牛病毒性腹泻病毒囊膜蛋白E2与牛胚胎滋养层细胞相互作用的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛病毒性腹泻病(BVD)是由牛病毒性腹泻病毒(BVDV)引起的一类以腹泻、流产、呼吸道疾病和免疫机能障碍为主要症状的疾病,目前已在世界范围内广泛传播,给养牛业国家造成了巨大的经济损失。我国BVDV感染具有特征性临床症状的病例并不多见,多半是隐性感染,未能引起足够重视。BVDV感染胎盘组织,通过胎盘屏障将病毒传播给胎儿,造成母胎持续性感染是该病防治的难点和重点。妊娠母畜在怀孕早期通过子宫内感染非致细胞病变型(ncp) BVDV,此时胎儿免疫系统尚未成熟,不能产生免疫应答反应。此种牛一出生即为持续感染牛,外表健康,但终生带毒、排毒,成为畜群主要的传染源。胚胎滋养层细胞是母体和胎儿的联系纽带,同时也是BVDV垂直传播的靶细胞,目前有关BVDV感染胚胎滋养层细胞的分子机制尚不清楚。寻找与BVDV主要囊膜蛋白相互作用的细胞受体,确定受体在病毒感染细胞过程中的功能,是研究BVDV垂直传播机制的重要内容之一,也为家畜抗病育种提供新的理论依据。为此,本研究以BVDV和胚胎滋养层细胞为研究对象,主要展开以下研究工作:
     1.新疆部分地区奶牛场BVDV的分子流行病学调查和基因型分布。根据BVDV保守区基因5'-UTR设计引物,采用RT-PCR方法,对新疆石河子、玛纳斯、喀什、等7个地区、14个奶牛场的274份牛粪样品进行核酸检测及测序。结果表明:BVDV阳性率为18.61%(51/274),北疆地区阳性率为21.34%(51/239),南疆地区未检测出病原。其中有23对母子对应样品,母牛阳性率为39.13%(9/23),犊牛阳性率为30.43%(7/23)。35头牛表现临床症状,阳性率为45.71%(16/35),其余为临床健康牛,阳性率为17.16%(35/204)。调查数据显示新疆地区奶牛BVDV存在隐性感染,且垂直感染较严重。通过序列比对,系统发生分析表明所分析序列与已公布的BVDVⅠ型序列核苷酸同源性最高,达97.5%,并且主要是BVDVⅠb亚型。对临床发病症状明显的初检阳性病料进一步分离培养和鉴定。采用免疫学实验、细胞培养和电镜观察、理化特性测定以及同源性比较等方法分离、鉴定了1株BVDV分离株,命名为BVDVshz132株。
     2.牛胚胎滋养层细胞体外分离培养及BVDV shz132株感染实验:采用胶原酶消化方法,从牛子叶组织中分离双核滋养层巨细胞(Binucleate trophoblast giant cells,TGC)。实验分离的细胞经台盼蓝染色后记录细胞存活率大于90%,核染可见典型双核特征;经差异贴壁法纯化后纯度可达95%。抗细胞角蛋白抗体检测呈阳性,抗波形蛋白抗体检测呈阴性。细胞经过4次传代后,可以存活60天。通过制备细胞爬片,接种BVDVshzl32株,分别培养12-60h,采用BVDV5'-UTR基因实时荧光定量PCR检测病毒拷贝数在培养12h和60h的增殖情况。结果表明60h病毒拷贝数明显高于12h,病毒可在TGC细胞中复制、增殖。
     3.建立牛胚胎滋养层细胞的cDNA文库,采用酵母双杂交技术筛选与BVDVshzl32株主要囊膜蛋白E2相互作用的TGC细胞结合蛋白。文库的库容为1.3×106,插入片段大小在0.2-4kb;取杂交后35个克隆进行测序,用BlastN进行序列同源性比对,筛选得到与BVDV感染TGC细胞相关的捕获蛋白有Bos taurus tryptophanyl-tRNA synthetase (色氨酰-转移核糖核酸合成酶)、similar to WARS protein(色氨酸-转移核糖核酸合成酶--TRRRS-基因标记符号)、actin and beta (肌动蛋白)、p21 protein (Cdc42/Rac)-activated kinase 4(p21-活性激酶,PAK4)、pyruvate kinase(丙酮酸激酶)和clathrin heavy-chain(网格蛋白重链)。通过在线软件分析捕获蛋白的二级结构,预测各个蛋白结构域的功能。结果发现网格蛋白重链接头蛋白(heavy-chain linker)介于网格蛋白与配体-受体复合物之间起到连接作用,通过网格蛋白包被囊泡的内吞作用使配体-受体复合物进入细胞。分析表明网格蛋白介导的内吞作用是BVDV感染细胞的一种途径。采用免疫共沉淀方法验证网格蛋白与诱饵蛋白之间的相互作用。
     以上研究结果表明:通过对新疆地区的BVDV流行病学调查发现,本地区阳性感染率较高,垂直传播严重,基因型分布主要以BVDVIa和Ib型为主。对流行病学阳性样品进一步分离,鉴定了一株BVDV野毒株(shz132株),为非致细胞病变型;成功体外培养了牛胚胎滋养层巨细胞,对细胞进行了鉴定,并成功感染BVDV shz132株;构建了牛胚胎滋养层细胞的cDNA文库;通过酵母双杂交筛选得到6个与BVDV shz132株E2蛋白相互作用的牛胚胎滋养层细胞蛋白,其中网格蛋白是与BVDV感染滋养层细胞相关的蛋白。通过本研究,为揭示BVDV垂直传播,导致持续性感染的分子机制提供线索,也为该病新药物研发、防治及家畜抗病育种工作奠定基础。
Bovine viral diarrhea virus (BVDV) is an important cattle pathogen and widespread all over the world and cause diarrhea, abortion, respiratory passage disease or immun-function defilade. It generates significant economic losses. In our country, BVDV infections usually cause no or only mild clinical symptoms so as to leading less reconstruction. The emphasis and difficulty of preventing this diease is persistant infection(PI) which is caused by transplacental infection. Diaplacental infection of foetuses with a ncp BVDV strain during first trimester of gestation may result in the birth of immunotolerant PI calves which shed the virus through their lifetime. Therefore, they are the main viral reservoir and source for viral transmission. Binucleate trophoblast giant cells(TGC) is the vinculum between parent and fetus and also the target cell for BVDV vertical transmission. At present, there is less molecular mechanism about BVDV infecting TGC. It will be an useful work to find cellular receptors that interacted with BVDV envelope protein E2 and to definite the role of receptors during infection. This work also provide newly consept to breeding for disease resistance. So our investigation is focus on:
