新疆野苹果(Malus sieversii)群体遗传结构与核心种质构建方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆野苹果(Malus sieversii)可能是现代栽培苹果(M. domestica)的祖先种,遗传多样性极为丰富,主要分布在中亚天山山脉,在中国主要分布在新疆的巩留县、新源县、霍城县和裕民县。但近年来,新疆野苹果遭到严重的破坏,群落面积急剧减少,本文利用分子系统学的原理和方法,采用SSR和SRAP标记对新疆野苹果群体遗传结构和遗传变异进行分析,并采用分子标记和表型数据,分别探讨了新疆野苹果核心种质构建方法,研究结果将为这一珍贵资源的科学保护和有效利用以及丰富生物进化理论等具有重要意义。主要研究结果如下:
     1.利用SSR标记对新疆野苹果遗传多样性研究表明:8对SSR引物在109个株系中共扩增出128个位点,多态性位点百分比为100%,具有较高的Nei基因多样度和香农信息指数(H = 0.2619; I = 0.4082)。采用SRAP标记对新疆野苹果遗传多样性进行了研究,10对SRAP引物组合共扩增出209条带,多态性位点百分比为98.56%。结果显示,新疆野苹果遗传多样性较为丰富。
     2.利用SSR标记和SRAP标记对新疆野苹果四个群体的遗传多样性进行了研究。SSR标记显示,巩留群体遗传多样性最为丰富,扩增出113个位点,扩增的多态性位点百分比为88.28%,Nei基因多样度和香农信息指数分别为0.2538和0.3912,其次为霍城群体(A = 112; P = 87.5%; H = 0.2501; I = 0.388),之后为新源群体(A = 108; P = 84.38%; H = 0.245; I = 0.377),而裕民群体遗传多样性最低(A = 100; P = 78.12%; H = 0.2273; I = 0.3482)。SRAP标记显示,新疆野苹果巩留群体遗传多样性最为丰富(hs = 0.304),其次为霍城群体(hs = 0.287)、裕民群体(hs = 0.274)和新源群体(hs = 0.260)。因此,巩留群体应优先保护。
     3.采用SSR和SRAP标记对新疆野苹果四个群体的遗传结构研究都显示,新疆野苹果遗传变异主要存在群体内。对于SSR标记,群体内变异占总变异的93.6%,而群体间变异仅占总变异的6.4%。对于SRAP标记,群体内变异占总变异的77.9%,群体间变异占总变异的22.1%。SSR标记测得的GST基因流为7.265,说明新疆野苹果存在一定的基因交流,而花粉和种子的传播可能是基因交流的主要原因。
     4.根据SSR数据,对四个群体UPGMA聚类分析结果表明,巩留群体和新源群体遗传关系最近(D = 0.0147; I = 0.9854),霍城群体次之,裕民群体远离其它三个群体。对109个株系UPGMA聚类分析显示,所有的株系可以分为10类,来自同一群体的大多数株系都能聚在一起,说明巩留群体、新源群体、霍城群体和裕民群体,四个群体是相对独立的群体,但同时存在部分基因交流。
     5.对新疆野苹果四个群体的主坐标轴分析(PCOORD)显示,对于SRAP标记,巩留群体和新源群体之间株系有部分重叠,霍城和裕民群体间株系有部分重叠,位于伊犁野果林的巩留、新源和霍城群体可能是原初起源中心,而裕民群体由霍城群体传播而来,为次生起源中心。
     6.对于新疆野苹果,SSR和SRAP标记相比较,SSR具有更为广阔范围的株系间以及群体内株系间遗传变异,而SRAP具有更广范围的群体间遗传变异,因此SSR标记更适于新疆野苹果群体内株系间以及株系间遗传变异的分析,SRAP标记更适于新疆野苹果群体间遗传变异的分析。
     7.对SSR数据、SRAP数据和SSR与SRAP联合数据的株系间遗传相似性系数矩阵的相关性进行Mantel矩阵相关性检测显示,三者两两间极显著相关,其中SRAP数据同SSR与SRAP联合数据间具有较高的相关性(r = 0.929),因此将SSR和SRAP数据联合并不是估计新疆野苹果群体遗传多样性和群体遗传结构的最佳方案。
     8.采用SSR标记,以109个新疆野苹果株系为材料,研究了利用分子标记构建新疆野苹果核心种质的方法。同对照随机取样策略比较,位点优先取样策略能构建一个更有代表性的核心种质。当选取25个株系时,根据SM、Jaccard或Nei&Li遗传距离进行多次聚类,采用位点优先法,是构建新疆野苹果较合适的方法。
     9.以300个新疆野苹果株系的10个表型性状的遗传多样性为数据,研究了表型性状构建新疆野苹果核心种质的方法。采用马氏距离聚类优于欧氏距离,5种聚类方法比较,类平均法、离差平法和法和最长距离法优于最短距离法和中间距离法,优先取样策略优于随机和偏离度取样策略。本研究显示,当取样比例为20%时,采用马氏距离,利用离差平法和法进行多次聚类,结合优先取样策略构建的核心种质最有代表性,是构建新疆野苹果的最佳的方法。
Malus sieversii, the main progenitor of domesticated apple (Malus×domestica Borkh.), is rich in genetic diversity. M. sieversii is mainly distributed in Tianshan Mountains in Central Asia including Gongliu population, Xinyuan population, Huocheng population and Yumin population in China. Recently, M. sieversii is suffering serious destruction and is sharply decreasing in area. The genetic diversity and population genetic structure for four M. sieversii groups were analyzed using principles of molecular systematics and SSR marker and SRAP marker techniques and the methods of constructing core collection were studied by molecular marker and morphology traits, respectively, in order to provide science evidence for conservation and utilization, to construct core collection of M. sieversii. The main results are as follows:
