槲皮素金属配合物抗肿瘤作用及其与DNA相互作用的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤现已成为人类死亡的主要原因之一,寻找抗肿瘤药物已经成为药学研究的重大课题。近年研究表明某些槲皮素金属配合物不但抗氧化活性比槲皮素强,而且其抑制肿瘤细胞生长的作用也比槲皮素强。然而目前槲皮素金属配合物抗肿瘤的作用机制还不清楚。它们能否诱导肿瘤细胞凋亡,其信号转导通路,作用靶点等科学问题还有待探索研究。本课题利用生物化学、细胞生物学、药学、计算化学等多学科交叉手段,主要研究了槲皮素金属配合物(Mn、Co、Ni、Cu、Zn)对肿瘤细胞凋亡的影响,及其与DNA结合和催化DNA断裂作用,探讨了槲皮素金属配合物诱导肿瘤细胞凋亡的作用机制及其与DNA相互作用的机理。得到了如下结论:
     ①采用MTT法、荧光染色法、流式细胞术和免疫细胞化学方法对槲皮素金属配合物抗肿瘤活性和诱导HepG2细胞凋亡进行了研究,初步探讨了槲皮素金属配合物诱导肿瘤细胞凋亡的分子机制。
     1)结果表明槲皮素金属配合物(Mn、Co、Ni、Cu、Zn)对肝癌细胞HepG2、SMMC-7721和肺腺癌细胞A549的生长均有明显的抑制作用,并呈明显的剂量和时间依赖性。其中槲皮素锰、镍和锌配合物对肿瘤细胞生长的抑制作用明显强于配体槲皮素,它们作用于HepG2细胞48小时的半数抑制浓度IC_(50)分别为20.64、14.44和10.67μmol·L~(-1),而槲皮素的IC_(50)为33.69μmol·L~(-1)
     2)形态学观察结果表明HepG2细胞经槲皮素锰、镍和锌配合物处理后,染色质凝聚,且有明显的凋亡小体出现,表明槲皮素锰、镍和锌配合物能诱导HepG2细胞凋亡。
     3)细胞周期分析结果表明槲皮素锰、镍和锌配合物对肝癌HepG2细胞生长的抑制作用可能是通过使细胞阻滞于G_0/G_1期,使细胞DNA合成速度降低,细胞周期的循环被抑制而实现的。对G_0/G_1期细胞阻滞可能是配合物诱导HepG2细胞凋亡的一个重要机制。
     4)免疫细胞化学检测结果表明槲皮素锰、镍和锌配合物诱导HepG2细胞凋亡可能通过下调bcl-2和survivin,上调p53,引发caspase的级联反应,从而激活caspase-3来进行的。下调survivin和bcl-2的表达对槲皮素金属配合物诱导HepG2细胞凋亡既起到了协同作用,又起到了互补作用。
     ②采用紫外光谱法、荧光光谱法和粘度法研究了槲皮素锰、钴、镍、铜和锌配合物与小牛胸腺DNA的结合方式,采用凝胶电泳法、脱水丙二醛分析和T4连接实验较系统地研究了槲皮素锰、钴、镍、铜和锌配合物对质粒pBR322DNA的催化断裂情况。初步探讨了槲皮素金属配合物和DNA的作用方式及其对DNA的催化断裂机理。发现槲皮素金属配合物具有核酸酶类活性。
     1)槲皮素锰、钴、镍和锌配合物仅以插入方式与DNA结合,而槲皮素铜配合物与DNA的结合方式可能不止一种,除插入方式结合以外还受到静电作用的影响。
     2)槲皮素锰、钴、镍、铜和锌配合物均能有效断裂DNA,且槲皮素铜配合物断裂DNA的能力最强;对于槲皮素锰、镍、铜和锌配合物,低离子强度促进DNA裂解,高离子强度抑制DNA裂解;离子强度增大能促进槲皮素钴配合物对DNA的断裂,所以槲皮素金属配合物对DNA的断裂作用受离子强度的影响。
     3)如以超螺旋DNA为底物,槲皮素锰、钴、镍、铜和锌配合物催化断裂DNA的反应符合准一级反应速率定律。其速率常数分别为1.18×10~(-4)s~(-1)、0.53×10~(-4)s~(-1)、0.76×10~(-4)s~(-1)、4.82×10~(-4)s~(-1)、1.68×10~(-4)s~(-1)。
     4)DNA断裂机理实验表明槲皮素锰、钴、镍和锌配合物均能以水解途径断裂DNA;槲皮素铜配合物以氧化还原途径断裂DNA,可能与Cu(I)OOH物质有关。
     ③引入量子化学和分子力学方法,对槲皮素金属配合物抗肿瘤作用的机制及其与DNA结合作用的机理进行了理论解释。
     1)对槲皮素金属配合物结构进行了量子化学计算,通过对其几何构型的讨论,发现槲皮素金属配合物的6个配位氧原子与金属离子形成畸形六配位八面体配合物,其配位结构是合理的;根据NBO电荷分析、前沿分子轨道分析解释了配合物的配位特性,发现羟基氧的配位能力强于羰基氧。
     2)计算结果表明槲皮素金属配合物的LUMO及附近未占轨道能量比DNA碱基对模型CG/GC的HOMO和NHOMO的能量低,有利于配合物接受DNA碱基对上的电子,增强了配合物与DNA碱基对的π-π相互作用。槲皮素金属配合物抗肿瘤活性及其DNA键合能力与其LUMO的能量和配体所带电荷两方面的因素有关。
     3)运用分子力学研究了配合物插入DNA的过程,结果表明五种槲皮素金属配合物都可以插入到DNA碱基对之间,倾向于从小沟插入到CG/GC碱基对间。根据槲皮素金属配合物插入DNA碱基对后的势能值,发现配合物与DNA插入能力的理论计算结果与实验结果一致。槲皮素金属配合物与DNA结合作用的大小顺序为zn(Que)_2>Ni(Que)_2>Mn(Que)_2>Co(Que)_2>Cu(Que)_2。提示槲皮素金属配合物有可能抑制富含GC的survivin基因启动子的转录,而抑制survivin的表达,从而促进肿瘤细胞凋亡。
     本论文对槲皮素金属配合物诱导肿瘤细胞凋亡的分子机制及其与DNA相互作用的机理进行了探索性的研究,为将此类化合物应用于高效、实用化学核酸酶和抗肿瘤药物的开发奠定了基础,为新型抗肿瘤药物的设计提供了新的思路。
In recent years malignant tumor has been one of the main causations of death, and antitumor drug screening has been a significant task in pharmaceutics. It was reported that both antioxidant activity and tumor cell proliferation inhibitory effect of some quercetin metal complexes were stronger than those of quercetin alone. However, little attention is paid to antitumor mechanisms of quercetin metal complexe. So in order to elucidating antitumor mechanism of quercetin metal complexes, we focus our study on the effect of quercetin metal complexes(Mn, Co, Ni, Cu, Zn) on tumor cell apoptosis, and their DNA-binding and cleavage activity. Based on these, we discussed the mechanism of cell apoptosis induced by quercetin metal complexes and the interaction mechanism of the complexes with DNA.
     1) Antitumor activity of quercetin metal complexes and HepG2 cell apoptosis induced by them was studied using MTT assay, fluorescence staining, flow cytometry (FCM) and immunocytochemical method. And the molecular mechanisms of tumor cell apoptosis induced by quercetin metal complexes are discussed preliminarily.