     1. Epidemiology investigation and genotype distribution of BVDV in Xinjiang. Based on the sequence comparison of the highly conserved 5'-UTR among different genotypes and subgroups of BVDV strains, current primers were designed.274 dejecta samples which were collected from 14 cattle farms in Xinjiang were detected by RT-PCR assay and sequencing.18.61%(51/274) samples were positive for BVDV with RT-PCR.21.34%(51/239) were positive in north area but negative in south area. 23 matched-pairs specimens were detected. The cow-positive rate was 39.13%(9/23) and the calf was 30.43%(97/23).35 cattles showed clinical symptoms, the positive rate was 45.71%(16/35). The positive rate of the remaining normal cattle was 17.16% (35/204). Data shows BVDV vertical transmission was more seriously in this region. Alignment of the 5'-UTR sequences of the isolates showed 2 different sequences. In addition, Phylogenetic analysis revealed that all viruses were found in group BVDV-I b. No BVDV typeⅡvirus was discovered. These results suggest that the BVDV isolated reflect that the virus predominant genotype is BVDV-I b in Shihezi. And by the biological-type identification, the isolates were non-cytopathic type. Information obtained from this study would also be useful when carrying out epidemiological surveys of domestic BVDV and vaccine application in Chinese cattle population. A BVDV strain originated from Shihezi area in Xinjiang autonomous district, namely BVDV shzl32, was isolated and identified by immunological method, electron microscope observation, physico-chemical property analysis, PCR detection and homology comparison.
     2. To establish a convenient method of purification and culture bovine trophoblast cells and BVDV shz132 infected cells. Healthy placental tissues were obtained and digested, then the cells were cultured, purified. The results shown livability was above 90% and typical two nucleus were stained blue. The isolated TGC were positive for cytokeratin and negative for vimentin throughout the duration of the experiment. The purified cells contained 95% TGC and unpurified contained only 45%-50%. The cells could passage four generations and survived for sixty days. Inoculated TGC with BVDV shzl32 for 12h to 60h and detected virions copies by Real-time RT-PCR according to BVDV 5'-UTR. The results shown that virions copies obtained from the latter was obviously higher than the former. That is to say BVDV can generate in TGC.
     3. The cDNA library of TGC infected with BVDV shzl32 strain was constructed. The target protein were screened and verified. Here we found six cellular proteins interacted with BVDV shz132 E2 protein by yeast two-hybrid:Bos taurus tryptophanyl-tRNA synthetase、similar to WARS protein、actin and beta、p21 protein pyruvate kinase and clathrin. As a results, clathrin heavy-chain linker act as a adapter protein between clathrin and ligand-receptor compound and then entry cells by endocytosis in clathrin-coated vesicles. It is clearly that clathrin-mediated endocytosis is a route for BVDV infecting cells. Then clathrin was verified by immunoprecipitation.
     The above results show that positive ratio of BVDV infection is highly exist in Xinjiang with seriously vertical transmission. All BVDV isolates in this study have been divided into two genotypes, BVDV1 and BVDV2. One of these was isolated and identified as ncp BVDV which named BVDV shz132. TGC was successfully cultured and identified. The cDNA library of TGC infected with BVDV shz132 strain was successfully constructed. We found six proteins that interacted with BVDV envelope protein E2 and verificated clathrin by immunoprecipitation. These findings were useful to demonstrate molecular mechanism of persistent infection. It is also significent to screen specific candidate drugs and give a upstream work for breeding of antivirus livestock.
引文
1. Lee KM, Gillespie IH. Propagation of virus diarrhea virus of cattle in tissue culture. Ann J Vet Res,1957,18:952-953
    2. Underdahl NR, Grace OD, Hoerlein AB. Cultivation in tissue culture of cytopathyogenic agent from bovine mucolsal disease. Proc Soc Exp Biol Med,1957,94:795-797.
    3. Weiland E, Ahl R, Stark R et al. A second envelope glycoprotein mediates neutralization of a pestivirus hog cholera virus. J Virol,1992,66:3677-3682.
    4.谢西锋,崔保安.牛病毒性腹泻的研究概况[J].中国兽医杂志,2001,37(11):29
    5. Gray EW, Nettleton PR The ultrastructure of cell cultures infected with border disease and bovine viral diarrhoea viruses. J Gen Virol,1987,68:2339-2346.