     1. The genetic diversity of M. sieversii was analyzed using SSR marker. The results showed that the total 128 alleles were amplified by 8 pair of SSR primers on 109 M. sieversii accessions. The percentage of polymorphic loci (P = 100%), Nei’s gene diversity (H = 0.2619) and Shannon information index (I = 0.4082). The genetic diversity of M. sieversii by SRAP marker showed that the total 209 bands were amplified by 10 pair of SRAP primers. The percentage of polymorphic loci (P) was 98.56%. The results showed that genetic diversity of M. sieversii was very abundant.
     2. The genetic diversity of four M. sieversii populations were studied using SSR marker and SRAP marker. SSR marker showed that the genetic diversity of Gongliu population was the richest in the four populations, with 113 for amplified bands, 88.28% for the percentage of polymorphic loci, 0.2538 for Nei’s gene diversity and 0.3912 for Shannon information index. Followed by Huocheng population (A = 112; P = 87.5%; H = 0.2501; I = 0.388), Xinyuan population (A = 108; P = 84.38%; H = 0.245; I = 0.377), Yunmin population (A = 100; P = 78.12%; H = 0.2273; I = 0.3482). SRAP marker showed that Gongliu population (hs = 0.304) was the richest in the diversity, followed by Huocheng population (hs = 0.287), Yumin population (hs = 0.274) and Xinyuan population (hs = 0.260). On the basis of the highest genetic diversity, Gongliu population should be given a high priority consideration in M. sieversii population’s in situ germplasm conservation.
     3. Both SSR marker and SRAP marker showed that genetic variation of M. sieversii was mainly within population. For SSR marker, genetic variation within groups accounted for 85.3% of total variations, genetic variation within population accounted for 85.3% of total variations, genetic variation between the populations accounted for 6.4% of total variations. For SRAP marker, genetic variation within population accounted for 77.9% of total variations, genetic variation between the populations accounted for 22.1% of total variations. Gene flow of GST was 7.265 according to SSR marker showed that there were partly gene exchanges among four populations. It is suggested that the main way of gene exchanges could be transferred by pollen or by seed.
     4. The results from UPGMA cluster analysis for four M. sieversii populations showed that the similarity between the Gongliu population and Xinyuan population was the highest (D = 0.0147; I = 0.9854), then between Huocheng population and Gongliu and Xinyuan populations, Yumnin population was the lowest with the other three population. UPGMA cluster analysis from 109 M. sieversii accessions showed all the accessions were clustered into ten groups. The accessions from the same population were clustered together, which demonstrated that the four populations were relatively independent populations, but there were partly gene exchanges
     5. Diagram among 109 M. sieversii from the four populations based on principal coordinates analysis showed that Huocheng and Yumin accessions had partly overlapped and Gongliu and Xinyuan accessions also had partly overlapped for SRAP marker. It is suggested that Gongliu population, Xinyuan population and Huocheng population located in Ily Valley was the primitive center of origin of M. sieversii and M. sieversii seeds and accessions of Huocheng population spread to the North and formed Yumin population. Yumin population was secondary center of origin of M. sieversii.
