产絮菌的差异表达蛋白质及其功能解析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物絮凝剂作为一种高效、无毒、无二次污染、具有生物可降解性和安全性的绿色水处理剂,代表了絮凝剂的重要研发方向之一,可广泛应用于给水和废水处理领域。复合型生物絮凝剂(CBF)是本实验室开发的一种高效生物絮凝剂,经过两段式发酵生产,产絮菌群由高效产絮菌F2和F6构建,产絮菌F2、F+(F2与F6混合培养)产生的生物絮凝剂主要活性成分为胞外分泌的多糖类物质。本研究从蛋白质组学角度研究产絮菌产絮过程差异表达蛋白质及其功能调控,从分子水平研究产絮菌的产絮机理,提出工业化生产生物絮凝剂的调控策略。
     首先,比较在基本培养基和产絮培养基培养条件下产絮菌所产生的生物絮凝剂在产量、成分上的差别,与基本培养基培养条件下相比,在产絮培养基培养条件下,产絮菌F2、F6会形成一些差异表达蛋白质,这些差异表达蛋白质是导致在产絮培养基培养条件下,诱导和产生大量生物絮凝剂主要活性成分多糖的直接原因。
     然后,利用SDS-PAGE、2-DE和质谱结合的蛋白质组学研究手段对产絮菌F2、F6在基本培养基和产絮培养基不同培养条件下差异表达蛋白质进行分离、鉴定和功能解析。通过SDS-PAGE,研究在基本培养基和产絮培养基培养条件下,产絮菌F2、F6总蛋白的变化情况,共鉴定出58个产絮菌F2产絮过程差异表达蛋白质,14个产絮菌F6产絮过程差异表达蛋白质。通过2-DE,研究在基本培养基和产絮培养基培养条件下,产絮菌F2可溶性总蛋白的变化情况,共有28个产絮菌F2产絮过程差异表达蛋白质点得到成功鉴定。通过对产絮菌产絮过程差异表达蛋白质的功能解析,从蛋白质组学层面揭示了产絮菌的产絮机理。
     最后,利用多项摇瓶试验,进行产絮菌生产生物絮凝剂的相关调控规律研究,建立起发酵条件,差异表达蛋白质的功能和产絮变化三者之间的关系,对工业上生产生物絮凝剂提出底物水平调控、发酵过程参数、菌种复壮三个层面的调控策略。
     本研究从蛋白质组学层面研究产絮菌的产絮机理,为全面解析和调控产絮菌产絮代谢途径奠定坚实的理论基础。基于产絮菌产絮过程差异表达蛋白质的功能解析,提出工业化生产生物絮凝剂的调控策略,为提高生物絮凝剂产量,调控生物絮凝剂工业化生产起到重要的指导作用。
As an efficient, nontoxic, non-secondary contaminative, biodegradable and environmental-friendly green wastewater disposal agent, bioflocculant is one of the most potential flocculants and has been widely used in treating various industrial and domestic sewages. The compound bioflocculant (CBF) was produced by our lab, which was a novel bioflocculant produced by two bioflocculant producing bacteria of F2 and F6 through two-step fermentation. The effective component of bioflocculant produced by F2 and F+ (mixed cultivation from F2 and F6) was determined as extracellular polysaccharide. In the paper, differentially expressed proteins related to flocculating metabolic pathway of bioflocculant producing bacteria and regulation of their functions were researched by proteomics methods, the flocculating mechanisms were revealed in molecular level, regulating strategies of producing bioflocculant in industry were proposed.
     First, the difference of production and component of bioflocculant between in bioflocculant media and in minimal media were researched. F2 and F6 expressed differentially expressed proteins in bioflocculant media compared with minimal media. These differentially expressed proteins were the direct reason to induce and produce large amount of main and effective polysaccharide of bioflocculant in bioflocculant media.
     Then, differentially expressed proteins of F2 and F6 in bioflocculant media compared with minimal media were separated, identified and analyzed in function by proteomics technologies——SDS-PAGE, two-dimensional electrophoresis (2-DE) and mass spectrum (MS). The changes of total proteins of F2 and F6 grown in bioflocculant media compared with minimal media were researched by SDS-PAGE. 58 of differentially expressed proteins of F2 and 14 of differentially expressed proteins of F6, which were related to flocculating metabolic pathway, were identified. The changes of cytosol proteins of F2 grown in bioflocculant media compared with minimal media were researched by 2-DE. 28 of differentially expressed proteins related to flocculating metabolic pathway of F2 were identified. By analyzing functions of differentially expressed proteins related to flocculating metabolic pathway of bioflocculant producing bacteria, the flocculating mechanisms of bioflocculant producing bacteria were revealed in proteomics level.