    6. Brownlie J. Pathogenesis of mucosal disease and molecular as pects of bovine viral diarrhea virus [J]. Vet Microbiol.1990,23:371-382.
    7. Collett MS, Larson R, Gold C et al. Molecular cloning and nucleotide sequence of the pestivirus bovine viral diarrhea virus. Virol,1988,165:191-199.
    8. De Moerlooze L, Lecomte C, Brown-Shimmer S et al. Nucleotide sequence of the bovine viral diarrhea virus osloss strain:comparison with related viruses and identification of specific DNA probes in the 5'untranslated region. J Gen Virol,1993,74:1433-1438.
    9. Deng R, Brock KV. Molecular cloning and nucleotide sequence of a pestivirus genome noncytopathic bovine viral diarrhea virus strani SD-1. Virol,1992,191:867-879.
    10. Collett MS. Molecular genetics of pestivirus. Comp Immunol Microbiol Infect Dis,1992,15: 145-154.
    11. Meyers G, Tantz N, Stark R et al. Rearrangement of viral sequences in cytopathogenic pestiviruses.
    12. Collett MS. Wiskerchen M. Welniak E et al. Bovine viral diarrhea virus genomic organization. Arch Virol,1991, Suppl 3:19-27.
    13. Wiskerchen M, Belzer SK, Collett MS. Pestivirus gene expression:the first protein product of the bovine viral diarrhea virus large open reading frame p20 possesses proteolytic activity. J Virol, 1991,65:4508-4514.
    14. Donis RO, Corapi WV, Dubovi EJ. Bovine viral diarrhea virus proteins and their antigenic analysis. Arch Virol,1991, Suppl 3:29-40.
    15. Collett MS. Arch Virol.1990, supp,13:19-27.
    16. Rumenapf T, Unger G, Strauss JH et al. Processing of the envelop glycoproteins pestiviruses. J Virol,1993,67:3288-3294.
    17. YuM, et al. Virus Res,1994,34:178-186.
    18. Meyers G, et al. Virol,1990, supp,13:19-27.
    19. Donis RO, CoRapi W, Dubovi EJ. Neutralizing monoclonal antibodies to bovine viral diarrhea virus bind to the 56k to 58k glycopotein. J Gen Virol,1988,69:77-86.
    20. Xue W, Minocha HC. Identification of the cell surface receptor for BVDV by using anti-idiotypic antibodies. J Gen Virol,1993,74:73-79.
    21. Weiland E, Stark R, Haas B et al. Pestivirus glycoprotein which induces neutralizing antibodies forms part of a disultidelinded heterodimer. J Virol,1990,64:3563-3569.
    22. Mayer R, Minocha HC, Lecomte J. Bovine viral diarrhea virus proteins:heterogeneity of cytopathogenic and non-cy-topathogenic strains and evidence of a 53k glycoprotein neutralization epitope. Vet Microbiol,1988,16:303-314.
    23. Yu M, Gould AR, Morrissy CJ et al. High level expression of the envelope glycoprotein(gp53) of bovine viral diarrhea virus (Singer) and its potential use as diagnostic reagent. Virus Res,1994, 34:178-186.
    24. Brock KV, Deng R, Riblet S. Nucleotide sequence of 5'and 3'termini of BVDV by RNA ligation and PCR. J Virol Method,1992,38:39-46.
    25. Donis RO, Rubovi EJ. Differences in virus-induced polypeptides in cells in fected by cytopathic and noncytopathic biotypes of bovine viral diarrhea-mucosal disease virus. Virol,1987, 158:168-173.
    26. Meyers G, Tautz N, Dubovi EJ et al. Viral cytopathogenicity correlated with intergraation of ubiquitin-coding sequences. Virol,1991,180:602-616.
    27. Warrener P, Collett MS. Pestivirus NS3(p80) protein possesses RNA helicase activity. J Virol, 1995,69:1720-1726.
    28. Collett MS, Larson R, Belzer SK et al. Proteins encoded by bovine viral diarrhea virus:the genomic organization of a pestivirus. Virol,1988,165:200-208.
    29. BauleC,KulcsarG,MittelholzerC,AleniusS,BelakK,BelakS,SoosT. Respiratory disease caused by bovine viral diarrhoea virus(Hungarian). Magyar All atorvosok Lapja,1999,121:260-263.
    30. Baule C, van Vuuren M, Lowings JP, Belak S. Genetic heterogeneity of bovine viral diarrhoea viruses isolated in Southern Africa. Virus Res,1997,52:205-220.
    31. Becher P, Orlich M, Shanon AD, Horner G, Konig M, Thiel H-J. Phylogenetic analysis of pestiviruses from domestic and wild ruminants. J Gen Virol,1997,78:1357-1366.
    32. BecherP,OrlichM,KosmidouA,KonigM,BarothM,ThielH-J. Genetic diversity Of pestiviruses: identification of novel groups and implication for classification. Virology,1999,262:64-71.
    33. BehrensS-E, GrassmannCW, ThielH-J, MeyersG, TautzN. Characterization of anautonomous subgenomic pestivirus replicon. Virol,1998,72:2364-2372.
    34.BerryES, LewisTL,RidpathJR,EvermannJF,RupnowBA,QiF. Genomic comparison of ruminant pestiviruses. Proceedings of the Second Symposium on Pestiviruses.Annecy,1993,10:1-3.
    35. Brownlie J, Clarke MC, Howard CJ, Pocock DH The pathogenesis and epidemiology of bovine viral diarrhoea virus infection in cattle. Ann Rech Vet,1987 18:157-166.