     6. For M. sieversii, SSR showed the highest range of genetic variation among the accessions and among the accessions within population, SRAP showed the highest range of genetic variation among the population. Therefore, SSR is a good choice to assess genetic variation among the accessions and among the accessions within population and SRAP is a good choice to assess genetic variation among the population.
     7. Mantel matrix correspondence test was used to compare the similarity matrices among SSR data, SRAP data and combined data SSR and SRAP. The results showed the correlation coefficients were statistically significant for two markers and their combination. The higher correspondence was found between SRAP and combined data (r = 0.929), which showed that analyses using SSR and SRAP data together do not seem to be the most efficient manner of assessing genetic diversity and population genetic structure of M. sieversii because the result was similar to using SRAP alone.
     8. The method for constructing core collection of M. sieversii based on molecular markers data was proposed, according to SSR marker, using 109 M. sieversii accessions. Compared with the random sampling strategy, allele preferred sampling could construct more representative core collections. When 25 M. sieversii accessions was selected, allele preferred sampling strategy combined with SM, Jaccard or Nei&Li genetic distances using stepwise clustering was the suitable method for constructing M. sieversii core collection.
     9. The genetic diversity of 10 traits from 300 M. sieversii accessions was used to study method for constructing M. sieversii core collection using morphology. The results showed that Mahalanobis distance was the much better than Euclidean distance, UPGMA, Ward’s method and Complete linkage was better than Single linkage and Median method, and preferred sampling was more suitable than random sampling and deviation sampling for constructing core collection. When 20% accessions were selected, Mahalanobis distance and Ward’s method using stepwise clustering combining with preferred sampling can construct a most reprehensive core collection and was the most suitable method for constructing M. sieversii core collection.
引文
1.艾呈祥,辛力,余贤美,张力思,魏海蓉,苑克俊,孙清荣,刘庆忠.樱桃主栽品种的遗传多样性分析.园艺学报,2007,34(4):871-876
    2.白玲,阎国荣,许正.伊梨野果林植物多样性及其保护.干旱区研究,1998,15(3):10-13
    3.菜青,姜立杰,马焕普,张开春,张晓明,闫国华.生物技术通报,2007,5:170-178
    4.陈亮,梁春阳,孙传清等. AFLP和RFLP标记检测水稻亲本遗传多样性比较研究.中国农业科学,2002,35(6):143-148
    5.陈学森,辛培刚,杜欣阁,杨传友,温吉华.元帅和金帅在苹果新品种选育中的作用.山东农业大学学报,1994,25(2): 236– 248
    6.陈巍,王力荣,张绍铃,陈昌文,曹珂.利用SSR研究不同国家桃育成品种的遗传多样性.果树学报,2007,24(5):580-584
    7.程丽莉.燕山板栗实生居群遗传多样性研究与核心种质初选.北京林业大学,2005,硕士论文
    8.董玉琛、曹永生、张学勇等.中国普通小麦初选核心种质的产生[J].植物遗传资源学报,2003,4(1):1-8
    9.范太伟,菜丹英,李红旭,王发林,赵长增,腾元文.甘肃中部梨资源遗传变异和亲缘关系的SSR分析.果树学报,2007,24(3):268-275
    10.冯涛.新疆野苹果(Malus sieversii (Ledeb.) Roem.)部分表型性状遗传多样性研究.山东农业大学,2007,博士论文
    11.冯涛,张艳敏,陈学森.新疆野苹果居群年龄结构及郁闭度研究.果树学报,2007,24(5):571-573
    12.冯涛,张红,陈学森,张艳敏,何天明,冯建荣,许正.新疆野苹果果实形态与矿质元素含量多样性以及特异性状单株.植物遗传资源学报,2006a,7(3): 270 - 276.
    13.冯涛,陈学森,张艳敏,何天明,张春雨,王利平,刘扬岷.新疆野苹果与栽培苹果香气成分的比较.园艺学报,2006b,33(6): 1295– 1298
    14.季英,季荣,黄人鑫.外来入侵种——苹果小吉丁虫及其在新疆的危害.新疆农业科学,2004,41(1):31-33.
