野油菜黄单胞菌中一个推测的sigma因子基因的突变及其表型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
σ因子是原核生物RNA聚合酶的一个亚基,是原核基因表达的主要调节因子。细菌利用不同的σ因子控制不同的基因的转录,其中包括与致病相关的基因。野油菜黄单胞菌野油菜致病变种8004菌株(Xcc 8004)基因组测序和注释工作已经完成。在该基因组中,根据注释结果,Xcc 8004中共有13个编码σ因子的ORF,其中XC1143编码的一个σ~(70)因子。为了研究该σ因子在Xcc中的作用,我们构建了该基因的Tn5gusA5的插入突变体和pK18mob定点整合突变体并进行了表型分析。该突变体在丰富培养基和基本培养基上的生长状况与野生型没有明显差别,胞外蛋白酶、纤维素酶、淀粉酶的活性也与野生型的一致。这些结果表明,该σ因子与Xcc的生长以及主要胞外酶的产生无关。在寄主植物满身红箩卜上检测了突变体的致病性,该基因的Tn5gusA5插入突变体O69H01致病力下降明显,241C03下降不明显。进一步的定点整合突变体致病性实验结果与野生型是一致的,这表明该基因与Xcc致病性是无关的。
In bacteria, the a factor is a separate component of the RNA polymerase, which has a critical role in promoter recognition and gene transcription. The sequencing and annotation of the complete genome sequence of Xcc 8004 revealed that there are 13 ORF encode a factors in Xcc 8004 genome and the ORF XC1143 encode a putative σ70 factor. To study the function of this ORF, we constructed Tn5gusA5 insertional and integrational mutants in the corresponding gene of wild type strain 8004 and analyzed the phenotypes of the mutants. There is no difference between the mutants and wild type strain in growth rates when they grow in rich and minimum medium and in the activities of extracellular protease, amylase, and cellulose. We performed the pathogenecity test on the host plant Chinese radish and the lesion length on the leaf infected by two insertional mutants are significantly different. But in the experiment of integrational mutants, no differences were found in the virulence between the wild type and the mutants.
    The involvement of XC1143, the gene encoding a putative o factor, is irrelative in the pathogenicity of Xcc.
引文
1. Williams PH. Black rot: a continuing threat to world crucifers. Plant Dis. 1980,64: 736-742.
    2. Kenndey JF, Bradshaw IJ. Production, Properties and applications of Xanthan. Prog. Ind. Microbiol, 1984,19:319-230
    3. Smith EF. A bacterial disease ofcruciferous plants. Science N.Y. 1987,5:963
    4. Cook AA, Walker JC, Larson RH. Studies on the disease cycle of black rot of crucifers. Phytopathology 1952,42:162-167
    5. Bretschnieider KE, Gonella MG, Robeson DJ. A comparative light and electron microscopical study of compatible and incompatible interactions between Xanthomonas campestris pv. Campestris and cabbage(Brassica oleracea). Physiol Mol Plant Pathol. 1989, 34:285-297
    6. Sutton JC, Williams PH. Relation of xylem plugging to black rot lesion development in cabbage. Can J Bot.1970, 391-401
    7. Wallis FM, Rijkerg FHJ, Villa E, et al. Ultrastructural histopathology of cabbage leaves infected with Xanthomonas campestris. Physiol Plant Pathol. 1973,3:371-378
    8. Flor HH. Current status of the gene-for-gene concept. Annu Rev phytopathol. 1971,9:275-296
    9.蔡恒,2002,茄青枯假单胞菌寄主花生特异毒性基因的功能分析,广西大学硕士论文
    10.陆光涛,2003,野油菜黄单胞菌野油菜致病变种致病性相关基因的克隆和鉴定 浙江大学博士论文
    11.李群良,2002,野油菜黄单胞菌野油菜致病变种一个与胞外多糖产生相关的基因的鉴定 广西大学硕士论文
    12. Baker B, Zambryski P, Staskawicz B, et al. Singnaling in plant-microbe interactions. Science 1997,276:726-733
    13. Alfano JR, Collmer A. Type Ⅲ(Hrp) secretion pathway of plant pathogenic bacterial:trafficking harpins,Avr proteins, and death. J Bacteriol. 1997,179;5655-5662.