     i) It is found that quercetin metal complexes have a significant inhibition to growth and proliferation of HepG2, SMMC-7721 and A549 cell lines in a concentration- and time-dependent manner. Furthermore, the proliferation inhibitory effect of quercetin manganese, nickel and zinc complexes on tumor cells is stronger than that of quercetin alone. After tumor cells were treated by quercetin manganese, nickel and zinc complexes for 48h,the half inhibitory concentration (IC_(50)) were 20.64,14.44 and 10.67μmol·L~(-1) respectively, while IC_(50) of quercetin was 33.69μmol·L~(-1)
     ii) After treatment with quercetin manganese, nickel and zinc complexes, morphological changes of HepG2 cells apoptosis were observed with fluorescence microscope. Results indicate that they could induce HepG2 cells apoptosis.
     iii) FCM results suggest that HepG2 cells are arrested at G_0/G_1 after treatment with quercetin manganese, nickel and zinc complexes, which could contribute to tumor cell apoptosis.
     iv) Evidence is provided that expression levels of bc1-2 and survivin protein are down-regulated and expression level of p53 protein is up-regulated after treatment with quercetin manganese, nickel and zinc complexes, which activates caspase-3 resulting in HepG2 cells apoptosis. Down-regulation of survivin and bcl-2 could exert both synergistic effect and complementation effect in HepG2 cell apoptosis induced by quercetin metal complexes. Therefore HepG2 cells apoptosis induced by quercetin manganese, nickel and zinc complexes is not regulated by single factor, but rather by multiple pathways.
     2) The interaction of quercetin metal complexes with calf thymus(CT) DNA is investigated by electronic absorption spectroscopy, fluorescence spectroscopy, viscosity measurement. Plasmid pBR322 DNA cleavage is also studied by gel electrophoresis. Furthermore, DNA-binding properties and mechanism of DNA cleavage are discussed preliminarily. We put forward the nuclease-liked activity of quercetin metal complexes for the first time.
     i) Results infer that quercetin manganese, cobalt, nickel and zinc complexes could interact with DNA through intercalation mode, but DNA-binding of quercetin copper complexes is more than one mode, including intercalation and electrostatic mode.
     ii) Results suggest that quercetin metal complexes could cleave supercoiled pBR322 DNA to nicked and line form effectively. Among them, DNA cleavage by quercetin copper complex is the most efficient. Moreover, low ionic strength could promote DNA strand breakage induced by quercetin manganese, nickel, copper and zinc complexes, while high ionic strength could prevent the formation of double strand breaks. However, increasing ionic strength could only promote DNA cleavage induced by quercetin cobalt complex. So DNA cleavage induced by quercetin metal complexes depends on ionic strength in the solution.
     iii) The decrease of supercoiled DNA induced by quercetin metal complexes with time shows the expected exponential nature of the curves, which confirms the process to pseudo-first-order. Their rate constants are 1.18×10~(-4)s~(-1)(Mn), 0.53×10~(-4)s~(-1)(Co), 0.76×10~(-4)s~(-1)(Ni),4.82×10~(-4)s~(-1)(Cu),1.68×10~(-4)s~(-1)(Zn), respectively.
     iv) Results imply that the process of DNA cleavage by quercetin manganese, cobalt, nickel and zinc complexes occurs via a hydrolytic path, while the process of DNA cleavage by quercetin copper complex occurs via a redox path involved in Cu(Ⅰ)OOH.