    36. CarmanS, vanDreumelT, RidpathJ, HazlettM, AlvesD, et al. Severe acute bovine viral diarrhea virus infection in Ontario. Vet DiagnInvest,1993-1995,10:27-35.
    37. DengR, BrockKV 5'and3'untranslated regions of pestivirus genome:primary and secondary structure analysis. Nucleic AcidsRes,1993,21:1949-1957.
    38. C.Baule, M.van Vuuren, J.P. Lowings, et al. Genetic Heterogeneity of Bovine Viral Diarrhea Viruses Isolated in Southern Afica. Virus Res,1997,52:205-220.
    39.GiangasperoM,HarasawaR,VerhulstA. Genotypic analysis of the 5'-untranslated region of a pestivirus strain isolated from human leucocytes. Microbiollmmun,1997,41:829-834.
    40. HarasawaR,GiangasperoM. A nove lmethod for pestivirus genotyping based on palindromic nucleotide substitution in the 5'-untranslated region. J Virol Methods,1998,70:225-230.
    41. KimuraM. A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J MolEvol,1980,16:111-120.
    42. J. F. Ridpath, S.R. Bolin, E.J.Dubovit. Segregation of Bovine Viral Diarrhea Virus into Genotypes. Virology,1994,205:66-74.
    43. S. Vilcek, D.J. Paton, B.Durkovic, et al. Bovine Viral Diarrhea Virus Genotype I Can be Separated into at Least Eleven Genetic Groups. Arch Virol,2001,146:99-115.
    44. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol,1982,157:105-132.
    45. Holland J G, et al. M echanism of virus persistance. Cell,1978,14(2):447-452.
    46. Charles Pellerin, Jan Van Den Hurk, Jacqueline Lecomte, et al. Identification of a New Groupe of Bovine Viral Diarrhea Virus Strains Associated with Severe Outbreaks and High Mortalities. Virology,1994,203:260-268.
    47.殷震,刘景华.动物病毒学.北京:科学出版社,1985,465.
    48. Radostits O M,Littlejohns I R.New concepts in the pathogenesis,diagnosis and control of disease caused by bovine viral diarrhea virus.Can Vet J,1998,29:513-528
    49.蔡宝祥主编.家畜传染病学(第三版).北京:中国农业出版社,2000:181-183.
    50. Moenning V, Frey H R, Lieber E, et al. Reproduction of mucosal disease with cytopathogenic bovine viral diarrhea virus selected in vitro.Vet Rec,1990,127:200-203.
    51. Bendfeldt S, Gummer B, Greiser-Wilke I. Caspase activation but over expression of Bcl-2 n bovine cellsinfected with noncy topathic bovine viral diarrhea virus. Vet Microbiol,2003, 96(4):313-326.
    52.刘娣琴,刘亚刚,孙小玲.牛病毒性腹泻-黏膜病的持续性感染.西南民族大学学报·自然科学版.2006,32(3):559-562.
    53. Walz P H, Barbara A. Effects of experimentally induced type bovine viral diarrhea virus infection on platelet function in calves. Americal Journal of Veterinary Research,1999,60(11): 1396-1401.
    54. Walz P H,Bell T G. Relationship between degree of viremia and disease manifestations in calves with experimentally in duced bovine viral diarrhea virus infection. Americal Journal of Veterinary Research,2001,62(7):1095-1103.
    55. Bolin S R, Littledike E T,Ridpath J F. Serologic detection and practical consequence of antigen diversity among bovine diarrhea virus in a vaccinated herd. Am J Vet Res,1991, (52):1033-1037.
    56. Lambot M,Joris E,Douart A,et al. Evidencefor biotype-specific effectsof bovine viral diarrhea virus on biological responses in acutely infected calves. Journal of General Virology,1998,79:27-30.
    57. Howard CJ,Clarke M C,Sopp P,et al. Immunity bovine viraldiarrhea virus calves:the role of different T cell sub populations analysed by specific depletion in vivo with monoclonal antibodies.Vet Immunolpathol,1992,32:303-314.
    58. Adler B, Adler H P, Fister H, et al. Macrophage infected with cytopathic bovine viral diarrhea virus release a factor(s) capable of priming infected macrophages for activation induced apoptoisis. J Virol,1997,71:3255-3258.
    59. Moening V. The Hog cholera virus. Comp Immun Micro biol Infect Dis,1992,15(3):189-201.
    60. Kirkland P. D. Mackintosh S. G.&MoyleA. The outcome of widespread use of semen from a bull persistently infected with pestivirus. Vet. Rec,1994,135:527-529.
    61. Revell S. G, ChaseyD.,Drew T.W.& Edwards S. Some observation on the semen of bulls persistently infected with bovine viral diarrhea virus. Vet. Rec,1998,123:122-125.
    62. Browinlin J. Experimental productionof fatal mucosal disease in cattle. AM Vet Res,1984,114, 5355-5363.
    63. Charleston, B., M.D. Fray, S.Baigent, B.V.Carr, W.I. Morrsion. Establishment of persistently infection with non-cytopathic bovine viral diarrhea virus in cattle is associated with a failure to induce type I interferon. J.Gen. Virol,2001,82:1893-1897.
    64. Michel, L.B., Eliane J., Alain, D. Evidence for biotype-specific effects of bovine viral diarrhea virus on biological responses in acutely infected calves. J.Gen. Virol,1998,79:27-30.