     Finally, through a number of shake flask tests, the related regulation laws in production of bioflocculant were researched and the relationship between fermentation conditions, functions of differentially expressed proteins and changes in producing bioflocculant were established. Three dimentional regulating strategies, such as substrate, fermentation parameters and rejuvenation of bioflocculant producing bacteria, were brought up to regulate bioflocculant producing bacteria to produce bioflocculant by compound substrate in industry.
     In the paper, the flocculating mechanisms of bioflocculant producing bacteria were researched in proteomics level, which can establish solid theory foundations to fully analyze and regulate flocculating metabolic pathway of bioflocculant producing bacteria. Based on analyzing functions of differentially expressed proteins related to flocculating metabolic pathway, regulating strategies were brought up, which can play important directing roles to raise the output of bioflocculant, to regulate bioflocculant producing bacteria to produce bioflocculant in industry.
引文
[1]陈坚,堵国成.环境友好材料的生产与应用[M].化学工业出版社, 2002: 319-321.
    [2] T.Zhang, Z.Lin, H.L.Zheng. Microbial Flocculant and its Application in Environmental Protection[J]. Journal of Environmental Sciences(China), 1999, 11(1): 1-12.
    [3]姚重华.混凝剂与絮凝剂[M].中国环境科学出版社, 1992.
    [4]国家环境保护局.混凝剂与助凝剂(M) [M].中国化境科学出版社, 1991.
    [5]朱正中,司友斌,刘小红等.天然高分子絮凝剂(GNMF)特性及应用研究[J].水处理技术, 2006, 32(11): 66-67.
    [6]马放,冯玉杰,任南琪.环境生物技术[M].化学工业出版社, 2003: 150-162.
    [7] Zhi-qiang Zhang, Bo Lin, Si-qing Xia, et al.Production and Application of a Novel Bioflocculant by Multiple-microorganism Consortia using Brewery Wastewater as Carbon Source[J]. Journal of Environmental Sciences, 2007, 19(6): 667-673.
    [8] Toeda, K., Kurane, R. Microbial Flocculant from Alkaligenes cupidus KT201[J]. Agric. Biol. Chem., 1991, 55(11): 2793-2799.
    [9] Crescenzi, V. Microbial Polysaccharides of Applied Interest: Ongoing Research Activities in Europe[J]. Biotechnol. Prog., 1995, 11(3): 251-259.
    [10] Takagi H, Kadowaki K. Poly-galactosamine Produced by a Microorganism[J]. Chitin. Nat. Technol., 1985, 49(3): 121-128.
    [11] Takagi H, Kadowaki K. Flocculant Production by Paecflomyces sp. Taxonomic Studies and Culture Conditions for Production[J]. Agric.Boil.Chem., 1985, 49(11): 3151-3157.
    [12] Jane-Yii Wu, Hsiu-Feng Yea. Characterization and Flocculating Properties of an Extracellular Biopolymer Produced from a Bacillus subtilis DYU1 Isolate[J]. Process Biochemistry, 2007, 42(7): 1114-1123.
    [13]汪保江.深海Halomonas sp.V3a合成的新型多糖类生物絮凝剂HBF-1的研究[D].厦门大学硕士论文, 2006.
    [14] H.Salehizadeh, M.Vossouhi, L Alemzadeh. Some Investigations on Bioflocculant Production Bacteria[J]. Biochemical Engineering Journal, 2000, 5(1): 39-44.
    [15] IL Salehizadeh, S.A.Shojaosadati. Extracellular Biopolymeric Flocculants Recent Trends and Biotechnological Importance[J]. Biotechnology Advances,2001, 19(5): 371-385.
    [16] Ryuichiro K, Yasuhiro N. Microbial Flocculation of Waste Liquids and Oil Emulsion by a Bioflocculant from Alcaligenes latus[J]. Agric.Boil.Chem., 1991, 55(4): 1127-1129.
    [17] Bin Liana, Ye Chena, Jin Zhaob, et al. Microbial Flocculation by Bacillus mucilaginosus: Applications and Mechanisms[J]. Bioresource Technology, 2008, 99(11): 4825-4831.
    [18] Sakka K. DNA as a Flocculation Factor in Pseudomonas sp[J]. Agric.Boil.Chem., 1981, 45(2): 2869-2876.
