用户名: 密码: 验证码:
假单胞菌利用玉米芯水解液产胞外多糖研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要目的是提高假单胞菌胞利用玉米芯水解液生产胞外多糖产量,通过优化发酵条件和对产生菌诱变育种为主要手段实现。
    在假单胞菌基本特征研究中发现,实验菌株易于利用葡萄糖、木糖和蔗糖生长,并产多糖。培养基中碳源、氮源浓度和碳氮比对多糖的产生起关键作用,碳氮比低于3时已没有多余的碳源用于次生代谢产物胞外多糖的合成。在低浓度无机氮或有机氮的情况下,多糖产量和粘度都明显比高浓度氮源时要高。在提高发酵液粘度方面有机氮源略有优势,但对多糖产量没有明显影响。通过实验确定在培养基中添加0.02%氯化铵作为生长限制因子以提高多糖产量。
    在高碳氮比培养条件下,假单胞菌生长达到稳定期时,OD值仍有快速增加的趋势,说明实验菌株是在稳定期开始分泌胞外多糖。在固体培养时产多糖菌落为同心圆形,外围透明圈为多糖,可作为诱变育种时的初筛指标。
    比较了不同玉米芯粗制品对发酵的影响,发现粉碎后过2.0目筛下细料、筛上粗料与未分筛的混合料对发酵效果的影响为:细料>混合料>粗料,但差异并不大,尤其前两者之间。考虑加工工艺、生产成本及对原料的充分利用等因素,因此确定直接采用粉碎后的玉米芯粉作为生产原料。实验还发现原料加倍时多糖产量也相应加倍,最高可达26.96g/L。
    一些对黄原胶发酵有促进作用的因子对实验菌株产多糖没有影响。而一定浓度的微量元素对多糖产量有促生作用,最后确定微量元素溶液的配方为1000ml母液中添加MnSO4 0.3克,CaCl2 0.2克,FeSO4 0.8克。
    实验菌株合成多糖时需要高通气量;培养液起始pH值在7.5~10.0之间均能生长产糖,但不能低于7.0,最适起始pH为8.0;在28~32℃都可以生产产糖;加大接种量可缩短发酵时间;5天时产量已经达到最高。最后确定采用30小时菌龄,5%接种量,20%装液量为最高,初始pH值为8.0,30℃/180rpm振荡培养5天为最佳发酵条件。
    为了提高多糖产量,以低能N+注入和紫外线辐射作为诱变手段对实验菌株进行了诱变育种。研究发现紫外线杀菌曲线呈现常规性“肩型”曲线;而采用能量为10KevN+注入处理时,假单胞菌存活率出现先降后升而后又降的特征性“马鞍型”曲线。通过紫外线处理获得高产菌株UVZT122、UVZT213,其产量分别提高了10.53%和9.57%;通过低能N+注入处理,获得高产菌株NZTZ07和NZTZ11,其产量分别提高了11.02%和6.83%。
    假单胞菌多糖溶液流变学性质研究发现,该多糖溶液具有自身增粘性和触变性,
    
    
    属于假塑性流体。多糖溶液具有很强的环境适应性:pH值在1~14之间粘度没有明显影响;耐高温,在60℃保持20分钟粘度没有变化;添加NaCl、CaCO3等无机盐对粘度不产生影响。Fe3+对该多糖溶液具有增粘性,当多糖与Fe2(SO4)3质量比为2时形成凝胶。强酸、强碱对多糖水解效果依次为HCl> NaOH> H2SO4,添加NaC可使多糖溶液在煮沸状况下保持粘度不变。
In this study, the main object is to enhance exopolysaccharide product using corncob as carbon source. In order to do this, the conditions of fermentation of exopolysaccharide by Pseudomonas were researched, and the strain was treated by ultraviolet and low-energy nitrogen ion beam implantation.
    This strain could utilize glucose, xylose and sucrose to produce exopolysaccharide. Carbon source concentration, nitrogen source concentration and carbon-nitrogen ratio are key roles to produce exopolysaccharide. If carbon-nitrogen ratio was below 3, there was no carbon source to be used to produce exopolysaccharide. As for nitrogen source, low concentration is better than high concentration. Organic nitrogen is prior to inorganic one to get high viscidity, but it had no effect on yield. At last 0.02% ammonium chloride was chose as limited factor to enhance exopolysaccharide product.
    OD value was still ascending after the stationary phase when medium contain high concentration glucose, and this shows that Pseudomonas began to produce exopolysaccharide in the stationary phase. The colony was concentric circles shaping in solid medium. Exopolysaccharide formed transparent ring outside of colony, which can be used to screen mutants having high yield of exopolysaccharide.
     In consideration of process of corncob, yielding cost and full using etc, mixing stuff of corncob was chosen, which the distinguishing size is 2.0-eye griddle hole. Meanwhile, exopolysaccharide productivity was double if two-dose material was used in experiment. The yield of exopolysaccharide was 26.96g/L.
    Calcium carbonate, tween 80 and lemon acid had no effect on polysaccharide production referring to xanthan study. But trace elements could facilitate the yield of exopolysaccharide. The new prescription of trace element solution (g/1000ml) was as following: MnSO4 0.300,CaCl2 0.2,FeSO4 0.8.
    For producing exopolysaccharide, high air concentration was needed. Pseudomonas sp could grow and produce exopolysaccharide in pH range from 7.5 to 10.0, but could not below pH7.0, and the optimum initial pH is 8.0. Meanwhile, it could grow and produce exopolysaccharide at 28~32℃, but could not below 26 or higher than 35℃. Amount of inoculation had no effect on fermentation, but higher amount of inoculation could shorten producing period. The fermentation period was set five days because of the yield is much higher at this time. The yield was steadiness at day 5, but viscosity still enlarged
    