    14. Galan JE, Collmer A.Type Ⅲ secretion machines: bacterialdevices for protein delivery into host cells. Science 1999,284:1322-1328.
    15. Lindgron PB, The role of hrp genes during plant-bacterial interactions, Annu.Rev. Phtopathol. 1997, 35:129-152
    16. Gross DC, Molecular and genetic analysis of toxin production by pathovars of Pseudomonas syringae. Annu Rev Phytopathol. 1991, 29:247-278.
    17. Bender CL, Alarcon-Chaidez F, Gross DC. Pseudomonas syringae phytohormones by
    
    plant-associated bacteria. Crit Rev Microbiol. 1995, 21: 1-18
    18. HuangJ, Carney BF, Schell MA, et al. A complex network regulates expression of eps and other virulence genes of Pseudomonas solanacearum. J Bacteriol. 1995, 177: 125912-125967.
    19. Hoch JA, Silhavey TJ. Two-component signal transduction. Washington, DC: ASM Press, 1995
    20. Schell MA, Regulation of virulence and pathogenicity genes in Pseudomonas solanacearum, by a complex network. Annu Rev Phytopathol.2000, 38:263-292
    21. Kitten T, Kinscherf TG, et al. A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol Plant Microbiol. 1998, 28:917-929.
    22. Cui Y, Chatterjee A, Chatterjee AK. Effects of two-component system comprising GacA and Gacs of Erwinia cartovora subsp.cartovora on the production of global regulatory rsmB RNA, extracellular enzymes and harpin_(Ecc). Mol Plant Mirobe Interact.2001, 14:516-526.
    23. Tang JL, Liu YN, Barber CE,et al.Genetic and molecular analysis of a cluster of rpf GENES involoved in positive regulation of synthesis extrcellular enzmes and polysaccharide in Xanthomonas campestris pathovar campestris. Gen Genet.1991, 226:409-417
    24. Tang JL, Feng JX, Li QQ, et al. Cloning and characterization of a cluster of rpfC gene of Xanthomonasoryzae: involovement in exopolysaccharide production and virulence to rice. Mol Plant Mirobe Interact. 1996, 9:664-66.
    25. Grimm C, Aufsatz W, Panopoulos NJ. The hrpRS locus ofPseudomonas syringae pv. phaseolicola constitutes a comples regulatory unit. Mol Microbiol. 1995,15:1551-65
    26. Wei Z, Kim JF, Beer SV. Regulation of hrp genes and type Ⅲ protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol Plant Mirobe Interact.2000, 13:1251-1262
    27. Wosten MM. Eubacterial σ-factors. FEMS Microbiol Rev.1998, 22:127-150
    28. Salmond GP, Bycroft BW, Stewart GS, et al. The bacterial 'enigma' :cracking the code of cell-cell communication. Mol Microbiol. 1995, 16:615-624
    29. Ji G, Beavis RC, Novick RP. Cell density control of staphylococcal birulence mediated by an octapeptide pheromone. Proc Natl Acad Sci U S A. 1995, 92:12055-12059
    30. Pesci EC, Pearson JP, Seed PC, et al. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 1997, 179:3127-3132
    31. Jones S, Yu B, Bainton NJ, et al. The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 1993, 12:2477-2482
    32. Garg RP, Yindeeyoungyeon W, Schell MA, et al. Evidence that Ralstonia
    
    eutropha(Alcaligenes eutrophus) contains a fimctional homologue of the Ralstonia solanacearum Phc cell density sensing system. Mol Microbiol.2000, 38:359-367.