    [19] Florian F. Bauer, Patrick Govender, Michael C. Bester. Yeast Flocculation and its Biotechnological Relevance[J]. Appl. Microbiol. Biotechnol., 2010, 88(1): 31-39.
    [20]马放,李淑更,金文标等.生物絮凝剂的研究现状及发展趋势[J].工业用水与废水, 2002, 33(1): 7-9.
    [21] C. G Kumar, H S Joo, J W Choi, et al. Purification and Characterization of an Extracellular Polysaccharide from Haloalkalophilic Bacillus sp. I-450[J]. World Journal of Microbiology and Biotechnology, 2004, 34: 673-681
    [22] M Takeda, R Kurane, J I Koizumi. A Protein Bioflocculant Produced by Rhodococcus erythropolis[J]. Agric.Boil.Chem., 1991, 55(10): 2263-2264.
    [23] Watanabe M, Sasaki K, Nakashimada Y, et al. Growth and Flocculation of a Marine Photosynthetic Bacterium Rhodovulum sp[J]. Appl. Microbiol. Biotechnol., 1998, 50(6): 682-691.
    [24] R Kurane, K Todea, K Takeda et al. Culture Conditions for Production of Microbial Flocculant by Rhodococcus erythropolis[J]. Agric. Biol. Chem., 1986, 50(9): 2309-2313.
    [25] Sophie Comte, Gilles Guibaud, Michel Baudua. Effect of Extraction Method on EPS from Activated Sludge: An HPSEC Investigation[J]. Journal of Hazardous Materials, 2007, 140(1-2): 129-137.
    [26] H. Bender, S. Rodriguez-Eatun, U. Ekanemesang, et al. Characterization of Metal-binding Bioflocculants Produced by the Cyanobacterial Component of Mixed Microbial Mats[J]. Appl. Environ. Microbiol., 1994, 60(7): 2311-2315.
    [27] J. Hantula, DH. Bamford. The Efficiency of the Protein Dependent Flocculation of Flavobacterium sp. is sensitive to the Composition of Growth Medium[J]. Appl. Microbiol. Biotechnol., 1991, 36(1): 100-104.
    [28] Zhong Li, Shan Zhong, Heng-yi Lei. Production of a Novel Bioflocculant by Bacillus licheniformis X14 and its Application to Low Temperature Drinking Water Treatment[J]. Bioresource Technology, 2009, 100(14): 3650-3656.
    [29] J. Guirand. Isolation and Characterization of a Flocculating Mutant of Saccharomyces diastaticus[J]. Res. Microbiol., 1992, 1433: 81-91.
    [30] K. Hanumantha Rao, Annamaria Vilinska, I.V. Chernyshova. Microorganisms in Bioflotation and Bioflocculation: Potential Application and Research Needs[J]. Advanced Materials Research, 2009, 71-73: 319-328.
    [31] M. Sousa, J. Teixeira, M. Mota. Difference in Flocculation Mechanism of Kluyveromyces marxianus and Saccharomyces cerevisiae[J]. Biotechnol. Lett., 1992, 14: 213-218.
    [32] Y. Fumio. Flocculation of Yeast Cells by Lactobacillus fermentum[J]. Res. Microbiol., 1991, 22: 12-16.
    [33] F. Kara1, G.C. Gurakan, F.D. Sanin. Monovalent Cations and their Influence on Activated Sludge Floc Chemistry, Structure, and Physical Characteristics[J]. Biotechnology and Bioengineering, 2008, 100(2): 231-239.
    [34] Jayachandran K., et al. Biological Coagulant of Skim Latex Using Acinetobacter sp. Isolated from Natural Rubber Latex Centrifugation Effluent[J]. Biotechnol. Lett., 1998, 20(2): 161-164.
    [35]潘多涛,刘桂萍,刘长风.生物絮凝剂产生菌的筛选及培养条件优化[J].山东大学学报(工学版), 2008, 38(3): 1-5.
    [36]邱忠平,茆灿泉,刘源月.微生物絮凝剂产生菌的筛选及其絮凝特性[J].环境工程学报, 2009, 3(7): 1185-1188.
    [37] Kurane R., Hatamochi K., Kakuno T., et al. Production of a Bioflocculant by Rhodococcus erythropolis S21 Grown on Alcohols[J]. Biosci. Biotechnol. Biochem., 1994, 58(2): 428-429.
    [38] Nakamura J., Miyashiro S., Hirose Y. Screening. Isolation and Some Properties of Microbial Cell Flocculant[J]. Agric.Biol.Chem., 1976, 40(3): 77-83.