    15.高源,刘凤之,曹玉芬,王昆.苹果属种质资源亲缘关系的SSR分析.果树学报,2007,24(2):129-134
    16.高志红,章镇,韩振海,房经贵.中国果梅核心种质的构建与检测.中国农业科学,2005,38(2): 363– 368.
    17.葛颂,洪德元.濒危植物裂叶沙参及其广布种泡沙参遗传多样性的对比研究.遗传学报,1999,26:410-417
    18.葛颂.同工酶和植物进化生物学.见:陈家宽,杨继编著,植物进化生物学.武汉:武汉大学出版社,1994,pp. 153-208
    19.过国南,严振立,张顺妮.我国建国以来苹果品种选育研究的回顾及今后育种的发展方向.果树学报,2003,20(2): 127– 134
    20.郝艳宾,黄武刚,王克建,齐建勋,续九如.我国核桃组(Sect Juglans)种质资源的SSR标记.果树学报,2007,24(5):620-625
    21.韩振海.落叶果树种质资源学.北京:中国农业出版社, 1995
    22.何天明,陈学森,吴燕.从蔷薇科果树硅胶干燥叶片中制备DNA.石河子大学学报,2004,22 (4):316-319
    23.何天明,陈学森,高疆生,张大海,徐麟,吴燕.新疆栽培杏群体遗传结构的SSR分析.园艺学报,2006,33(4):809-812
    24.胡晋,徐明海,朱军.保留特殊种质材料的核心库构建方.生物数学学报, 2001, 16(3): 348-352
    25.贾继增,张正斌,Devos K,Gale M D.小麦21条染色体RFLP作图位点遗传多样性分析.中国科学(C辑),2001,31(1):13-21
    26.景士西,吴录平,李宝江.果树遗传变异的特点初探.遗传,1995,17(1): 40 - 44
    27.李保印,张启翔.我国园艺作物核心种质研究进展.果树学报,2007,24(2):204-209
    28.李长涛、石春海、吴建国等.利用基因型值构建水稻核心种质的方法研究.中国水稻科学,2004,18(3):218-222
    29.李天俊,胡忠惠,王丽.利用过氧化物酶同工酶测定新疆野苹果多态性试验简报.天津农业科学, 2003, 9 (3): 27-29
    30.李银霞,安丽君,姜全,赵剑波,李天红.桃(Prunus Persica (L.) Batsch.)品种核心种质的构建与评价.中国农业大学学报,2007,12(5):22-28
    31.李银霞,高其洁,李天红.基于果实相关性状的桃品种初级核心种质取样策略研究.果树学报,2006,23 (3): 359 - 364
    32.李自超、张洪亮、曹永生等.中国地方稻种质资源初级核心种质取样策略研究.作物学报,2003,29(1):20-24
    33.李自超,张洪亮,曾亚文.云南地方稻种资源核心种质取样方案研究.中国农业科学,2000,33(5): 1-7
    34.李自超,张洪亮,孙传清,王象坤.植物遗传资源核心种质研究现状与展望.中国农业大学学报,1999,4(5):51-62
    35.栗琪,李作洲,黄宏文.猕猴桃野生居群的SSR分析出报.武汉植物学研究,2004,22(2):175-178
    36.梁国鲁,李晓林.中国苹果属植物染色体研究.植物分类学报,1993,3l(3): 236-251
    37.林培钧,崔乃然.伊犁野果林——天山野果林综合研究.北京:中国林业出版社,2000
    38.刘静,周庆和,孙海伟,邱治霖,王玉文,孙仲序.新疆野生苹果表型多样性研究.果树学报,2004,21 (4): 285-288
    39.刘峰,东方阳,邹继军等.应用SSR进行大豆种质多样性和遗传变异分析.遗传学报,2000,27(7):628-633
    40.刘旭,马缘生,谭富娟.小麦特殊遗传材料核心样品的建立.植物遗传资源科学,2000,1(2): 1-8
    41.刘勇,孙中海,刘德春,吴波,周群.利用分子标记技术选择铀类核心种质资源.果树学报,2006,23(3):339-345
    42.刘勇,吴波,刘德春,孙中海.江西柑橘地方品种资源及野生近缘种SSR分子标记.江西农业大学学报,2005,27(4):486-490
    43.马明,杨克强,刘晓菊,孙明高,郭起荣.核桃(Juglans regia)SRAP标记反应体系建立的研究.山东农业大学学报(自然科学版),2007,38(2):189-192
    44.马克平,刘玉明.生物群落多样性的测定方法I a多样性的测定方法.生物多样性,1994,(4): 231-239
    45.明军,张启翔,兰彦平.梅花品种资源核心种质构建.北京林业大学学报,2005,27(2):65-69
    46.乔玉山,章镇,沈志军,房经贵,郭洪.中国李简单重复序列(SSR)反应体系的建立.植物生理学通讯,2004,40(1):83-86
    47.孙传清、李自超、王象坤.普通野生稻和亚洲栽培稻核心种质遗传多样性的检测研究.作物学报,2001,27(3):313-318
    48.田彬彬.寒地苹果种质资源RAPD分子标记及其核心种质初步构建.吉林农业大学,2007,硕士论文.