    65.刘亚刚,殷中琼.猪瘟弱毒苗预防牛病毒性腹泻/黏膜病的短期安全性与微量中和试验.四川大学学报(自然科学版),2003,40(5):970-973.
    66.刘德洪,封林.猪瘟病毒持续感染与免疫失败的关系.畜禽业,2004,(8):58-59.
    67.林毅,冯金传,张道永等.规模化猪场种猪瘟免疫程序的免疫效果比较.中国兽医科技,2000,30(4):20-21.
    68.刘德洪,封林.猪瘟病毒持续感染与免疫失败的关系.动物保健,2004,23-24.
    69. Liu J J, Wong M L, Chen P F, et al. Cloning, expression and squence analysis of the classical swinefever virus nucleocapsid protein. Virus Genes,1998,16(2):225-234.
    70. T.& Imada T. Detection of BVDV in bovine embryos derived from persistently infected heifers by PCR. Vet. Rec,1998,142:114-115.
    71. Vanroose G, Nauwynck H.,Van Soom A., Vanopdenbosch E.& De KruifA. Replication of cytopathic and noncytopathic bovine viral diarrhea in zona-free and zona-inact in vitro-produced bovine embryos and the effect on embryo quality. Biol, Record,1998,58:857-866.
    72.涂宜强,李晓成,杨增歧,徐辉等.猪瘟流行毒E2基因部分编码序列的分析与比较.中国动物检疫,2005,22(7):23-26.
    73.廖素环,罗廷荣,吴显实,刘芳,陆芹章等.广西流行的猪瘟病毒株E2基因序列测定及分析.中国生物制品学杂志,2005,18(3):196-199.
    74. Garcia-Sastre, A. Mechanisms of inhibition of the host interferon alpha/beta-mediated antiviral responses by viruses. Microbes Infect,2002,4:647-655.
    75. Matthias Schweizer, Philippe Matzener, Gabriela Pfaffen et al. "Sel" and "Nonsel" manipulation of interferon defense during persistent infection:bovine viral diarrhea virus resists alpha/beta interferon without blocking antiviral activity against unrelated viruses replicating in its host cells. Virology,2006,80(14):6926-6935.
    76. Diamond, M. S., T. G Roberts, D. Edgil, B.Lu, J. Ernst, and E.Harris. Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J. Virol.2000,74:4957-4966.
    77. Bielefeldt Ohmann, H. The pathologies of bovine viral diarrhea virus infection. A window on the pathogenesis. Vet. Clin. N. Am. Food Anim. Pract.1995,11:447-476.
    78. Brownlie J. Pathogenesis of mucosal disease and molecular aspects of bovine viral diarrhea virus. Vet Microbiol,1990,23:371-382.
    79.吴楚泓.猪瘟免疫程序探讨.中国兽医科技,2000,30(4):35-37.
    80.田晶华,王新华,钟发刚,沈敏,温建新.牛病毒性腹泻病毒人工感染绵羊病理学研究.中国兽医杂志,2008,3(4):26-28.
    81. Ali BA, Huang TH, Xie QD. Detection and expression of hepatitis B virus X gene in one and two-cell embryos from golden hamster oocytes in vitro fertilized with human spermatozoa carrying HBV DNA. Mol Reprod Dev,2005,70:30-36.
    82.张丽云,方之勋,郑兆葛等.乙型肝炎病毒父婴传播途径的初步研究.中华传染病杂志,1994,12(4):199.
    83. Peiris,J.S., Porterfield,J.S. Antibody-mediated enhancement of flavivirus replicati-on in macrophage-like cell lines. Nature,1979,282,509-511.
    84.项秉懿.HIV-1感染初始阶段的分子机制.中国病毒学,1996,11(1):9-16.
    85.郭爱珍,陆承平.病毒的细胞膜受体.中国病毒学,1997,12(4):295-301.
    86. Chen, Y.P., Terry, M., Ronald, E. et al. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine,1997,3:866-871.
    87. Dalziel, R. G, Hopkins, J., Watt, N.J. et al. Identification of a putative cellular receptor for the lentivirus visna virus. J, Gen, Virol,1991,72(8):1905-1991.
    88. L. Zheng, S. Zhang, W. Xue. et al. Expression of a 50kDa putative receptor for bovine viral diarrhea virus in bovine fetal tissues. J. Vet Res,1998,62:156-159.
    89. Fried H, Cahan L, Paulson JC. Polyoma virus recognizes specific sialy loligo saccharide receptors on host cells. Virol,1981,109:188-192.
    90. Jon, D. A., and Roya, S.L. Identification of a putative cell receptor for human cytomegalovirus, Virology,1990,176:337-345.
    91. Xue W, Minocha HC. Identification of the cell surface receptor for bovine viral diarrhea virus by using anti-idiotypic antibodies. J Gen Virol,1993,74:73-79.
    92. Xue W, Blecha F, Minocha HC. Antigenic variations in bovine viral diarrhea viruses detected by monolconal antibodies. J Clin Microbiol.1990,28:1688-1693.
    93. Xue W, Minocha HC. Immune response to bovine viral diarrhea virus induced by anti-idiotypic antibodies. Clin Diag Lab Immunol.1994,1:95-98.
    94. Xue W, Minocha HC. Identification of bovine viral diarrhea virus receptor in different cell types. Vet Microbiol.1996,49:67-79.
    95. Schelp C, Greiser WI, Wolf G, Beer M, Moennig V, Liess B. Identification of cell membrane proteins linked to susceptibility to bovine viral diarrhea virus infection. Arch Virol.1995,140(11): 1997-2009.