    33. Barber CE, Tang JL, Daniels MJ, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol. 1997,24:555-566
    34. Poplawsky AR, Chun W. pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris. J Bacteriol. 1997,179:439-444.
    35. GenesV. Oxford:OxfordUniversityPress, 1994:377-413
    36. Stragier P, Parsot C, Bouvier J. Two functional domains conserved in major and alternate bacterial σ factors. 1985 Jul 22; 187(1): 11-15.
    37. Vassylyev DG, Sekine S, Laptenko O, et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A° resolution. Nature 2002,417:712-719
    38. BenjaminLewin. Introduction: Part4: Control of prokaryotic gene expression
    39. 朱玉贤 1997 《现代分子生物学》高等教育出版社
    40. Helmann JD, Chamberlin M J. Structure andfunction of bacterial σ factors. Annu. Rev. Biochem. 1988, 57:839
    41. Bacterial σ factors. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1992: 129-176
    42. Burgess RR. Separation and characterization of the subunits of RNA polymerase. J. Biol. Chem. 1969, 244: 2168-2176.
    43. Borukhov S, Severinov K. Role of the RNA polymerase σ subunit in transcription initiation. Res Microbiol 2002, 153:557-562.
    44. Schuler MF, Tatti KM, Wade KH, et al. A single amino acid substitution in rE affects its ability to bind core RNA polymerase. J Bacteriol 1995, 177:3687-3694.
    45. Lonetto M, Gribskov M, Gross CA. et al. "The 70 family-sequence conservation and evolutionary relationships", J. Bacteriol. 1992,174:3843-3849
    46. Severinov K, Fenyo D, Severinova E, et al. The σ subunit conserved region 3 is part of '50-face' of active center of Escherichia coli RNA polymerase. J Biol Chem 1994, 269:20826-20828.
    47. Maitra A, Moreno J, Hernandez VJ. Low concentrations of free hydrophobic amino acids disrupt the Escherichia coli RNA polymerase core-σ(70) protein-protein interaction. Protein Expr Purif 2002, 24:163-170.
    48. Malhotra A, Severinova E, Darst SA. "Crystal structure of a σ~(70) subunit fragment from Escherichia coli RNA polymerase", Cell, 1996,87:127-136
    49. Totten PA, Lara JC, Lory S. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, includingthe flagellin gene. J. Bacteriol.
    
    1990,172:389-396.
    50. Ingrid MK, Dale K. σ54, a vital protein for Myxococcus xanthus PNAS 1997,94 (5): 1979-1984
    51. Lonetto MA, Gribskov M, Gross CA. The σ~(70) family: sequence conservation and evolutionary relationships. J. Bacteriol. 1992,174:3843-3849.
    52. Bar-Nahum G, Nudler E. Isolation and characterization of σ(70)-retaining transcription elongation complexes from Escherichia coli. Cell 2001, 106:443-451.
    53. Ring BZ, Yarnell WS, Roberts JW. Function of E. coli RNA polymerase σ factor σ~(70) in promoter-proximal pausing. Cell 1996, 86:485-493.
    54. Arthur TM, Anthony LC. Mutational analysis of betaO 260-309, a σ~(70) binding site located on Escherichia coli core RNA polymerase. J Biol Chem 2000, 275: 23113-23119.
    55. Callaci S, Heyduk E, Heyduk T. Core RNA polymerase from E. coli induces a major change in the domain arrangement of the σ~(70) subunit. Mol Cell 1999, 3:229-238.
    56. Dombroski AJ, Walters, Record MT Jr, et al. Polypeptides containing highly conserved regions of transcription initiation factor σ~(70) exhibit specificity of binding to promoter DNA. Cell 1992, 70: 501-512.
    57. 54. Merrick, M. J. 1993. In a class of its own-the RNA polymerase σ factor σ~(54) (σ~N). Mol. Microbiol. 10:903-909.