    49.王爱德,李天忠,许雪峰,韩振海.苹果品种的SSR分析.园艺学报,2005,32(5):875-877
    50.王滑,郝俊民,王宝庆,裵东.中国核桃8个天然居群遗传多样性分析.林业科学,2007,43(7):120-124
    51.王红霞.核桃遗传多样性分析及核心种质的构建.河北农业大学,2006,博士论文
    52.王磊,崔大方,林培均,赵永生,许正.新疆野苹果的种下类型.新疆师范大学学报(自然科学版),1998,17(1):37-46
    53.王庆芬.抗寒梨种质资源RAPD的分子标记及其核心种质初步构建.吉林农业大学,2007,硕士论文
    54.吴鑫,雷天刚,何永睿,刘小丰,许兰珍,彭爱红,陈善春.柑桔SRAP和ISSR分子标记技术体系的建立与优化.分子植物育种,2008,6(1):170-176
    55.吴子龙.山葡萄种质遗传多样性的SSR分析及核心种质初步构建.东北林业大学,2007,硕士论文
    56.邱丽娟、曹永生、常汝镇等.中国大豆(Glycine max)核心种质构建1.取样方法研究.中国农业科学,2003,36(12):1442-1449
    57.魏兴华,汤圣祥,余勇汉.浙江粳稻地方品种核心样品的构建方法.作物学报,2001,27(3): 324-328
    58.辛培刚,陈学森.国光苹果在育种和栽培中的应用.果树学报,1993,10(2): 107 -112
    59.徐海明,胡晋,邱英雄.利用分子标记和数量性状基因型值构建作物核心种质库的研究.生物数学学报,2005,20(3):351-355
    60.徐海明,邱英雄,胡晋,王建成. 2004.不同遗传距离聚类和抽样方法构建作物核心种质的比较.作物学报. 30(9): 932– 936
    61.徐海明,胡晋,朱军.构建作物种质资源核心库的一种有效抽样方法.作物学报,2000,26(2): 157-162
    62.阎国荣.主分量分析法在新疆野苹果与数种栽培品种亲缘关系研究中的应用.新疆环境保护,1997,19 (1): 41-45
    63.杨晓红,李育农,林培钧.新疆野苹果花粉形态及其起源演化研究.西南农业大学学报,1992,12(1): 46-50
    64.杨晓红,李育农.塞威士苹果花粉形态研究及其演化的探索.西南农业大学学报, 1995, 17(2): 107-114
    65.余萍,李自超,张洪亮.中国普通野生稻初级核心种质取样策略.中国农业大学学报,2003,8(5):37-41
    66.俞明亮,马瑞娟,许建兰,沈志军,章镇.桃种间亲缘关系的SSR鉴定.果树学报,2004,21(2):106-112
    67.张东,舒群,腾元文,仇明华,鲍露,胡红菊.中国红皮沙梨品种的SSR标记分析.园艺学报,2007,34(1):47-52
    68.张洪亮、李自超、曹永生等.表型水平检测水稻核心种质的参数比较.作物学报,2003,29(2):252-257
    69.张洪亮.云南地方稻种资源核心种质研究.中国农业大学,2000,硕士学位论文
    70.张钊.新疆苹果.乌鲁木齐:新疆人民出版社, 1982
    71.张新时.伊犁野果林的生态地理特征和群落学问题.植物学报,1973,15 (2):239-253
    72.张秀荣,郭庆元,赵应忠.中国芝麻资源核心收集品研究.中国农业科学,1998, 31(3): 49-55
    73.张元明,阎国荣.塞威士苹果Malus sieversii(Ldb.)Roem花粉形态的研究.植物研究,2001,21 (3): 380-386
    74.张妤艳,吴俊,张绍铃.梨SRAP-PCR反应体系的建立与优化.农业生物技术学报,2007,15(5):909-910
    75.郑殿升,杨庆文.中国的农业野生植物原生境保护区(点)建设.植物遗传资源学报,2004,5(4): 386-388
    76.郑轶琦,李作洲,黄宏文.猕猴桃品种SSR分析的初步研究.武汉植物学研究,2003,21(5):444-448
    77.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001,79-81
    78.邹喻苹,蔡美琳,王子平.芍药属牡丹组的系统学研究——基于RAPD分析.植物分类学报,1999,37 (3) : 220-227
    79. Akkays M S, bhagwat A A, Cregan P B. Lengh polymorphisms of simple sequence repeat DNA in soybean. Genetics, 1992, 132: 1131-1139
    80. Antonovics J, Bradshaw A D, Turner R G. Heavy metal tolerance in plants. Advances in Ecological Research, 1971, 7: 1-58
    81. Barrett S C H, Eckert C G. Variation, evolution of mating systems in seed plants. In:Kawano S (ed.) Biological Approaches, Evolutionary Trends in Plants. London: Academic Press, 1990: 229-254
    82. Bengtsson B O, Weibull P, Ghatnekar L. The loss of alleles by sampling: A study of the common outbreeding grass Festuca ovina over three geographical scales. Hereditas, 1995, 122: 221-238
