野油菜黄单胞菌不同地域分离株基因组结构与表型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对已完成全基因测序的两个野油菜黄单胞菌菌株Xcc 8004和Xcc ATCC33913的基因组结构进行分析,结果表明在编码蛋白水平上,两个基因组达97.5%的同源性,而在基因组大小、结构上存在一定差异。主要差异包括:(1)8004的基因组比33913大72,538bp;(2)基因组结构上存在一个大片段、两个小片段倒置重排,以及一个移位重排;(3)8004中有两个菌株特异基因岛(giX8-a、giX8-b),33913有一个菌株特异基因岛(giX3-a);(4)8004在白萝卜白沙南畔洲晚萝卜栽培种上的相对致病力比33913高。
     以8004及33913基因组结构为参照,采用PCR及Southern blotting方法对20株中国不同地域Xcc分离菌株的基因组进行分析,结果表明所有菌株基因组里都含有与Xcc 8004和33913相似的致病相关基因簇(gum、hrp、LPS、type Ⅱ secretory system)。而在基因组结构上,不同地域分离株与8004或33913都存在一定差异,所有中国菌株都未检测出对应的8004-33913染色体重排接口,也没有giX8-b和giX3-a基因岛,只有3株中国菌株(1号、3号和11号)含有与giX8-a相似的基因岛结构。主要表型检测表明,菌株间在EPS产量和致病力等方面均存在较大差异,这些表型与基因岛的存在没有明显相关性。该研究结果提示野油菜黄单胞菌在基因组结构进化方面存在较大的可塑性,而在致病相关基因簇方面具有一定的保守性。
Genomic comparison of two Xanthomonas campestris pv. campestris (Xcc) strains, Xcc 8004 and Xcc ATCC33913, revealed that the two Xcc strains share 97.5% amino acid homology, whereas they might undergo large genomic reorganization during their evolution. The main discrepancies include: (1) The genome size of Xcc 8004 is 72,538bp larger than that of Xcc 33913; (2) The inverted rearrangement of a large segment and two smaller segments, and a translocated fragment were identified; (3) There are two strain specific genomic islands, designated as giX8-a and giX8-b, respectively in Xcc 8004 and one specific genomic islands in Xcc 33913, named giX3-a; (4) Xcc 8004 is more virulent than Xcc 33913 on a certain cultivar of radish, the Baisha Nanbanzhou.
    The genomic differences in different geographical isolates were analyzed by using PCR and Southern blotting. The results revealed that all of the Xcc isolates harbor the similar pathogenic clusters, such as gum?hrp?LPS?type II secretory system cluster, same as that in Xcc 8004 and 33913. The patterns of genomic rearrangements found between
    
    
    genomes of 8004 and 33913, were not identified in genomes of all Chinese isolates. The strains specific genomic islands giX8-a, giX8-b and giX3-a were found absent in all the genomes of the Chinese, but the three Chinese isolates, No.l, No.3 and No.11 were found containing the giX8-a.The phenotypic analysis showed that the Xcc strains differ significantly in EPS production and pathogenicity. This study demonstrated that the genomic structure in Xcc strains is in its high plasticity during their evolution, but it is conserved in the clusters related to pathogenicity.