    [39] VMR Sala, EJBN Cardoso, FF Garboggini, et al. Achromobacter insolitus and Zoogloea ramigera Associated with Wheat Plants (Triticum Aestivum) [J]. Biology and Fertility of Soils, 2008, 44(8): 1107-1112.
    [40] Lee S.H., Lee S.O., Jang K.L., et al. Microbial Flocculant from Arcuadendron sp. Ts-49[J]. Biotechnol.lett., 1995, 17: 95-100.
    [41] Takeda M., Koizuni J., Matsuoka H., et al. Factors Affecting the Activity of a Protein Bioflocculant Produced by Nocardia amarae[J]. J.Ferment.Bioeng., 1992, 47(6): 408-409.
    [42]程树培,崔益斌,杨柳燕.高絮凝性微生物育种生物技术研究与应用进展[J].环境科学进展, 1995, 3(1): 65-69.
    [43]吕亚芳,赵敏,汪春蕾等.微生物絮凝剂产生菌的筛选与絮凝条件[J].东北林业大学学报, 2008, 36(2): 63-64.
    [44] Shih I.L., Yan Y.I., Yeh L.C., et al. Production of a Biopolymer Flocculant from Bacillus licheniformis and its Flocculation Properties[J]. Bioresource.Techenol., 2001, 78(3): 267-272.
    [45] Yihua Chen, Evelyn Wendt-Pienkowski, Jianhua Ju, et al. Characterization of FdmV as an Amide Synthetase for Fredericamycin A Biosynthesis in Streptomyces griseus ATCC 43944[J].J. Biol. Chem. 2010, 285: 38853-38860.
    [46]张悦周,吴耀国,胡思海等.微生物絮凝剂的研究与应用进展[J].化工进展, 2008, 27(3): 340-347.
    [47] Vijayalashmi S.P., Raichur A.M. The Utility of Bacillus subtilis as a Bioflocculant for Fine Coal[J]. Colloids and Surfaces B: Biointerfaces, 2003, 29(1): 265-275.
    [48] Masanori F., Michihiko I., Shinya T., et al. Characterization of a Bioflocculant Produced by Citrobacter sp.TKF04 from Acetic and Propionic Acids[J]. Biosci.Bioeng., 2000, 89(1): 40-46.
    [49] Stefanie Kind, Weol Kyu Jeong, Hartwig Schr?der, et al. Identification and Elimination of the Competing N-Acetyldiaminopentane Pathway for Improved Production of Diaminopentane by Corynebacterium glutamicum[J]. Applied and Environmental Microbiology, 2010, 76(15): 5175-5180.
    [50] Yokoi H. Biopolymer Flocculant Produced by an Enterobacter sp[J]. Biotechnol.Lett., 1996, 19(6): 569-573.
    [51] Takashi Watanabe, Kazuo Masaki, Kazuhiro Iwashita. Treatment and Phosphorus Removal from High-concentration Organic Wastewater by the Yeast Hansenula anomala J224 PAWA[J]. Bioresource Technology, 2009, 100(5): 1781-1785.
    [52] Fumio Y. Flocculatin of Yeast Cells by Lactobacillus Fermentum[J]. Res.Microbiol., 1991, 22(1): 2-6.
    [53] Sathiya moorthi, P., Periyar selvam, S., Sasikalaveni, A. et al. Decolorization of Textile Dyes and Their Effluents using White Rot Fungi[J]. African Journal of Biotechnology, 2007,6 (4): 424-429.
    [54] Kwon G.S., Moon S.H., Hong S.D., et al. A Novel Flocculant Biopolymer Produced by Pestalotiopsis sp. KCTC-8637[J]. Biotechnol. Lett., 1996, 18(14): 59-64.
    [55] Zhong Li, Ruo-Wei Chen, Heng-Yi Lei, et al. Characterization and Flocculating Properties of a Novel Bioflocculant Produced by Bacillus circulans[J]. World Journal of Microbiology and Biotechnology, 2009, 25(5): 745-752.
    [56] Daisuke Tanaka, Miyuki Takashima, Asako Mizuta, et al. Acinetobacter sp.Ud-4 Efficiently Degrades Both Edible and Mineral Oils: Isolation and Characterization[J]. Current Microbiology, 2010, 60(3): 203-209.
    [57]陈盛,钱伟,罗志敏等.酸性多糖生物絮凝剂的提取、纯化与分析[J].环境污染治理技术与设备, 2006, 7(12): 62-63.