     3) Mechanisms of antitumor activity and interaction of quercetin metal complexes with DNA were elucidated theoretically by quantum chemistry and molecular mechanics methods.
     i) Based on quantum chemistry calculation of the structure of quercetin metal complexes, it is found that freakish octahedron structure comprises six oxygen atoms and a metal ion, which has good stability. Furthermore, coordinate properties of quercetin metal complexes are discussed through nature population analysis and frontier orbital analysis, which confirms the coordinate action of hydroxyl oxygen is stronger than that of carbonyl oxygen.
     ii) The calculation results suggest that the energies of LUMO and NLUMO of quercetin metal complexes are lower than the energies of the HOMO and NHOMO for the CG/GC stacking in DNA backbones, which contributes to enhance theπ-πinteraction between complexes and DNA base-pairs. The antitumor activity and DNA-binding properties of quercetin metal complexes could rely heavily on their LUMO energies and total charge of ligand of complexes.
     iii) The processes of quercetin metal complexes intercalating into DNA are studied by molecular modeling. Results infer that quercetin metal complexes are inclined to intercalate into base stack in CG/GC region from minor groove, which depends on asymmetric charge distribution and steric interaction. Base on calculated potential energy of quercetin metal complexes intercalating into DNA base stack, it is suggested that calculated DNA-binding action decreases in the order Zn(Que)_2>Ni(Que)_2>Mn(Que)_2 >Co(Que)_2>Cu(Que)_2,according with experiment results. It is proposed that quercetin metal complexes may inhibit transcription of survivin promoter with abundant GC,which contributes to down-regulating expression of survivin protein and promote tumor cell apoptosis.
     In the present paper, molecular mechanisms of tumor cells apoptosis induced by quercetin metal complexes and mechanisms of interaction of the complexes with DNA are discussed, which lay the foundation of development of new efficient chemical nuclease and antitumor drug, and provide a new consideration for novel antitumor drug design.
引文
[1] Nijveldt R J, van Nood E, Van Hoorn D E C, et al. Flavonoids: a review of probable mechanisms of action and potentials applications[J]. Am. J. Clin. Nutr., 2001,74: 418-425.
    
    [2] Pietta P-G Flavonoids as antioxidant[J]. J. Nat. Prod., 2000,63,1035-1042.
    [3] Dugas A J J, Castaneda-Acosta J, Bonin G C, et al. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structure-activity relationships[J]. J Nat Prod, 2000, 63:327-331.
    [4] Balabhadrapathruni S, Thomas T J, Yurkow E J, et al. Effects of genistein and structurally related phytoestrogens on cell cycle kinetics and apoptosis in MDA-MB-468 human breast cancer cells[J]. Oncol. Rep., 2000,7: 3-12.
    [5] Kang T B, Liang N C. Effect of quercetin on activities of protein kinase C and tyrosine protein kinase from HL-60 ceUs[J]. Acta. Pharmacologica. Sinica, 1997, 18: 374-376.
    [6] Balasubramanian S, Govindasamy S. Inhibitory effect of dietary flavonol quercetin on 7,12-dimethyl-benz[a]anthracene-induced hamster buccal pouch carcinogenesis[J].Carcinogenesis, 1996, 17(4): 877-879.
    [7] Matsukawa Y, Nishino H, Okuyama Y, et al. Effect of quercetin and/or restraint stress on formation of aberrant crypt foci induced by azoxymethane in rat colons[J]. Oncology, 1997,54(2): 118-121.
    [8] Makita H, Tanaka T, Fujitsuka H, et al. Chemoprevention of 4-Nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin [J].Cancer Res., 1996, 56(21): 4904-4909.
    [9] Shen F, Weber G Synergistic action of quercetin and genistein in human ovarian carcinoma cells [J]. Oncol. Res., 1997, 9(11-12): 597-602.
    [10] Matias A A, Juan A V, Jose C, et al. Quercetin mediates the downregulation of mutant p53 in the human breast cancer cell line MDAMB168 [J]. Cancer Res., 1994, 54(9): 2424-2428.
    
    [11] Duthie S J, Johnson W, Dobson V L. The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells [J]. Mutat Res., 1997, 390(1-2):141-151.
    
    [12] Larocca L M, Teofili L, Sica S, et al. Quercetin inhibits the growth of leukemik progenitors and induces the expression of transforming growth factor-β_1 in these cells[J]. Blood, 1995, 85(12):3654-3661.
    
    [13] Caltagirone S, Ranelletti FO, Rinelli A, et al. Interaction with type II estrogen binding sites and antiproliferative activity of tamoxifen and quercetin in human non-small-cell lung cancer[J].Am. J. Respir. Cell Mol. Biol, 1997,17(1): 51-59.
    [14] Lee S C, Kuan C Y, Yang C C, et al. Bioflavonoids commonly and potently induce tyrosine dephosphorylation/inactivation of oncogenic proline-directed protein kinase FA in human prostate carcinoma cells[J]. Anticancer Res., 1998,18(2A): 1117-1121.
    [15] Piantelli M, Maggiano N, Ricci R, et al. Tamoxifen and quercetin interact with type II estrogen binding sites and inhibit the growth of human melanoma cells [J]. J Invest. Dermal, 1995,105(2): 248-253.
    [16] Mnsonda C A, Chipman J K. Quercetin inhibits hydrogen peroxide (H_2O_2) induced NF-kappa B DNA damage in HepG2 cell. Carcinogenesis[J], 1998,19(9):1583-1591.
