaccines for poultry. Cell
     Biol,1993,71:391-397.
    [145] Darteil,R ,Bublot M, Laplace E,et al. Herpesvirus of turkey recombinant viruses
     expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against
     an IBDV virulent challenge in chickens. Virology,1995,211:481-490.
    [146] Heckert R,Riva A J,Cook S,et al. Onset of protective immunity in chicks after vaccination
     with a recombinant Herpesvirus of turkeys vaccine expressing Newcastle disease virus fusion
     and hemagglutinin-neuraminidase antigens. Avian Dis,1996, 40:770-777.
    [147] Morgan R W,Gelb J,Pope C R.,et al. Efficacy in chickens of a herpesvirus of turkeys
     recombinant vaccine containing the fusion gene of Newcastle disease virus: on set of
     protection and effect of maternal antibodies. Avian Dis,1993,36: 858-870.
    [148] Sonoda K.,Sakaguchi M.,Okamura H.,et al. Development of an effective polyvalent
     vaccine against both Marek’s and Newcastle diseases based on recombinant Marek’s disease
    
    
    52 含 NDVF 基因的 MDVCVI988 株转移质粒载体的构建及表达
     virus type 1 in commercial chickens with maternal antibodies. J. Virol,2000,74:3217-3226.
    [149] Tsukamoto K,Kojima C,Komorl Y,et al. Protection of chickens against very virulent
     infectious bursal disease virus (IBDV) and Marek’s disease virus (MDV) with a recombinant
     MDV expressing IBDV VP2. Virology,1999, 257:352-362.
    [150] Sakaguchi M.,Nakamura H.,Maedn H,et al. Protection of chickens with or without
     maternal antibodies against both Marek’s and Newcastle diseases by one time vaccination
     with recombinant vaccine of Marek’s disease virus type 1. Vaccine ,1998,16:472-479.
    [151] Sheppard M, Werner W, Tsatas E, e t al.Fowl adenovirus recombinant expressing VP2
     of infectious bursal disease virus induces protective immunity against bursal disease. Arch
     Virol,1998,143:925-930.
    [152] Fiinkelstein A,Silva R F. Live resmbinant vaccines for poultry. Trends Biotechnol,1989,
     7:273-277.
    [153] Sondermeijer PJA, Claessens JAJ, Jenniskens PE, et al. Avian herpesvirus as a live
     viral vector for the expression of heterologous antigens. Vaccine,1993, 11:349-359.
    [154] Ross LJN. Recombinant vaccines against Marek’s disease. Avian Pathol,1998,27:S65-S73.
    [155] Witter RL, Hunt HD. Poultry vaccines of the future. Poult Sci,1994,73:1087-1093.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700