    96. Karin Maurer, Thomas Krey, Volker Moennig, er al. CD46 is a cellular receptor for bovine viral diarrhea virus. J Virol,2004,78(4):1792-1799.
    97. Barilla-LaBarca, M. L., M. K. Liszewski, et al. Role of membrane cofactor protein(CD46) in regulation of C4b and C3b deposited on cells, J. Immunol.2002,168:6298-6304.
    98. Buchholz, C. J., D.Koller, P. Devaux, et al. Mapping of the primary binding site of measles virus to its receptor CD46. J. Biol. Chem.1997,272:22072-22079.
    99. Casasnovas, J. M., M. Larvie, and T.Stehle. Crystal structure of two CD46 domains reveals an extended measles virus-binding surface. EMBO J.1999,18:2911-2922.
    100. Flores, E. F., and R. O. Donis.Isolation and characterization of a mutant MDBK cell line resistant to bovine viral diaeehea virus infection due to a block in viral entry. Virology,1995,208: 365-375.
    101. Flores, E. F., L. C. Kreutz, and R.O. Donis. Swine and ruminant pestiviruses require the same cellular factor to enter bovine cells. J. Gen. Virol.1996,74:9553-9561.
    102. Maisner, A., G. Zimmer, M. K. Liszewski, et al. Membrane cofactor protein(CD46) is a basolateral protein that is not endocytosed. Importance of the tetrapeptide FTSL at the carboxylterninus. J. Biol. Chem.1997,272:20793-20799.
    103. Okada, N., M. K. Liszewski, J P. Atkinson, et al. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc. Natl. Acad. Sci. USA. 1995,92:2489-2493.
    104. Schelp, C, I. Greiser-Wilke, G Wolf, M. Beer. Et al. Identification of cell membrane proteins linked to susceptibility to bovine viral diarrhea virus infection. Arch. Virol.1995,140:1997-2009.
    105. Shusta, E. V, C. Zhu, R.J. Boado, et al. Subtractive expression cloning reveals high expression of CD46 at the blood-brain barrier. J. Neuropathol. Exp. Neurol.2002,61:597-604.
    106. Tardieu, M., R.L. Epstein, and H.L. Weiner. Interaction of viruses with cell surface receptors. Int. Rev. Cytol.1982,80:27-61.
    107. Thomas Krey, Etienne Moussay, Heinz-Jurgen Thiel, et al. Role of the low-density lipoprotein recepror in entry of bovine viral diarrhea virus. J. Virol,2006,80(21):10862-10867.
    [1]殷震,刘景华.动物病毒学[M].北京:科学出版社,1985,465.
    [2]李佑民,刘振润,武银莲.牛病毒学腹泻-粘膜病病毒株(长春184)的分离与鉴定[J].中国人民解放军兽医大学学报,1983,3(2):113-121.
    [3]邱昌庆,高双梯,周继章等.我国规模化肉牛场牛病毒性腹泻-粘膜病流行状况监测[J].中国兽医科技,1993,28(8):15-16.
    [4]郑志刚,刘佩兰,郑蹭忍等.关于牛病毒性腹泻粘膜病血清中和抗体的调查报告[J].动物检疫,1991(5):40-42.
    [5]赵月兰,张宁,胡自然等.牛病毒性腹泻病研究进展[J].当代畜牧,2002,21(11):19-21.
    [6]王新平.双抗夹心阻断ELISA检测牛病毒性腹泻病毒的研究[J].中国兽医学报,1995,15(3):246-249.
    [7]Pellerin C, van der Hurk J, Lecomte, J, Tijssen, P. Identification of a New Group of Bovine Viral Diarrhea Virus Strains Associated with Severe Outbreaks and High Mortalities [J]. Virology, 2004,203:260-268.
    [8]王镇,丁明孝.牛病毒性腹泻病毒的分子生物学研究进展[J].中国病毒学,1997,12(2):112-117.
    [9]GiangasperoM, HarasawaR,VerhulstA. Genotypic analysisof the 5'-untranslated region of a pestivirus strain isolated from human leucocytes[J]. Microbiollmmun,1997,41:829-834.
    [10]Harasawa R,Giangaspero M. A novel method for pestivirus genotyping based on palindromic nucleotide substitution in the 5'-untranslated region[J]. J Virol Methods,1998,70:225-230.
    [11]Letellier G,Kerkhofs P,Wellemans G,Vanopdenbosch E. Detection and genotyping of bovine viral diarrhea virus by reverse transcription-polymerase chain amplification of the 5'-untranslated region[J]. Vet Microbio.1999,164:155-167.
    [12]A.Jackova, M. Novackova, C. Pelletier, et al. The Extended Genetic Diversity of BVDV-1: Typing of BVDV Isolates From France[J]. Vet Res Commun,2008,32:7-11.
    [13]Becher P, Orlich M, Shanon AD, Horner G, Konig M, Thiel H-J. Phylogenetic analysis of pestiviruses from domestic and wild ruminants [J]. J Gen Virol.1997,78:1357-1366.
    [14]郭燕,王新华,邓宇等.新疆某地牛病毒性腹泻病毒生物型的鉴定[J].动物医学进展,2007,28(1):50-52.
    [15]王治才,刘崇向,赵泽森等.牛病毒性腹泻病毒感染羔羊的调查[J].中国畜禽传染病,1992,(3):41-42.