    [17] Aherne S A, O'brein N M. Mechanism of protection by the flavonoids, quercetin and rutin,against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells[J]. Free Radic. Biol Med., 2000, 29(6): 507-514.
    [18] Kawagoe M, Nakagawa K. Attenuation of luminol-amplified chemiluminescent intensity and lipid peroxidation in the livers of quercetin-fed mice[J]. Toxicol. Lett., 2000, 114(1-3):189-196.
    [19] Rodgers E H, Grant M H. The effect of the flavonoids, quercetin, myricetin and epicatechin on the growth and enzyme activities of MCF7 human breast cancer cells[J]. Chem. Biol. Interact.,1998, 116(3): 213-228.
    [20] Nagata H, Takekoshi S, Takagi T, et al. Antioxidative action of flavonoids, quercetin and catechin, mediated by the activation of glutathione peroxidase. Tokai. J. Exp. Clin. Med., 1999,24(11): 1-11.
    [21] Singhal R L, Prajda N, Weber G Intracellular signalling: phosphatidylinositol lipid metabolism in cancer cells[J]. Indian J. Biochem. Biophys., 1997, 34(1-2): 25-28.
    [22] Weber G, Shen F. Signal transduction and biochemical targeting of ovarian carcinoma[J].Biochem. Pharmacol, 2000, 52(3): 231-236.
    [23] Lee L T, Huang Y T, Hwang J J, et al. Blockade of epidermal growth factor receptor tyrosine kinase activity by quercetin and leads to growth inhibition and apoptosis of pancreatic tumor cells[J].Anticancer Res., 2002, 22: 1615-1620.
    [24] Le Marchand L. Cancer preventive effects of flavonoids - a review[J]. Biomed. Pharmacother.,2002, 56(6): 296-301.
    [25] Notoya M, Tsukamoto Y, Nishimura H, et al. Quercetin, a flavonoid, inhibits the proliferation, differentiation, and mineralization of osteoblasts in vitro[J]. Eur. J. Pharmacol, 2004, 485:89-96.
    [26] Rodriguez J,Yanez J,Vicente V,et al.Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity[J].Melanoma.Res.,2002,12: 99-107.
    [27] Shen S C,Ko C H,Tseng S W,et al.Structurally related antitumor effects of flavonones in vitro and in vivo: involvement of caspase-3 activation,p21 gene expression,and reactive oxygen species production[J].Toxicol.Appl.Pharmacol.,2004,197: 84-95.
    [28] Wang I K,Lin-Shiau S Y,Lin J K.Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells [J].Eur.J.Cancer,1999,35 (10): 1517-1525.
    [29] Russo M,Palumbo R,Tedesco I,et al.Quercetin and anti-CD95 (Fas/Apol) enhance apoptosis in HPB-ALL cell line [J].FEES Lett.,1999,46 (3): 322-328.
    [30] 曹治权.中药药效的物质基础和作用机理研究新思路(一)——中药中化学物种形态和生物活性关系的研究[J].上海中医药大学学报,2000,14(1):36-40.
    [31] Garcia-Closas R,Gonzalez CA,Agudo A,et al.Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain[J].Cancer Causes and Control,1999,10(1): 71-75.
    [32] 曹治权,王秀萍,曹广智,等.中药中微量元素的存在状态与生物活性关系的研究[J].广东微量元素科学,1995,2(10):18-25.
    [33] 王健,贸仁勇.中药的现代功效与无机元素的研究[J].微量元素与健康研究,1996,13(4):29-31.
    [34] 贾秀荣,周济桂,吕华,等.黄芩甙锌配合物与黄芩甙对免疫反应的初步比较研究[J].西北药学杂志,1994,9(4):162-164.
    [35] Pszonicki L,Tkacz W.Complexes of morin and quercetin with boric acid and oxalic acid in acetic acid medium.Fluorimetric determination of boron[J].Anal.Chim.Acta.,1976,87:177-184.
    [36] 刘春,赵慧春,金林培,等.铽-EDTA-槲皮素荧光体系及槲皮素的测定[J].光谱学与光谱分析,1999,19:569-571.
    [37] 王夔,徐辉碧,唐任寰,等.生命科学中的微量元素[M].北京:中国计量出版社,1991,1-4.
    [38] Zhou J,Wang L F,Wang J Y,et al.Antioxidative and anti-tumour activities of solid quercetin metal(Ⅱ)complexes[J].Transi Metal Chem,2001,26: 57-63.
    [39] Bravo A,Anacona J R.Metal complexes of the flavonoid quercetin: antibacterial properties[J].Transi.Metal.Chem.,2001,26:20-23.
    [40] Rice-Evans C A,Miller N J.Antioxidant activities of flavonoids as bioactive components of food[J].Biochem.Soc.Trans.,1996,24:790-795.
    [41] Rice-Evans C A,Miller N J,Paganga G,et al.Structure-antioxidant activities relationship of flavonoids and phenolic acids[J].Free.Radic.Biol.Med.,1996,7:953-956.
    [42] Ratty A K,Das N P.Effects of flavonoids on nonenzymic lipid peroxidation:structure-activity relationship[J].Biochem.Med.Metab.Biol,1988,39:69-79.
    [43] Rubens F V S,Eliana M S,Wagner F G,et al.Synthesis,electrochemical,spectral,and antioxidant properties of complexes of flavonoids with metal ions[J].Synthesis & Reactivity in Inorganic & Metal-organic Chemistry,2003,33:1125-1144.