引文
1. Smith EF. A bacterial disease of cruciferous plants. Science N. Y. 1987, 5: 963
    2. Cook AA, Walker JC, Larson RH. Studies on the disease cycle of black rot of crucifers. Phytopathology. 1952, 42:162~167
    3. Bretschneider KE, Gonella MG, Robeson DJ. A comparative light-and electron microscopical study of compatible and incompatible interactions between Xanthomonas campestris pv. campestris and cabbage (Brassica oleracea) . Physiol. Mol. Plant Pathol. 1989, 34:285~297
    4. Sutton JC, Williams PH. Relation of xylem plugging to black rot lesion development in cabbage. Can J Bot. 1970, 48:391~401
    5. Wallis FM, Rijkerg FHJ, Joubert JJ, Martin MM. Ultrastructural histopathology of cabbage leaves infected with Xanthomonas campestris. Physiol. Plant Pathol. 1973, 3:371~378
    6. Swings JG, Civerolo EL. Xanthomonas 1st edition London: Chapman & Hall. 1993, 51~55
    7. Kennedy JF, Bradshaw IJ. Production, properties and application of xanthan. Pros. Ind. Microbiol. 1984, 19:319~371
    8. da Silva AC, et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature. 2002, 417:459~463
    9. Van Sluys MA, de Oliveira MC, et al. Comparative analyses of the complete genome sequences of pierce's disease and citrus variegated chlorosis strains of Xylellafastidiousa. Journal of Bacteriology. 2003, 185(3) : 1018~1026
    10. Fleischman RD, Smith HO, Venter JC, et al. Whole-genome random sequencing and assembly of Haemopophilus influenzae Rd. Science. 1995,269: 496~512
    11.欧见虹,谢志雄,陈向东等,水平基因转移,遗传,2003,25(5) :623~627
    12. Philipp H, Douady CJ. Horizontal gene transfer and phylogenetics. Current Opinion in Microbiology. 2003, 6: 498~505
    13.黄辰,宋士生,对遗传概念的思考——遗传物质的横向传递,遗传,1999,21 (3) 37~38
    14.沈萍主编,微生物学,北京,高等教育出版社,2000,215~228
    15. Suzuki K, Hattod Y, Uraji M, et al. Complete nucleotide sequence of a plant tumor-in-ducing Ti plasmid. Gene. 2000, 242:331~336
    16. Sheng J, Citovsky V. Agrobacterium-plant cell DNA transport: have virulence proteins, will trave. PC. 1996, 8: 1699~1710
    17. Falkow S. Bacterial entry into eukaryoticcells. Cell. 1991, 65:1099~1102
    18. Gillot-Courvalin C, Goussard S, Huetz F, et al. Functional gene transfer from
    
    intracellular bacteria to mammalian cells. Nature Biotechnol. 1998, 862~866
    19. Baur B, Hanselmann K, Schlimme W, Jenni B. Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl Environ Microbiol. 1996, 62:3673~3678
    20.陈琪,陈向东,谢志雄等,遗传工程微生物细胞间发生的的自然遗传转化,遗传,2002,22(3) :140~143
    21.陈向东,陈琪,谢志雄等,枯草芽胞杆菌在琼脂平板上进行的自然遗传转化,微生物学报,2000,40(1) :95~99
    22. Lorenz MG, Wackemagel W. Bacterial gene transfer by natural genetic transformation in the environment. Rev Microbiol. 1994, 58:564~583
    23. Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997, 390:249~256
    24. Blattner FR, Bloch CA, Shao Y, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997, 277:1453~1474
    25. Tettlin H, Saunder NJ, Venter JC, et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC 58. Science. 2000, 287:1809~1815
    26. Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA. 1998, 95:9413~9417
    27. Nelson KE, Clayton RA, Venter JC, et al. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999, 399:323~329
    28.王恒樑,黄培堂,苏国富,病源微生物致病岛的研究,生物技术通讯,2001,12(3) :213~219
    29. Waterfield NR, Daborn PJ, Ffrench RH. Genomic islands in Photorhabdus. Trends in Microbiology. 2002. 10(12) : 541~545
    30. Meer JR, Sentchilo V. Genomic islands and the evolution of catabolis pathways in bacteria. Current Opinion in Biotechnology. 2003, 14:248~254
    31. Hentschel U, Hacker J. Pathogenicity islands: the tip of the iceberg. Microbes and infection. 2001, 3:545~548
    32. Boyd DA, Peters GA, Lai-King Ng, et al. Partial characterization of a genomic island associated with the multidrug resistance of Salmonella enterica Typhymurium DT104. FEMS Microbiology Letters. 2000, 189:285~291
    33. Waterfield NR, Daborn PJ, et al. Genomic islands in Photorhabdus. Trends in Microbiology. 2002, 10(12) : 541~545
    34. Ffrench RH, Waterfield N, Daborn P, et al. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiology Letters. 2003, 26:433~456