    [58] Sheng G.P., Han Q.Y., Yu Z. Extraction of Extracellular Polymeric Substances from the Photosynthesis Bacterium Rhodopseudomonas Acidophila[J]. Appl. Microbiol. Biotechnol., 2005, 67(1): 125-130.
    [59]郑怀礼.生物絮凝剂与絮凝技术[M].化学工业出版社, 2004: 83-92.
    [60]叶晶菁,谭天伟.生物絮凝剂产生菌分离选育及提取鉴定[J].北京化工大学学报, 2001, 28(1): 11-17.
    [61]李建武,肖能庚,余瑞元等.生物化学实验原理和方法[M].北京大学出版社, 1994: 125-160.
    [62]黄民生,史宇凯.生物絮凝剂净化废水实验研究[J].上海环境科学, 2000, 19(5): 222-224.
    [63] E·д·巴宾科夫[苏]著,郭连起译.论水的混凝[M].中国建筑工业出版社, 1982.
    [64]甘莉,孟召平.微生物絮凝剂的研究进展[J].水处理技术, 2006, 32(4): 5-9.
    [65] J. Nakamura, S. Migeyshi, Y. Hirose. Modes of Flocculation of Yeast Cell with Flocculant Produced by Aspergillus sojae AJ-7002[J]. Agi. Biol. Chem., 1976, 40(8): 1565-1571.
    [66]王庆国,刘天明.酵母菌分类学方法研究进展[J].微生物学杂志, 2007, 27(3): 96-101.
    [67]江锋,黄晓武,胡勇有.胞外生物高聚物絮凝剂的研究进展(上)[J].给水排水, 2002, 28(8): 83-89.
    [68]江锋,黄晓武,胡勇有.胞外生物高聚物絮凝剂的研究进展(下)[J].给水排水, 2002, 28(9): 88-91.
    [69] Sujoy K. Das, Akhil R. Das, Arun K. Guha. A Study on the Adsorption Mechanism of Mercury on Aspergillus versicolor Biomass[J]. Environ. Sci. Technol., 2007, 41 (24): 8281-8287.
    [70] Anastasios I., Zouboulis, Xiao-Li Chai, et al. The Application of Bioflocculant Mic Acids from Stabilized Landfill Leachates[J]. Journal of Environmental Management, 2004, 70: 35-41.
    [71] Calace N., Liberatori A., Petronio B.M., et al. Characteristics of Different Molecular Weight Fractions of Organic Matter in Landfill Leachate and Their Role in Soil Sorption of Heavy Metals[J]. Environ. Pollut., 2001, 113(3):331-339.
    [72]韩长秀,林徐明.生物絮凝剂及其在水处理中的应用进展[J].水处理技术, 2006, 32(9): 6-11.
    [73]夏四清,丁西明,常玉广等.枯草芽孢杆菌产高效微生物絮凝剂的研究[J].中国给水排水, 2009, 25(1): 14-17.
    [74] Lu-qiang Yang, Song-hua Wang, Ya-ping Tian. Purification, Properties, and Application of a Novel Acid Urease from Enterobacter sp[J]. Applied Biochemistry and Biotechnology, 2010, 160(2): 303-313.
    [75]何宁,李寅,陈坚等.生物絮凝剂的最新研究进展及其应用[J].微生物学通报, 2005, 32(2): 104-108.
    [76] Butterfield CT. a Zooloea-forming Bacterium Isolated from Activated Sludge, Studies of Sewage Purification (II) [J]. U.S. Public Health Rep, 1935, 50: 671-681.
    [77] F Richard. Exopolymer Production and Flocculation by Zoogloea MP6[J]. Applied and Environmental Microbiology, 1976, 31(4): 623-626.
    [78] H Salehizadeh, S A Shojaosadati. Extracellular Biopolymeric Flocculants: Recent Trends and Biotechnological Importance[J]. Biotechnology Advances, 2001. 19(5): 371-385.
    [79] R Kurane, N Tomizuka. Towards New-biomaterial Produced by Microorgani-sm: Bioflocculants and Bioabsorbent[J]. Nippon Kagaku Kaishi, 1992, 10(5): 457-463.
    [80] Wen-Xin Gong, Shu-Guang Wang, Xue-Fei Sun. Bioflocculant Production by Culture of Serratia ficaria and its Application in Wastewater Treatment[J]. Bioresource Technology, 2008, 99(11): 4668-4674.
    [81] Takagi H, Kadowaki K. Flocculant production by Paecflomyces sp.Taxonomic Studies and Culture Conditions for Production[J]. Agric,boil,Chem., 1985, 49(11): 3151-3157.