    [44] Zhou J,Wang L F,Wang J Y,et al.Synthesis,characterization,antioxidative and antitumour activities of solid quercetin rare earth(Ⅲ)complexes[J].J.Inorg.Biochem.,2001,83:41-48.
    [45] 周晶,王进义,唐宁,等.槲皮素与金属cd(Ⅱ)sc(Ⅲ)配合物的合成及抗氧性研究[J].兰州大学学报(自然科学版),2001,37(1):123-125.
    [46] Nest G L,Caille O,Woudstra M,et al.Zn-polyphenol chelation:complexes with quercetin,(+)-catechin,and derivatives:II Electrochemical and EPR studies[J].Inorganica Chimica Acta,2004,357:2027-2037.
    [47] Rubens F V S,Wagner F G Antioxidant properties of complexes of flavonoids with metal ions[J].Redox Report,2004,9:97-104.
    [48] [48] Moridani M Y,O'Brien P J.Iron complexes of deferiprone and dietary plant catechols as cytoprotective superoxide radical scavengers[J].Biochem.Pharmacol,2001,62:1579-1585.
    [49] Zhu H L,Zheng L M,Fu D G et al.The synthesis,structure and SOD-like behaviors of a μ-imidazolato-dicopper(Ⅱ)complex with a binucleating hexaazamacrocycle [J].J.Inorg.Biochem.,1998,70:211-218.
    [50] 周晶,王进义,龚国权,等.槲皮素合铜(Ⅱ)配合物与DNA相互作用的研究[J].兰州大学学报(自然科学版),2000,36(6):131-133.
    [51] Yamashita N,Tanemura H,Kawanishi S,et al.Mechanism of oxidative DNA damage induced by quercetin in the presence of Cu(Ⅱ) [J].Mutat.Res.,1999,425:107-115.
    [52] Kerr J F R,Nylie A H,Currie A R.Apoptosis:a basic biologic phenomenon with wide ranging implication in tissue kinetics[J].Br.J.Cancer,1972,26:239-243.
    [53] Thompson C B.Apoptosis in the pathogenesis and treatment of disease[J].Science,1995,267:1456-1461.
    [54] Raff M C.Social controls on cell survival and cell death[J].Nature,1992,356:397-400.
    [55] Reed J C.Bcl-2 and the regulation of programmed cell death [J].J.Cell.Biol,1994,124(12):1-6.
    [56] Wu J G Ling X,Pan D L,et al.Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent,hedamycin:Evidence of survivin down-regulation associated with drug sensitivity [J].J.Biol.Chem.,2005,280(10): 9745-9751
    [57] Robertson G S,Crocker S J,Nicholson D W,et al.Neuroprotection by the inhibition of apoptosis[J].Brain Pathol.,2000,10(2):283-292.
    [58] 张伟,周韧,陈培辉.人类caspase家族蛋白酶与凋亡[J].国外医学遗传学分册,1999,22(6):290-293.
    [59] 赵健,王善美,陈蔚文,等.野生型P53基因对人肺癌细胞SPC-A-1凋亡的诱导[J].山东大学学报(医学版),2003,41(2):145-148.
    [60] Lakka S S,Konduri S D,Mohanam S,et al.In vitro modulation of human lung cancer cell line invasiveness by antisense cDNA of tissue factor pachway inhibitor-2f[J].Clin.Exp.Metastasis,2000.18:239-244.
    [61] 熊世勤,朱锡华.caspase家族与Fas/Apo-1介导的凋亡信号转导[J].免疫学杂志,1999,15(3):212-216.
    [62] Enari M,Sakahira H,Yokoyama H,et al.A caspase-activated Dnase that degrades DNA during apoptosis,and its inhibitor ICAD[J].Nature,1998,391:43-50.
    [63] Li F,Altieri D C.Transcriptional analysis of humen survivin gene expression.Biochem.J.,1999,344(22):305-311.
    [64] Suzuki A,Ito T,Kawano H,et al.Survivin initiates procaspase3/p21 complex formation as a result of interaction with CDK4 to resist Fas-mediated cell death[J].Oncogene,2000,19(10):1346-1353.
    [65] Ambrosini G,Adida C,Altieri D C,et al.Induction of Apoptosis and Inhibition of Cell Proliferation by survivin Gene Targeting [J].J.Biol.Chem.,1998,273(18):11177-11182.
    [66] Gianani R,Jarboe E,Orlicky D,et al.Expression of survivin in normal,hyperplastic,and neoplastic colonic mucosa[J].Hum.Pathal,2001,32(1):119-125.
    [67] Shinozawa I,Inokuchi K,Wakabayashi I,et al.Disturbed expression of the anti-apoptosis gene,survivin,and EPR-1 in hematological malignancies [J].Leuk.Res.,2000,24(11):965-970.
    [68] Monzo M,Rosell R,Felip E,et al.A novel anti-Apoptosis gene:re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers [J].J.Clin.Oncol.,1999,17(7):2100-2104.
    [69] Ambrosini G,Adida C,Altieri D C,et al.A novel anti-apoptosis gene,survivin,expressed in cancer and lymphoma[J].Nat.med,1997,3(8):917-921.
    [70] Tamm I,Wang Y,Sausville E,et al.IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas(CD95),bax,caspase and anticancer drugs[J].Cancer Res.,1998,58(23):5315-5320.
    [71] Zhou J,Wang L F,Wang J Y,et al.Antioxidative and anti-tumour activities of solid quercetin metal(Ⅱ)complexes[J].Transi.Metal Chem.,2001,26:57-63.