    83. Bisht I S, Mahajan R K, Patel D P. The use of characterization data to establish the Indian mungbean core collection and assessment of genetic diversity, Genetic Resources and Crop Evolution, 1998, 45: 127-1331
    84. Botta R, Scott N S, Eynard I. Evaluation of microsatellite sequence-tagged site markers forcharacterizing Vitis vinifera cultivars. Vitis, 1995, 34(2): 99-102
    85. Bradshaw A D. Plant evolution in extreme environments. In: Creed R (ed.) Ecological Genetics and Evolution. Qxford: Blackwell, 1984
    86. Bowers J E, Meredith C P. The parentage of classic wine grape, Cabernet sauvignon. Nature-Genetics, 1997, 16(1): 84-87
    87. Browers J E, Dangi G S, Vignani R, Meredith C P. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome, 1996, 9: 628-633
    88. Brown A H D. Core collection: a practical approach to genetic resources management. Genome, 1989, 31: 818-824
    89. Brown A H D. The case for core collection [A]. Brown A H D, Frankel O H, Marshall R D. The Use of Plant Genetic Resources [D]. Cambridge: ambridge University Press, 1989. 136-156
    90. Brown A H D. Isozymes, plant population genetic structure and genetic conservation. Theoretical and Applied Genetics,1978,52:145-157
    91. Budak H, Shearman RC, Parmaksiz I, Dweikat I. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theoretical and Applied Genetics, 2004, 109: 280-288
    92. Carlos R, Breto M P, Asins M J. A quick methodology to identify sexual seedling in citrus breeding programs using SSR markers. Euphtica, 2000, 112(1): 89-94
    93. Caujapé-castells J, Pedrola-Monfort J. Designing ex-situ conservation strategies through the assessment of neutral genetic markers: Application to the endangered Androcymvium gramineun. Conservation Genetic, 2004, 5: 131-144
    94. Chandra S, Huaman Z, Hari Krishua S, Ortiz R. Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data– a simulation study. Theoretical and Applied Genetics, 2002, 104: 1325– 1334
    95. Chase M, kesseli R, Bawa K. Microsatellite markers for population and conservation genetics of tropical trees. American Journal of Botany, 1996a, 83: 51-57
    96. Chase M, Moller C, Kesseli R, Bawa K S. Distant gene flow in tropical trees. Nature, 1996b, 383: 398-399
    97. Chen X S, Feng T, Zhang Y M, He T M, Feng J R, Zhang C Y. 2007. Genetic diversity of volatile components in Xinjiang wild apple (Malus sieversii). Journal Genetics and Genomics, 34: 171– 179
    98. Chen X, Temnykh S, Xu Y. Development of microsatellite framework map providing genome-wide coverage in rice (Oryza sativa). Theoretical and Applied Genetics, 1997, 95: 553-567.