    58. Sasse-Dwight, S, Gralla JD. Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor σ 54 Cell, 1990, 62:945-954
    59. Gross CA, Chan C, Dombroski A, et al. The functional and regulatory roles of σ factors in transcription.Cold Spring Harbor. Symp. Quant. Biol, 1998, 63:141-155
    60. Merrick MJ. In a class of its own-the RNA polymerase σ factor σ 54 (σ N), Mol. Microbiol, 1993, 10:903-909
    61. Buck M, Cannon W. Specific binding of the transcription factor σ-54 to promoter DNA, Nature, 1992,358:422-424
    62. Wong C, Tintut Y. The domain structure of σ-54 as determined by analysis of a set of deletion mutants. J. Mol. Biol. 1994,236:81-90.
    63. Lew C.M., Gralla JD, "Promoter opening by sigma54 and sigma70 RNA polymerases-s factor-directed alterations in the mechanism and tightness of control", Genes Dev, 2000 14:2242-2255
    64. Wigneshweraraj SR, Chaney MK, Ishihama A, et al.Regulatory sequences in σ~(54) localise near the start of DNA melting J. Mol. Biol, 1999 285:469-483
    65. Garsin DA, Duncan L, Paskowitz DM, et al. The kinase activity of the antiσ factor SpoⅡAB is required for activiation as well as inhibition of transcription factor F during sporulation in Bacillus subtilis", J. Mol. Biol. 1998,284:569-578
    
    
    66. Brown KL, Hughes KT. "The role of anti-σ factors in gene regulation", Mol. Microbiol. 1995 16: 397-404
    67. Xiao Y, Heu S, Lu Y, et al. Identification of a putative alternative σ factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol. 1994,176: 1025-1036
    68. Wei ZM, Beer SV. hrpL activates Erwinia amylovora hrp gene transcription and is a member of EFC subfamily of a σ factors. J Bacteriol. 1995, 177: 6201-6210
    69. Loewen PC, Hengge-Aronis R. The role of the σ factor σ S KatF(RpoS) in bacterial global regulation. Annu Rev Microbiol. 1994, 48: 53-80.
    70. Feng FC, LIBBY SJ, Buchmeier NA, et al. The alternative σ factor KatF(RpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A. 1992, 89: 11978-11982
    71. Wang Y, Kim K. Effect of rpoS mutations on stress-resistance and invasion of brain microvascular endothelial cells In Escherichia coli K1. FEMS Microbiol Lett2000,182: 241-247
    72. Suh S, Silo-Suh L, Woods D, et al. Effect of rpoS mutations on the mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J Bacteriol 1999, 181: 3890-3897.
    73. Bachman M, Swanson M. RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 2001, 40: 1201-1214
    74. Traci LT, Andrés VT, Xu Y, et al. Alternative σ factor σ E controls antioxidant defences required for Salmonella virulence and stationary-phase survival Molecular Microbiology 2002, 43: 771
    75. Humphreys S, Stevenson A, Bacon A, et al. The alternative σ factor, σ E, is critically impotant for the virulence of Salmonella typhimurium. Infect Immun.1999, 67: 1560-1568
    76. Kovacikova G, Skorupski K. The alternative σ factor σ(F) plays an important role in intestinal survival and virulence in vibrio cholerae. Infect Immun. 2002,70: 5355-5362
    77. Kustu S, Santero E, Keener J, et al. Expression of σ~(54)(ntrA)-dependent genes is probably united by a common mechanism", Microbiol. Rev., 1989, 53: 367-376
    78. Studholme DJ, Buck M. The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol. Lett 2000, 186: 1-9
    79. Wsten MMSM. Eubacterial σ-factors, FEMS Microbiol. Rev. 1998, 22: 127-150
    80. Hendrickson EL, Guevera P, Penaloza-Vazquez A, et al. Virulence of the phytopathogen Pseudomonas syringae pv.maculicola is proN dependent. J
    
    Bacteriol. 2000, 182: 3498-3507
    81. Horns T, U. Bonas. The rpoN gene of Xanthomonas campestris pv.vesicatoria is not required for pathogenicity. Mol. Plant-Microbe Interact. 1996, 9: 856-859.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700