    [82] Kurane R. Screening and Characteristics of Microbial Flocculants[J]. Agric.Biol. Chem., 1986, 50(9): 2301-2307.
    [83] Suh H, Kwon G, Lee C, et al. Character Ization of Bioflocculant Produced by Bacillus species DP-152[J]. Ferment Bioeng., 1997, 84(2): 108-112.
    [84]黄晓武,胡勇有,浦跃武.微生物絮凝剂产生菌的筛选和特性研究[J].工业用水与废水, 2002, 33(3): 5-7.
    [85]周旭,王竟,周集体等.利用鱼粉废水生产微生物絮凝剂的性能研究[J].环境科学研究, 2003, 16(3): 31-34.
    [86]王曙光,刘贤伟,高宝玉等.利用酱油酿造废水生产微生物絮凝剂及其性能研究[J].应用与环境生物学报, 2006, 12(4): 574-576.
    [87]马放,刘俊良,李淑更等.复合型微生物絮凝剂的开发[J].中国给水排水, 2003, 19(4): 1-4.
    [88]李淑更.复合型生物絮凝剂的开发[D].哈尔滨工业大学硕士论文, 2002: 12-23.
    [89]王琴.复合型生物絮凝剂的絮凝机理与生产工艺研究[D].哈尔滨工业大学博士论文, 2005: 19-26.
    [90]孟路.复合型生物絮凝剂发酵条件的优化及絮凝效果研究[D].哈尔滨工业大学硕士论文, 2005: 30-41.
    [91]王博.复合型生物絮凝剂的絮凝效能研究及安全性评价[D].哈尔滨工业大硕士论文, 2005: 19-26.
    [92]迟熠.复合型生物絮凝剂(CBF)絮凝特性研究[D].哈尔滨工业大学硕士论文, 2006: 24-48.
    [93]朱艳彬.复合型生物絮凝剂产絮菌特性及絮凝过程解析[D].哈尔滨工业大学博士论文, 2006: 53-41.
    [94]常玉广.基于产絮克隆菌的遗传及产絮特性研究[D].哈尔滨工业大学博士论文, 2007: 127-128.
    [95]王薇.产絮菌合成生物絮凝剂特性及絮凝成分解析[D].哈尔滨工业大学博士论文, 2009: 49-115.
    [96]张金凤.复合型生物絮凝剂的成分分析及絮凝机理研究[D].哈尔滨工业大学硕士论文, 2005: 11-56.
    [97] Brad Goodner, Gregory Hinkle, Stacie Gattung, et al. Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58[J]. Science, 2001, 294: 2323-2328.
    [98] Derek W. Wood, Joao C. Setubal, Rajinder Kaul, et al. The Genome of the Natural Genetic Engineer Agrobacterium tumefaciens C58[J]. Science, 2001, 294: 2317-2323.
    [99] Allardet-Servent A., Michaux-Charachon S., Jumas-Bilak E., et al. Presence of One Linear and One Circular Chromosome in the Agrobacterium tumefaciens C58 Genome[J]. J. Bacteriol., 1993, 175: 7869-7874.
    [100] B. W. Goodner, B. P. Markelz, M.C. Crowell, et al. Combined Genetic and Physical Map of the Complex Genome of Agrobacterium tumefaciens[J]. J. Bacteriol., 1999, 181: 5160-5166.
    [101] L.D.Alcaraz1, G.Moreno-Hagelsieb, L.E.Eguiarte et al. Understanding the Evolutionary Relationships and Major Traits of Bacillus through ComparativeGenomics[J]. BMC Genomics, 2010, 11(1): 332.
    [102] Zevenhuizen, L.P.T.M. Succinoglycan and Galactoglucan[J]. Carbohydr Polymers, 1997, 33(2-3): 139-144.
    [103] T. Harada, A. Amemura, P.E. Jansson, et al. Comparative Studies of Polysaccharides Elaborated by Rhizobium, Alcaligenes, and Agrobacterium[J]. Carbohydr. Res., 1979, 77: 285-288.
    [104] Amelia D. Tomlinson, Bronwyn Ramey-Hartung, Travis W. Day. Agrobacterium tumefaciens ExoR Represses Succinoglycan Biosynthesis and is required for Biofilm Formation and Motility[J]. Microbiology, 2010, 156: 2670-268.
    [105] M. Stredansky, E. Conti. Succinoglycan Production by Solid-state Fermentation with Agrobacterium tumefaciens[J]. Appl. Microbiol. Biotechnol., 1999, 52: 332-337.