    [72] 翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社.2000,454-459.
    [73] 樊光华,姜浩,欧文胜,等.人参皂甙-Rh2诱导人肝癌Bel-7404细胞凋亡的作用[J].实用癌症杂志,2003,18(1):16-19.
    [74] 厉红元,车艺,汤为学.姜黄素对人肝癌细胞增殖和凋亡的影响[J].中华肝脏病杂志,2002,10(6):449-451.
    [75] 赵世义,马力,王祥.紫杉醇诱导肝癌细胞SMMC-7721凋亡的实验研究[J].肿瘤防治杂志,2002,9(3):257-259.
    [76] 陈诗书,汤雪明.医学细胞与分子生物学[M].上海:上海医科大学出版社,1994,328.
    [77] 阎水忠,赵晓航,吴(?).细胞凋亡与癌基因[J].生物化学与生物物理进展,1994,21(3):222-224.
    [78] Schuler M,Green D R.Mechanisms of p53-dependent apoptosis[J].Biochem.Soc.Trans.,2001,29(6): 684-688.
    [79] Cappello F,Bellafiore M,Palma A,et al.Defective apoptosis and tumorigenesis: role of p53 mutation and Fas/FasL system dysregulation[J].Eur.J.Histochem.,2002,46:199-208.
    [80] Kyriazanos I D,Tachibana M,Dhar D K,et al.Expression and prognostic significance of S100A2 protein in squamous cell carcinoma of the esophagus[J].Oncol.Rep.,2002,9:503-510.
    [81] Frost M,Jarboe EA,Orlicky D,et al.Immunohistochemical localization of survivin in benign cervical mucosa,cervical dysplasia,and invasive squamous cell carcinoma[J].Am.J.Clin.Pathol,2002,117:738-744.
    [82] Nasu S,Yagihashi A,Izawa A,et al.Survivin mRNA expression in patients with breast cancer[J].Anticancer Res.,2003,22:1839-1843.
    [83] Sarela A I,Verbeke C S,Ramsdale J,et al.Expression of surviving,a novel inhibitor of apoptosis and cell cycle regulatory protein,in pancreatic adenocarcinoma[J].Br.J.Cancer,2002,86:886-892.
    [84] Sarela A I,Macadam R C,Farmery S M,et al.Expression of the antiapoptosis gene,survivin,predicts death from recurrent colorectal carcinoma[J].Gut.,2000,46: 645-650.
    [85] T(?)rm(?)nen-N(?)p(?)nkangas U,Soini Y,Kahlos K,et al.Expression of caspase-3,-6 and -8 andtheir relation to apoptosis in non-small cell lung carcinoma[J].Int.J.Cancer,2001,93(2):192-198.
    [86] Krajewska M,Wang H G,Krajewaki S,et al.Immunohistochemical analysis of in vitro patterns of expression of CPP32(caspase-3),a cell death protease[J].Cancer Res.,1997,57(8):1605-1613.
    [87] Lacasse E C,Baird S,Korneluk R G,et al.The inhibitors of apoptosis(IAps)and their emerging role in cancer[J].Oncogene,1998,17(25):3247-3259.
    [88] 韩晓黎.SUVIVIN与肺癌[J].临床肺科杂志,2004,9(4):381-382.
    [89] Andrade F.Roy S.Nicholoson D.et al.Granzyme B directly and efficiently cleaves sereral downstreem caspase substrates: implication for CTL-induced apoptosis[J].Immunity,1998,8(4):451-460.
    [90] Suzuki A,Ito T,Kawano H,et al.Survivin initiates procaspase3/p21 complex formation as a result of interaction with Cdk4 to resist Fas-mediated cell death[J].Oncogene,2000,19(10):1346-1353.
    [91] 姚峰,陶琳,陈倩,等.凋亡抑制基因Survivin在非小细胞肺癌中的表达及其与Bcl-2、Bax蛋白表达的关系[J].中华实验外科杂志,2004,1(21):84-86.
    [92] An Y,Liu S D,Deng S Y,et al.Cleavage of double-strand DNA by linear and triangular trinuclear copper complexes[J].J.Inorg.Biochem.,2006,100:1586-1593.
    [93] Pattubala A N R,Munirathinam N,Akhil R C.Hydrolytic cleavage of DNA by ternary amino acid Schiff base copper(Ⅱ) complexes having planar heterocyclic ligands[J],Eur.J.Inorg.Chem.,2004,7: 1440-1446.
    [94] Kumar C V,Asuncion E H.DNA binding studies and site Selective fluorescence sensatization of an antyryl probe[J].J.Am.Chem.Soc,1993,115(19),8547-8553.
    [95] 靳兰,杨频,李青山.荧光法研究手性金属配合物与DNA的作用机理[J].高等学校化学学报,1996,17:1345-1348.
    [96] Shakked Z,Guzikevich-Guerstein G, Frolow F,et al.Determinanats of repressor/operator recognition from the structure of the trp operator binding site[J].Nature,1994,368(6470):469-473.
    [97] Yarmoluk S M,Kovalska V B,Kovtan Y P.Interaction of cyanine dye with nucleic acids V:toward model of "half intercalation" of monomethyne cyanine dyes into double-stranded [J].Biopolim.Kletka.,1999,15(l):75-82.