    35. Lee CA. Pathogenicity islands and the evolution of bacterial pathogens.
    
    Infectious Agents Disease, 1996, 5(1) : 1
    36. Dobrindt U, Hacker J. Plasmids, phages and pathogenicity islands: lessons on the evolution of bacterial toxin. In: Aloof JE and Freer JH ed. The comprehensive sourcebook of bacterial protein toxins. Academic Press, 1999. 3~23
    37. Hacker J, Kaper JB. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 2000, 54:641~79
    38.叶长芸,徐建国,细菌的毒力岛,微生物学通报,2002,29(4) 108~112
    39. Ya-Ming Hou. Transfer RNAs and pathogenicity islands. TIBS. 1999, 8(24) : 295~298
    40. Buchrieser C, Brosch R, Bach S, et al. The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted ionto any of the three chromosomal Asn-tRNA genes. Mol. Microbiol. 1998, 30:965~78
    41. Folkesson A, Lfdahl S, Normark S. The Salmonella enterica subspecies Ⅰ centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Research in Microbiology. 2002, 153:537~545
    42. Turner SA, Luck SN, Sakellaris H, et al. Nested deletion of the SRL pathogenicity island of Shigella flexneri 2a. J. Bacteriol. 2001, 183:5535~5543
    43. Walker JC, Verma NK. Identification of a putative pathogenicity island in Shigellaflexneri using subtractive hybridization of the S.flexneri and Escherichia coil genomes. FEMS Microbiology Letters. 2002, 213:257~264
    44. Novick RP, Schievert P, Ruzin A. Pathogenicity and resistance islands of staphylococi. Microbes and Infection. 2001, 3:585~594
    45. Dalin Zhang, Chythanya Rajanna, Weiyun Sun, David KR Karaolis. Analysis of the Vibrio pathogenicity island-encoded Mop proteinsuggests a pleiotropie role in the virulence of epidemic Vibrio cholerae. FEMS Microbiology Letters. 2003, 225:311~318
    46. Kurazono H, Yamamoto S, Nakano M, et al. Characterization of a putative virulence island in the chromosome of uropathogenic Escherichia coli possessing a gene encoding a uropathogenic-specifie protein. Microbial Pathogenesis. 2000, 28:183-189
    47. Jores J, Rumer L, KieMling S, Kaper JB, Wieler LH. A novel locus of enterocyte effacement (LEE) pathogenicity island inserted atpheV in bovine Shiga toxin-producing Escherichia coli strain O103:H2. FEMS Microbiology Letters. 2001, 204:75~79
    48. Sperandio V, Kaper JB, Bortolini MR. Characterization of the locus of enterocyte effacement (LEE) in different enteropathogenic Escherichia coli (EPEC) and Shiga-toxin producing Escherichia coli (STEC) serotypes. FEMS Microbiology Letters. 1998, 164:133~139
    
    
    49. Pancetti A, Galán JE. Characterization of the mutS-proximal region of the Salmonella typhimurium SPI-1 identifies a group of pathogenicity island-associated genes. FEMS Microbiology Letters. 2001, 197:203~208
    50. Blomstergren A, Lundin A, Nilsson C, et al. Comparative analysis of the complete cag pathogenicity island sequence in four Helicobacter pylori isolates. Gene. 2004, 328: 85~93
    51. Carlson SA, Willson RM, et al. Evaluation of invasion-conferring genotypes and antibiotic-induced hyperinvasive phenotypes in multiple antibiotic resistant Salmonella typhimurium DT104. Microbial Pathogenesis. 2000, 28:373~378
    52. Blum G, Falbo V, Caprioli A, Hacker J. Gene clusters encoding the cytotoxic necrotizing factor type Ⅰ, Prs-fimbriae andα-hemolysin from the pathogenicity island Ⅱ of the uropathogenic Escherichia coli strain J96. FEMS Microbiology Letters. 1995, 126:189~196
    53. Koczura R, Kaznowski A. Occurrence of the Yersinia high-pathogenicity island and iron uptake systems in clinical isolates of Klebsiella pneumoniae. Microbial pathogenesis. 2003, 35(5) : 197~202
    54. Oelschlaeger TA, Dobrindt U, Hacker J. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. International Journal of Antimicrobial Agents. 2002, 19: 517~521
    55. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB. Salmonella pathogenicity islands: big virulence in small packages. Microbes and Infection. 2000, 2: 145~156
    56. Hansen-Wester I, Hensel M. Salmonella pathogenicity islands encoding type Ⅲ secretion systems. Microbes and Infection. 2001, 3: 549~559
    57. Nakano M, Yamamoto S, et al. Structural and sequence diversity of the pathogenicity island of uropathogenic Escherichia coli which encodes the USP protein. FEMS Microbiology Letters. 2001,205: 71~76
    58. Lostroh CP, Catherine A. The Salmonella pathogenicity island-1 type Ⅲ secretion system. Microbes and Infection. 2001, 3:1281~1291
    59. Bach S, Alzira de Almeida, Carniel E. The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiology Letters. 2000, 183: 289~294
    60. Carniel E. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes and Infection. 2001, 3: 561~569
    61. Hacker J, Kaper JB. The concept of pathogenicity islands. In: Kaper JB and Hacker J ed. ASM Press, 1999, 1~11
    62. Vázquez-Boland JA, Domínguez-Bernal G, et al. Pathogenicity islands and virulence evolution in Listeria. Microbes and infection. 2001, 3: 571~584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700