    [16]J. F. Ridpath, S.R. Bolin, E.J.Dubovit. Segregation of Bovine Viral Diarrhea Virus into Genotypes[J]. Virology,1994,205:66-74.
    [17]S. Vilcek, D.J. Paton, B.Durkovic, et al. Bovine Viral Diarrhea Virus Genotype I Can be Separated into at Least Eleven Genetic Groups[J]. Arch Virol,2001,146:99-115.
    [18]A.Jackova, M. Novackova, C. Pelletier, et al. The Extended Genetic Diversity of BVDV-I Typing of BVDV Isolates From France[J]. Vet Res Commun,2008,32:7-11.
    [19]Charles Pellerin, Jan Van Den Hurk, Jacqueline Lecomte, et al. Identification of a New Groupe of Bovine Viral Diarrhea Virus Strains Associated with Severe Outbreaks and High Mortalities[J]. Virology,1994,203:260-268.
    [20]Jones, LR. Genetic Typing of Bovine Viral Diarrhea Virus Isolates from Argentina[J]. Vet Microbiol,2001,81(4):367-375.
    [21]Kadir Yesilbag, Christine Forster, Barbara Bank-Wolf, et al. Genetic Heterogeneity of Bovine Viral Diarrhoea Virus (BVDV) Isolates from Turkey:Identification of a New Subgroup in BVDV-1[J]. Vet Microbiol,2008,130:258-267.
    [22]Charles Pellerin, Jan Van Den Hurk, Jacqueline Lecomte, et al. Identification of a New Groupe of Bovine Viral Diarrhea Virus Strains Associated with Severe Outbreaks and High Mortalities[J]. Virology,1994,203:260-268.
    [23]钟发刚,王新华,沈敏等.牛病毒性腹泻病毒野毒株的分离鉴定[J].中国预防兽医学报,2000,22(6):463-464.
    [24]徐兴然,肖昌,梁龙,余兴龙,张青禅,涂长春.系统发生分析发现牛病毒性腹泻病毒新基因亚型[J].中国病毒学,2005,20(6):626-631.
    [25]李娜,韩猛立,黄新,薄新文,王新华,赵玉龙,钟发刚.新疆石河子地区牛病毒性腹泻病毒的分子流行病学调查[J].石河子大学报.
    [26]张光辉,李祥瑞,李建丽等.牛病毒性腹泻病毒地方株的分离与鉴定[J].河南农业科学,2005,22(3):71-73.
    [27]任敏,焦海宏,蒋颖,刘振华,王传彬,朱国强.基因2型牛病毒性腹泻病毒RT-PCR检测方法的建立及初步应用[J].中国预防兽医学报,2008,8.
    [28]S. Vilcek, B.Durkovic, M. Kolesarova, D.J. Paton. Genetic diversity of BVDV: Consequences for classification and molecular epidemiology[J]. Preventive veterinary medicine, 2005,72:31-35.
    [29]S. Vilcek, PF. Nettleton, DJ. Paton, S. Belak. Molecular characterization of ovine pestiviruses. J Gen Virol,1997,78:725-735.
    [1]殷震,刘景华.动物病毒学[M].北京:科学出版社,1985,465.
    [2]李佑民,刘振润,武银莲.牛病毒学腹泻-粘膜病病毒株(长春184)的分离与鉴定[J].中国人民解放军兽医大学学报,1983,3(2):113-121.
    [3]刘善艺,茹仙古丽.牛病毒性腹泻-粘膜病病毒的分离鉴定[J].中国预防兽医学报,1996,86(1):17-20.
    [4]钟发刚,王新华,沈敏等.牛病毒性腹泻病毒野毒株的分离鉴定[J].中国预防兽医学报,2000,22(6):463-464.
    [5]张光辉,李祥瑞,李建丽等.牛病毒性腹泻病毒地方株的分离与鉴定[J].河南农业科学,2005,22(3):71-73.
    [6]王治才,刘崇向,赵泽森等.牛腹泻病病毒感染羔羊的调查[J].中国畜禽传染病,1992,14(3):41-42.
    [7]李娜,韩猛立,黄新等.新疆石河子地区牛病毒性腹泻病毒的分子流行病学调查[J].石河子大学报(自然科学版)
    [8]郭燕,王新华,邓宇等.新疆某地牛病毒性腹泻病毒生物型的鉴定[J].动物医学进展,2007,28(1):50-52.
    [9]冶贵生,张彦明,徐浩.载体介导的shRNA抑制猪瘟病毒在PK-15细胞中增殖特性的研究[J].畜牧兽医学报,2007,38(5):500-505.
    [10]Mayer R, Minocha HC, Lecomte J. Bovine viral diarrhea virus proteins:heterogeneity of cytopathogenic and non-cy-topathogenic strains and evidence of a 53k glycoprotein neutralization epitope[J]. Vet Microbiol,1988,16:303-314.
    [11]Yu M, Gould AR, Morrissy CJ et al. High level expression of the envelope glycoprotein(gp53) of bovine viral diarrhea virus (Singer) and its potential use as diagnostic reagent[J]. Virus Res, 1994,34:178-186.
    [12]Brock KV, Deng R, Riblet S. Nucleotide sequence of 5'and 3'termini of BVDV by RNA ligation and PCR[J]. J Virol Method,1992,38:39-46.
    [1]Flechon JE, Laurie S, Notarianni E. Isolation and characterization of a feeder dependent, porcine trophectoderm cell line obtained from a 9-day blastocyst[J]. Placenta,1995,16(7):643-658.