    [98] Liang F,Wang P,Zhou X,et al.Nickle(Ⅱ) and cobalt(Ⅱ) complexes of hydroxyl-substituted triazamacrocyclic ligand as potential antitumor agents[J].Bioorg.& Med.Chem.Lett.,2004,14:1901-1904.
    [99] Maheswari P U,Palaniandavar M.DNA binding and cleavage properties of certain tetrammine ruthenium(Ⅱ) complexes of modified 1,10-phenanthrolines-effect of hydrogen-bonding on DNA-binding affinity[J].J.Inorg.Biochem.,2004,98: 219-230.
    [100] Kumar C V,Barton J K,Turro N J.Photophysics of ruthenium complexes bound to double helical DNA[J].J.Am.Chem.Soc,1985,107: 5518-5523.
    [101] Barton J K,Dannenberg J J, Raphael AL. Enantiomeric selectivity in binding tris (phenanthroline) zinc (Ⅱ) to DNA[J]. J. Am. Chem. Soc, 1982, 104: 4967-4969.
    [102] Barton J K,Goldberg J M, Kumar C V, et al. Binding modes and base specificity of tris (phenanthroline) ruthenium (Ⅱ) enantiomers with nucleic acids: tuning the stereoselectivity[J]. J.Am.Chem. Soc,1996,108:2081-2088.
    [103] Cotton F A,Wilknson G.北京师范大学等校译.Advanced inorganic chemistry(高等无机化学)(M).3rd ED.北京:人民教育出版社,1980,950.
    [104] Eriksson M,Leijon M,Hiort C,et al.Binding of △-and△-[Ru(phen)_3]~(2+) to [d(CGCGATCGCG)]_2 studied by NMR[J].Biochemistry,1994,33:5031-5040.
    [105] Lincoln P,Broo A,Nordén B.Diastereomeric DNA-binding geometries of intercalated ruthenium(Ⅱ)trischelates probed by linear dichroism:[Ru(phen)_2DPPZ]~(2+) and [Ru(phen)_2BDPPZ]~(2+) [J].J.Am.Chem.Soc,1996,118 (11),2644-2653.
    [106] Sherman S E,Gibson D,Wang A H,et al.X-ray structure of the major adduct of the anticancer drug cisplatin with DNA:cis-[Pt(NH_3)_2(d(pGpG))][J].Science,1985,230:412-417.
    [107] Hodgson D J.The stereochemistry of metal complexes of nucleic acid constituents[J].Prog.Inorg.Chem,1977,23: 211-254.
    [108] Liu C L,Wang M,Zang T,et al.DNA hydrolysis promoted by di- and multi-nuclear metal complexes[J].Coord.Chem.Rev.,2004,248:147-168.
    [109] Sreedhara A,Cowan J A.Catalytic hydrolysis of DNA by metal ions and complexes[J].J.Biol.Inorg.Chem.,2001,6:337-347.
    [110] 何华,王羚邮,戴丽,等.测定药物小分子与脱氧核糖核酸相互作用方法的研究进展[J].中国药学杂志,2005,40(7):481-485.
    [111] 李红,乐学义,吴建中,等.铜(Ⅱ)邻菲咯啉蛋氨酸配合物与DNA相互作用的研究[J].高等学校化学学报,1998,19(5):714-716.
    [112] Tu C,Wu X F,Wang X Y,et al.Crystal structure,DNA-binding ability and cytotoxic activity of platinum(Ⅱ)2,2’-dipyridylamine complexes[J].Inorg.Chim.Acta,2004,357(1):95-102.
    [113] Liu F,Meadows K A,McMillin D R.DNA-binding studies of Cu(bcp)~(2+) and Cu(dmp)~(2+):DNA elongationn withput intercalation of Cu(bcp)~(2+) [J].J.Am.Chem.Soc.,1993,115(15):6699-6704.
    [114] 卢继新,张贵珠,黄志娜,等.巯嘌呤金属配合物与小牛胸腺DNA的作用[J].化学学报,2002.60:967-972.
    [115] 李米生,黄伟尔,王丽苹.表面活性剂中DNA构象变化的研究[J].化学学报,2002,60:98-104.
    [116] Sigma D S,Mazuder A,Perrin D M.Chemical nucleases [J].Chem.Rev,1993,93(6): 1195-2316
    [117] Satyanrayana S,Dabrowiak J C,Chaires J B. Neither A- nor A-tris(phenanthroline) ruthenium(n) binds to DNA by classical intercalation[J]. Biochemistry,1992,31(39):9319-9324.
    [118] Biver T,Secco F,Tine M R,et al. Intercalation of Zn(Ⅱ) and Cu(Ⅱ) complexes of the cyclic polyamine Neotrien into DNA: equilibria and kinetics[J].J.Inorg. Biochem.,2004,98(9):1531-1538.
    [119] Maheswari P U,Palaniandavar M.DNA binding and cleavage activity of [Ru(NH_3)_4(diimine)]Cl_2 complexes[J].Inorganica Chimica Acta,2004,357:901-912.
    [120] 贺小凤,徐宏.新型钌(Ⅱ)多吡啶配合物与DNA作用的粘度法研究[J].化学研究,2005,16(1):5-9.
    [121] Kelly J M,Tossi A B,McConnell D J,et al.A study of the interactions of some polypyridylruthenium (Ⅱ) complexes with DNA using fluorescence spectroscopy,topoisomerisation and thermal denaturation[J].Nucl.Acids Res.,1985,13:6017-6034.