    [106] Jansson,P.E., Kenne,L., Lindberg,B., et al. Demonstration of an Ocrasaccharide Repeating Unit in the Extracellular Polysaccharide of Rhizobium meliloti by Sequential Degradation[J]. Am.Chem.Soc., 1977, 99: 3812-3815.
    [107] Stredansky, M., Conti, E., Bertocchi, C., et al. Succinoglycan Production by Agrobacterium tunefaciens[J]. J. Ferm.Bioeng., 1998, 85: 398-403.
    [108] Meade, M.J., Tanenbaum, S.W., Nakas, J.P. Production and Rheological Properties of a Succinoglycan from Pseudomoas sp.31260, Grown on Wood Hydrolysates[J]. Can.J.Microbiol., 1995, 41, 1147-1152.
    [109] Becker,A., Kleickmann,A., Kuster,H., et al. Analysis of the Rhizobium meliloti Genes exoU,exoV,exoW,exoT and exoI Involved in Exopolysaccharide Biosynthesis and Ndule Invasion: exoU and exoW Probably Encode Glucosyltransferases[J]. Mol.Plant-Microbe Interact., 1993, 6: 735-744.
    [110] J.E.Gonzalez, G.M.York, G.C Walker. Rhizobium meliloti Exopolysaccharides: Synthesis and Symbiotic Function[J]. Gene, 1996, 179: 141-146.
    [111] Reuber, T.L, Walker, G.C. Biosynthesis of Succinoglycan, a Symbiotically Important Exopolysaccharide of Rhizobium meliloti[J]. Cell, 1993, 74: 269-280.
    [112] Cangelosi, G.A., Hung, L., Puvanesarajah, V., et al. Commom Loci for Agrobacterium Tumefaciens and Rhizobium meliloti Exopolysaccharide Synthesis and Their Roles in Plant Interactions[J]. J.Bacteriol., 1987, 169: 2086-2091.
    [113] Sutherland, I.W. Biotechnology of Microbial Polysaccharides[M]. Cambridge: Cambridge University Press, 1990.
    [114] Dasinger BL, McArthur HAI. Aqueous Gel Compositions Derived from Succinoglycan[P]. 1987, Patent Number: EP0251638A3.
    [115] Service RF. High-speed Biologists Search for Gold in Proteins[J]. Science, 2001, 294: 2074-2077.
    [116] Wasinger VC,Cordewell SJ,Cerpa PA,et al. Progress with Gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis,1995, 16(7): 1090-1094.
    [117]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].科学出版社, 2004: 239-281
    [118] O Farrell P H. High Resolution Two Dimensional Electorphoresis of Pretein[J]. J. Biol. Chem., 1975, 250: 4007-4021.
    [119] Klose J. Protein Mapping by Combined Isoelectrophoresis of MouseTissues: A Novel Approach to Testing for Induced Point Mutations in Mammals[J]. Humangenetik, 1975, 26: 231-243.
    [120]李丽莉,温博海,王恒樑.蛋白质组技术进展[J].生物技术通讯, 2006, 17(4): 662-664.
    [121]冯海燕,景志忠,房永祥等.双向凝胶电泳技术及其应用[J].生物技术通报, 2009, (1): 59-63.
    [122]黄丽俊,王建华.蛋白质组研究技术及其进展[J].生物学通报, 2005, 40(8): 4-6.
    [123] Botstein D., Chervitz S.A., Cherry J. M. Yeast as a Model Organism[J]. Science, 1997, 277(5330): 1259-1260.
    [124] Huang S. Back to the Biology in Systems Biology: What Can We Learn from Biomolecular Network? Brief Funct[J]. Genomic Proteomic, 2004, 2(4): 279-297.
    [125] Anderson N. L., Polanski M., Pieper R., et al. The HumanPlasma Proteome: A Nonredundant List Developed by Combination of Four Separate Source[J]. Mol. Cell Proteomics., 2004, 3(4): 311-326.
    [126]武霞.野大麦盐胁迫的差异蛋白质组学研究[D].吉林大学硕士学位论文, 2007, 24-27.
    [127] Aebersold, R., Mann, M. Mass Spectrometry-based Proteomics[J]. Nature., 2003, 422: 198-207.
    [128] McCormack, A.L., Schieltz, D.M., Goode, B., et al. Direct Analysis and Identification of Proteins in Mixtures by LC/MS/MS and Database Searching at the Low-Femtomole Level[J]. Anal. Chem., 1997, 69: 767-776.