    [2]Nakano H, Takahashi T, Imai K. Expression of placental lactogen and cytokeratin in bovine placental binucleate cells in culture[J]. Cell Tissue Res,2001,303(2):263-270.
    [3]刘杰,章汉旺.人绒毛膜滋养层细胞的分离纯化及鉴定[J].中国优生与遗传杂志,2004,12(3):74-76.
    [4]龚洵,乔福元,刘海意等.人早孕绒毛滋养层细胞的体外分离与培养[J].华中医学杂志,2007,31(6):443-444.
    [5]Kadyrov M, Gamier Y, Gantert M. Cytokeratin antibodies as differential markers of trophoblast and fetomaternal syncytial plaques in the sheep placentome[J]. Placenta,2007, 28(11-12):1107-1109.
    [6]刘惠萍,王若光,李春梅等.滋养层细胞原代体外培养体系的建立[J].实用预防医学,2006,13(5):1109-1111.
    [7]Landim LPJr, Miglino MA, Pfarrer C. Culture of mature trophoblastic giant cells from bovine placentomes[J]. Anim Reprod Sci,2007,98(3-4):357-364.
    [8]Munson L, Chandler SK, Schlafer DH. Long term culture of bovine trophoblast cells[J]. Tissue Cult Methods,1988,11(3):123-128.
    [9]Faria TN, Soares MJ. Trophoblast cell differentiation:establishment, Characterization and modulation of a rat trophoblast cell line expressing members of the placental prolactin family [J]. Endocrinology,1991,129(6):2895-2906.
    [10]Shimada A, Nakano H, Takahashi T. Isolation and Characterization of a bovine blastocyst-derived trophoblastic cell line, BT-1:development of a culture system in the absence of feeder cell[J]. Placenta,2001; 22(7):652-662.
    [11]任艳,陈创夫,乔军,王鹏雁,盛金良,王远志.牛病毒性腹泻病毒实时定量RT-PCR检测技术的建立及初步应用[J].畜牧兽医杂志,2010,第5期.
    [1]殷震,刘景华.动物病毒学[M].北京:科学出版社,1985,465.
    [2]李佑民,刘振润,武银莲等.牛病毒性腹泻-粘膜病病毒(长春184)的分离和鉴定[J].中国人民解放军兽医大学学报,1983,3(2):113-121.
    [3]王治才,刘崇向,赵泽森等.牛病毒性腹泻病毒感染羔羊的调查[J].中国畜禽传染病,1992,(3):41-42.
    [4]C.C. Broaddus, C.G.Lamm, S.Kapil, L.Dawson, G. R. Holyyoakb. Bovine viral diarrhea virus abortion in goats housed with persistently infected cattle[J]. Vet Pathol,2009,46:45-53.
    [5]Brock KV, Grooms DL, Givens MD:Reproductivedisease and persistent infections. In: Bovine Viral Diarrhea Virus:Diagnosis, Management, and Control, ed. Goyal SM and Ridpath JF, pp.145-156. Blackwell Publishing Professional, Ames, IA,2005.
    [6]Evermann JF, Ridpath JF. Clinical and epidemiologic observations of bovine viral diarrhea virus inthe northwestern United States[J]. Vet Microbiol,2002,89:129-139.
    [7]钟发刚,王新华,沈敏,温建新,田晶华等.牛病毒性腹泻病毒在绵羊垂直感染中的抗原分布[J].中国预防兽医学报,2002,24(4):260-263.
    [8]李琦涵,姜莉.病毒感染的分子生物学[M].北京:化学工业出版社,2004,43.
    [9]张莉,黄偼,戴继勋.可应用与病毒受体研究的几种生物技术途径[J].海洋水产研究,2006,27(1):81-86.
    [10]姜先荣,杨杰,任可勤.酵母双杂交系统[J].细胞生物学杂志,2000,22(4):176-181.
    [11]张迪,霍克克,顾科隆,赵翔,李育阳.酵母双杂交技术研究进展[J].高技术通讯,2000,10(3):98-101.
    [12]http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE =NP 001029754.1
    [13]http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE =XP 001256627.2
    [14]http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE =AAI02949.1
    [15]http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE =NP_001070366.1
    [16]http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE =NP 001069644.1
    [17]http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE =P49951.1
    [18]http://www.ch.embnet.org/software/TMPRED form.html
    [19]Schmid SL. Clathrin coated vesicle formation and protein sorting an integrated process[J]. Annu Rev Biochem,1997,66:511-548.
    [20]Cupers P, Jadhav AP, Kirchhauson T. Assembly of clathrin coats disrupts the association between Eps 15 and AP-2 adaptors[J]. Biol Chem,1998,273:1847-1850.
    [21]Sle pnev VI, De Camilli P. Accessory factors in clathrindependent synaptic vesicle endocytosis[J]. Nat Rev Neurosci,2000,1:161-172.
    [22]GlabiatiF, RazaniB, LisantiMP. Emerying themes in lipid rafts and caveolae[J]. Cell,2001, 106:403.
    [23]Pelkmans, HeleniusA. Endocytosis via caveolae[J]. Traffic,2002,3(5):311.
    [24]PethamHR. SNAREs and the Specificity of membrane fusion[J]. Trends Cell Biol,2001, 11:99.
    [25]B.Grummer, S.Grotha, Greiser-Wilke. Bovine Viral Diarrhoea Virus is Internalized by Clathrin-dependent Receptor-mediated Endocytosis[J]. Virology,2005,79(16):10826-10829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700