    
    continually probably because of water evaporation. The optimal fermentation condition was 30h bacterial age, 5% inoculating amount, no more than 20% load, initial pH 8.0, 30℃/180rpm and five days growth.
    Low energy nitrogen ion beam implantation and ultraviolet light were chosen as mutagens to treat strains. As the result, the UV-bactericidal-curve appearing a routine “shoulder shape”. While 10KevN+ radiation was introduced, the survive ratio decrease first, then increase and drop at last. The curve was “saddle shape”. Finally, two high yield strains, UVZT122 and UVZT213 were got, the yield of which was enhanced by 10.53% and 9.57% respectively. And two high yield strains, NZTZ07 and NZTZ11 were got by low energy N ion beam implantation, the yield of which was enhanced by 11.02% and 6.83% respectively.
    Rheology research found that the exopolysaccharide had self-viscosity-improvement and thixotropy, so the exopolysaccharide solution was a pseudoplastic liquid. The exopolysaccharide had good adaptability to environment conditions. The viscidity had no change in the range of pH 1~14, and at 60℃. It could be untouched for 20 minutes. And so did it when NaCl, CaCO3 was added. Additionally, Fe3+ could enhance viscidity of the exopolysaccharide solution. When the ratio of the exopolysaccharide and Fe2(SO4) 3 was 2, the solution of exopolysaccharide became a gel. The hydraylation of exopolysaccharide by acid or base was: HCl> NaOH> H2SO4. It prevented the viscidity decrease from heating by adding NaCl.
引文
[1]
    魏培莲. 微生物胞外多糖研究进展. 浙江科技学院学报,2002,14(2):28~12
    
    [2]
    Roberto De Philippis, Claudio Sili, Raffaella Paperi. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review,Journal of Applied Physiology,2001,13: 293~299
    
    [3]
    聂凌鸿,彭华松等. 微生物胞外多糖——结冷胶的生产与应用前景. 生命的化学2002,22(2):178~182
    
    [4]
    胡承钰,王三英. 细菌胞外多糖复合应用的免疫增强作用. 厦门大学学报.2001, 40(5):32~35
    
    [5]
    Un-Jung Yun,Heui-Dong Park. Overproduction of an extracellular polysaccharide possessing high lipid emulsion stabilizing effects by Bacillus sp. Biotechnology Letters, 2000,22: 647–650
    
    [6]
    Ulrike Schweiger-Hufnagel. Identification of the extracellular polysaccharide produced by the snow mold fungus Microdochium nivale. Biotechnology Letters, 2000,22: 183~187
    
    [7]
    王修垣等. 黄单胞菌多糖20吨罐发酵. 微生物学通报,1997,24(1):7~8
    
    [8]
    刘月英等. 斯达油脂酵母U9018产胞外多糖的适宜条件 微生物学通报,1996,23(5):268~270
    
    [9]
    赵大健. 甘蓝黑腐病黄单胞菌N.K-01菌株淀粉发酵黄原胶的研究,南开大学学报,1997,30(3):45~48
    
    [10]
    Teresa.L,Maugeri. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnology Letters,2002,24: 515~519
    
    [11]
    F. Letisse,N.D. Lindley. An intracellular metabolite quantification technique applicable to polysaccharide producing bacteria. Biotechnology Letters,2000,22: 1673~1677
    
    [12]
    Maria Galiotou Panayotou. Modeling of simultaneous production of polygalacturona
    and exopolysaccharide by Aureobasidium pullulans ATHUM 2915. Antonie van,1998,73: 155–162
    
    [13]
    张明,陶小兵等. 利用玉米芯酸解液生产假单胞菌胞外多糖的研究. 安徽农业科学,2003,30(2):118~121
    
    [14]
    彭志英. 少动鞘脂单胞菌S1胞外多糖发酵工艺条件研究. 微生物学通报,2000,27(2):97~100
    
    [15]
    张根旺,刘景顺. 植物油副产品的综合利用. 郑州:河南科学技术出版社,1982,212~216
    
    [16]
    马展,张德纯. 假单胞基因工程菌的开发应用现状与展望. 中国微生态学杂志,2003,15(1):13~16
    
    
    
    
    [17]
    Huang, CT; Stewart, PS,Reduction of polysaccharide production in Pseudomonas aeruginosa biofilms by bismuth dimercaprol treatment. Journal of Antimicrobial Chemotherapy,1999,44(5):601~605?
    