    [122] Jenkins Y,Friedman A E ,Turro N J,et al. Characterization of dipyridophenazine complexes of ruthenium(Ⅱ): the light switch effect as a function of nucleic acid sequence and conformation[J].Biochemistry,1992,31:10809-10816.
    [123] Friedman A E,Chambron J C,Sauvage J P,et al. A molecular light switch for DNA:Ru(bpy)_2(dppz)~(2+)[J].J. Am.Chem.Soc,1990,112:4960-4962.
    [124] Branum M E,Tipton A K,Zhu S,et al. Double-strand hydrolysis of plasmid DNA by dicerium complexes at 37 degrees C[J]. J. Am. Chem. Soc,2001,123:1898-1904.
    [125] Yamashita N,Tanemura H,Kawanishi S. Mechanism of oxidative DNA damage induced by quercetin inthe presence of Cu(Ⅱ) [J]. Mutat. Res.,1999,425:107-115.
    [126] Pedreno E,J.Lopez-Contreras A,Cremades A,et al. Protecting or promoting effects of spermine on DNA strand breakage induced by iron or copper ions as a function of metal concentration[J].J.Inorg.Biochem.,2005,99: 2074-2080.
    [127] Hehre W J,Radom L,Schleyer P V R. Ab initio molecular orbital theory[M]. New York: John Wiley & Sons,1986.
    [128] 徐光宪,黎乐民.量子化学基本原理和葱头计算法[M].北京:科学出版社,1996.
    [129] Parr R G,Yang W T.Density-functional theory of atoms and molecules[M].Oxford:Oxford University,1989.
    [130] 朱维良,蒋华良,嵇汝运,等.分子间相互作用的量子化学研究方法[J].化学进展,1999,11(3):247-253.
    [131] 朱维良,蒋华良,嵇汝运,等.生物大分子体系量子化学计算方法新进展[J].化学进展, 1999,11(4):367-375.
    [132] Stewar J J P. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equation[J]. Int. J. Quantum Chem., 1996, 58: 133-146.
    [133] York D M, Lee T S, Yang W T. Quantum mechanical of aqueous polarization effects on biological macromolecules[J]. J. Am. Chem. Soc, 1996, 118(44): 10940-10941.
    [134] Lewis J P, Carter C W Jr, Hermans J, et al. Active species for the ground-state complex of cytidine deaminase: A linear-scaling quantum mechanical investigation[J]. J. Am. Chem. Soc,1998, 120(22): 5407-5410.
    [135] 江逢霖.量子化学基础[M].上海:复旦大学出版社,1992.
    [136] Chong D P. Recent advances in density functional methods. Part Ⅰ[M].Singapore: Word Scientific, 1995.
    [137] Chong D P. Recent advances in density functional methods. Part Ⅱ[M].Singapore: Word Scientific, 1995.
    [138] Andrews D H. The relation between the raman spectra and the structure of organic molecules[J].Phys. Rev., 1930, 36: 544-554.
    [139] Westheimer F H, Mayer J E. The theory of the racemization of optically active derivatives of biphenyl[J].J Chem. Phys.,1946,14:733-738.
    [140] Barton D H R. Interaction between non-bonded atoms, and the structure of cis-decalin[J]. J.Chem. Soc,1948,70:340-342.
    [141] Westheimer F H. Steric effect in organic chemistry[M]. New York: John Wiley and Sons, 1956.
    [142] 陈凯先,蒋华良,嵇汝运.计算机辅助药物设计-原理,方法及应用[M].上海:上海科学出版社.2000.
    [143] 徐筱杰,候廷军,乔学斌,等.计算机辅助药物设计[M].北京:化学工业出版社.2004.
    [144] Tan J,Wang B C, Zhu L C. Hydrolytic cleavage of DNA by quercetin zinc(Ⅱ) complex[J].Bioorganic & Medicinal Chemistry Letters, 2007, 17(5): 1197-1199.
    [145] Tan J, Wang B C, Zhu L C. Hydrolytic cleavage of DNA by quercetin manganese(Ⅱ) complex[J].Colloids and Surfaces B: Biointerfaces,2007,55(2):149-152.
    [146] Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. J. Chem. Phys., 1985, 82(1): 270-283.
    [147] Wadt W, R Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. J. Chem. Phys., 1985,82(1): 284-298.
    [148] Foresman J B, Frisch A E.Exploring chemistry with electronic structure methods.2nd Ed[M].Pittsburgh PA: Gaussian Inc,1996.
    [149] M. J.Frisch, G W.Trucks, H.B.Schlegel,G E.Scuseria,M.A.Robb, J.R.Cheeseman,J.A. Montgomery,Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G Scalmani,N.Rega,G A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K.Morokuma,G A.Voth,P.Salvador,J.J.Dannenberg,V.G Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith,M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.Gonzalez,and J.A.Pople,Gaussian 03,Revision A.1,Gaussian,Inc.,Pittsburgh PA,2003.
    [150] Reed A E,Cunime L A,Weinhold F.Intermolecular interactions from a natural bond orbital,donor-acceptor viewpoint[J].Chem.Rev,1988,88(6):899-926.
    [151] 肖鹤鸣,居学海.高能体系中的分子间相互作用[M].北京:科学出版社,2004.
    [152] 徐丽娜,肖鹤呜,方国勇,等.NTO二聚体分子间相互作用的理论研究[J],化学学报,2005,63:1062-1068.
    [153] Kurita N,Kobayashi K.Density functional MO calculation for stacked DNA base-pairs with backbones[J].Comput.Chem.,2000,24:351-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700