    [129] Karas M., Hillenkamp F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10000 Daltons[J]. Anal.Chem., 1988, 60: 2299-2301.
    [130] Fenn JB, Mann M, Meng CK, et al. Electrospray Ionization for MassSpectrometry of Large Biomolecules[J]. Science, 1989, 267: 64-71.
    [131] Russell P Bowler, Misoo C Ellison, Nichole Reisdorph. Proteomics in pulmonary medicine[J]. Chest, 2006, 130: 567-574.
    [132] Perkins DN, Pappin DJ, Creasy DM et al. Probability-based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data[J]. Electrophoresis, 1999, 20: 3551-3567.
    [133] Kenny Helsens1, Lennart Martens Dr, Jo?l Vandekerckhove1 et al. MascotDatfile: An Open-source Library to Fully Parse and Analyse MASCOT MS/MS Search Results[J]. Proteomics, 2007, 7(3): 364-366.
    [134] Thongboonkeul V. Proteomies[J]. ForumNutr, 2007, 60: 80-90.
    [135] Lippolis, J.D., Bayles, D.O., Reinhardt, T.A. Proteomic Changes in Escherichia coli When Grown in Fresh Milk versus Laboratory Media[J]. Journal of Proteome Research, 2009, 8: 149-158.
    [136] Prateek Gupta, Kelvin H. Lee. Genomies and Proteomies in Process Development: Opportunities and Challenges[J] Trends in Biotechnology. 2007, 25(7): 324-330.
    [137]夏玉宇.化验员实用手册(第2版)[M].化学工业出版社, 2005: 782-784.
    [138] Zevenhuizen, L.P.T.M. Mithylation Analysis of Acidic Exopolysaccharides of Rhizobium and Agrobacterium[J]. Carbohydr. Res., 1973, 26: 409-419.
    [139] Glucksmann, M.A., Reuber, T.L., Walker, G.C. Family of Glycosyl Transferases Needed for the Synthesis of Succinoglycan by Rhizobirm meliloti[J]. Bacteriol., 1993, 175: 7033-7044.
    [140] Meng B, Qian Z, Wei F, et al. Proteomic Analysis on the Temperature- dependent Complexes in Thermoanaerobacter tengcongensis[J]. Proteomics, 2009, 9(11): 3189-3200.
    [141] Tatusov, R.L., Koonin, E.V., Lipman, D.J. A Genomic Perspective on Protein Families[J]. Science, 1997, 278: 631-637.
    [142] Tatusov, R.L., Fedorova, N. D., Jackson, J. D., et al. The COG Database: An Updated Version Includes Eukaryotes[J]. BMC Bioinformatics, 2003, 4: 41.
    [143] Higgins, C.F. ABC Transporters: From Microorganisms to Man[J]. Annual Review of Cell Biology, 1992, 8: 67-113.
    [144] Hecher, M., Babel, W. Physiologie Der Mikroorgan-ismen. Jena & Stuttgart: VEB Gustav Fischer Verlag, 1988.
    [145] López J L. Two-dimensional Electrophoresis in Proteome Expression Analysis[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 849: 190-202.
    [146]刘立明.光滑球拟酵母中糖酵解效率与丙酮酸合成的调控研究[D].江南大学博士学位论文, 2006: 35.
    [147]谭施宁,彭方印,安世琦等.野油菜黄单胞菌2-酮-3-脱氧-6-磷酸葡萄糖酸醛缩酶基因的突变分析[J].广西农业生物科学, 2008, 27(4): 349-353.
    [148] Jording D, Sharma PK, Schmidt R, et al. Regulatory Aspects of the C4-dicarboxylate Transport in Rhizobium meliloti: Transcriptional Activation and Dependence on Effective Symbiosis[J]. Plant Physiol, 1992, 141: 18-27.
    [149]宫伟娜.低温胁迫过程中入侵植物紫茎泽兰热激蛋白基因的作用[D].中国农业科学院博士论文, 2009: 13-16.
    [150] Che G, Chen J, Liu L, et al. Transfection of nm23-H1 Increased Expression of beta-Catenin,E-Cadherin and TIMP-1 and Decreased the Expression of MMP-2, CD44v6 and VEGF and Inhibited the Metastaic Potential of Human Non-small Cell Lung Cancer Cell Line L998[J]. Neoplasma, 2006, 53(6): 530-537.
    [151] Herbert D, Walker K A, Price L J, et al. Acetyl-CoA Carboxylase a Graminicide Target Site[J]. Pestic Sci., 1997, 50: 67-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700