    [18]
    谭周进,肖罗. 假单胞菌的微生态调节作用,核农学报 2004,18(1):72~76
    
    [19]
    徐世艾. 黄原胶的制备食品与发酵工业,2000,26(5):56~61,
    
    [20]
    胡德亮. 黄原胶生物合成的研究进展. 上海水产大学学报,2000,9(1):59~64
    
    [21]
    周德庆. 微生物学教程. 北京:高等教育出版社,1993
    
    [22]
    徐孝华. 普通微生物学. 北京:北京农业大学出版社,1992
    
    [23]
    T. P. Pirog, Yu. R. Malashenko, S. K. Votselko Ukraine. A Two-Stage Cultivation Technique for Producing Microbial Exopolysaccaride Ethapolan with Improved Rheological Properties. Applied Biochemistry and Microbiology, 2001, 37(4):368~373
    
    [24]
    胡德亮等. 两种发酵工艺对黄原胶发酵的影响.上海水产大学学报,2000,9(4):324~328
    
    [25]
    许喜林. 除细胞法生产黄原胶. 微生物学通报,1998,25(1):60~64
    
    [26]
    洪厚胜. 黄原胶工业生产的2种实用新技术.食品与发酵工业,2000,26(3):43~47
    
    [27]
    李卫旗. 黄单胞杆菌XC-82.R5二步发酵工艺研究. 工业微生物,1998,28(2):26~30
    
    [28]
    J. M. ROUX. Production of polysaccharide slime by microbial mats in the hyper saline environment of a Western Australian solar salt field. International Journal of Salt Lake Research,1996,5: 103~130
    
    [29]
    N.A. Yurlova,G.S. de Hoog. A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie van Leeuwenhoek,1997,72: 141~147
    
    [30]
    J.I. Farina,High scleroglucan production by Sclerotium rolfsii: Influence of medium
    Composition,Biotechnology Letters, 1998,20(9):825~831
    
    [31]
    张怀洁,吴忠俭. 黄原胶的生产及其在食品工业的应用. 郑州粮食学院学报,2000,20(1):79~83
    
    [32]
    刘秀芳. 野油菜黄单胞菌L4生产黄单胞菌多糖的适宜条件. 微生物学报,1993,33(1):40~47
    
    [33]
    刘如林. 黄单胞胶中丙酮酸与溶液性质. 微生物学通报,1991,18(4):241~249
    
    [34]
    L. Navarini, M. Stredansky. Production and characterization of an exopolysaccharide from Rhizobiumhedysari HCNT 1. Biotechnology Letters, 1997, 19(12):1231~1234
    
    [35]
    Matilde Manzoni,Manuela Rollini. Isolation and characterization of the exopolysaccharide produced by Daedalea quercina. Biotechnology Letters, 2001,23: 1491~1497
    
    [36]
    张明、陆杨森. 假单胞菌胞外多糖发酵条件的研究. 生物学杂志1996:20~22
    
    [37]
    陶文沂. 工业微生物生理与遗传育种学,北京:中国轻工业出版社,1997,6
    
    
    
    
    [38]
    余增亮等,离子刻蚀生物样品的初步研究,安徽农业大学学报,1994,21(3):260~264
    
    [39]
    宫春波. 离子注入微生物诱变育种研究进展. biotechnology, 2003,13(2): 47~49
    
    [40]
    流变学基础. 安徽合肥:中国科技大学出版社,1999
    
    [41]
    谢俊,梁会珍. 黄原胶作为油田驱替剂的性能研究. 矿物岩石,2003,23(2):103~107
    
    [42]
    洪厚胜. 黄原胶发酵液纯化精制研究. 工业微生物,2000,30(2)34~37
    
    [43]
    梁凤来. 黄单胞胶漂白及提取的研究. 微生物学通报,1991,18(4):217~220
    
    [44]
    雷鸣. 黄原胶在低浓度时的流变特征及影响因素研究. 食品科学,2000,21(12):16~18
    
    [45]
    实用医学临床检验. 上海:上海科学技术出版社,1965,03
    
    [46]
    S.H. Petersen, I.S. Pretorius. Development of a polysaccharide degrading strain of Saccharomyces cerevisiae. Biotechnology Techniques, 1998,12(8):615–619
    
    [47]
    陆杨森. 不产生胞外多糖的假单胞菌突变菌株E16. 微生物学通报,1995,22(6):335~337
    
    [48]
    查冬兴,唐纪良. 野油菜黄单胞菌野油菜致病型胞外多糖合成有关的DNA序列的克隆. 微生物学报,1998,38(4):251~255
    
    [49]
    Hazlewood GP,Gilbert HJ. Structure and function analysis of Pseudomonas plant cell wall hydrolases. Progress in Nucleic Acid Research and Molecular Biology,1998,61(2):211~241
    
    [50]
    薛志雄,刘月英,郑忠辉. 斯达油脂酵母U9018胞外多糖的理化作用. 厦门大学学报,1994,33(6):848~852
    
    [51]
    刁虎欣. NK-01黄原胶和卡角半乳甘露糖分子间的协效性研究. 南开大学学报,2001,34(1):10~13
    

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700