    99. Cipriani G, Lot G, Huang W G, Marrazzo M T, Peterlunger E, Testolin R. AC/GT and AG/CT microsatellite repeats in peach [Prunes persica (L.) Batsch]: Isolation characterisation and cross-species amplification in prunus. Theoretical and Applied Genetics, 1999, 99: 65-72
    100.Coggins L W, O’Prey M. DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences. Nucleic Acids Research, 1989, 17: 7417-7426
    101.DalbóM A, Ye G N, Weeden N F, Steinkellner H, Sefc K M, Reisch B I. A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome, 2000, 45: 333-340
    102.Demeke T, Adams R P, Chibbar R. Potential taxonomic use rasom amplified polymorphic DNA (PAPD): a case study in Brassica. Theoretical and Applied Genetics, 1992, 84:990-994
    103.Dice, L R. Measures of the amount of ecologic association between species. Ecology, 1945, 26: 297-302
    104.Diwan N, Mcintosh M S, Bauchan G R. Methods of developing a core collection of annual Medicago species. Theoretical Applied Genetics, 1995, 90(6): 755-761.
    105.Diwan N, Bauchan G R, Mcintosh M S. A core collection for the United States annual medicago germplasm collection. Crop Science, 1994, 34: 279-285
    106.Dunemann F, Kahnau R, Schmidt H. Genetic relationships in Malus evaluated by RAPD‘fingerprinting’of cultivars and wild species. Plant Breeding, 1994, 113: 150-159.
    107.Ehrlich P R, Raven P H. Differentiation of populations. Science, 1969, 165: 1228-1232
    108.Espósito M A, Martin E A, Cravero V P, Cointry E. Characteration of pea accessions by SRAP’s markers. Scientia Horticulturae, 2007, 113(4): 329-335
    109.Fahima T, Sun G L, Beharav A, Krugman T, Beiles A, Nevo E. RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theoretical and Applied Genetics, 2002, 104: 845-851
    110.Falk D A, Holsinger K E. Genetics and conservation of rare plants. Oxford Unuiversity Press, New York, 1991
    111.Fang D Q, Roose M J. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theoretical and Applied Genetics, 1997, 95: 408-417
    112.Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 2003, 50(3): 227-238.
    113.Ferriol M, PicóB, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics. 2003, 107: 271-282
    114.Forsline P L, Aldwinckle H S. Evaluation of Malus sieversii seedling populations for disease resistance and horticultural traits. Acta Horiculturae, 2004, 663: 529-534
    115.Forsline P L, Aldwinckle H S. Evaluation of Malus sieversii seedling populations for disease resistance and horticultural traits. Angers, France. Acta Horiculturae, 2003, 663: 529– 534.
    116.Forte A V, Ignatov A N. Phylogeny of the Malus (apple tree) species, inferred from the morphological traits and molecular DNA analysis. Russian of Genetics, 2002, 38(10): 1150-1160
    117.Francis C.Y. and Yang R.C. Popgene version 1.32. http// www. ualberta.ca/ _fyeh/ index.htm, 2000
    118.Frankel O H, Brown A H D. Current plant genetic resources acritical appraisal. Genetics: New Frontiers Vol. IV. Oxford and IBH Publishing, 1984a
    119.Frankel O H, Brown A H D. Plant genetic resources today: a critical appraisal. In: Hoden HW, Williams JT (eds) Crop genetic resources: conservation and evaluation. Geoge Allen and Unwin, London, UK, 1984b, pp 249– 257
    120.Freville H, Justy F, Olivieri I. Comparative allozyme and microsatellite population structure in a narrow endemic plant species, Centaurea corymbosa Pourret (Asteraceae). Molecular Ecology, 2001, 10: 879-889
    121.Gayle M V, Christopher M R, Reilley A A, Adam D H. Ex situ conservation of vegetatively propagated species: Development of a seed-based core collection for Malus sieversii. Journal of the American Society for Horticultural Science, 2005, 130: 203-210
    122.Ghislain M, Zhang D P, Fajardo D, Huamán Z, Hijmans R Z. Marker-assisted sampling of the cultivated Andean potato Solanum Phureja collection using RAPD markers. Genet. Genetic Resources and Crop Evolution, 1999, 46: 547 - 555
    123.Ge S, Olivera G C X, Schaal B A, Gao L Z, Hong D Y. RAPD variation within and between matural populations of the wild rice Oryza rufi-pogon from China and Brazil. Heredity, 1999, 82 : 638-644
    124.Geibel M, Dehmer K J, Forsline P L. Biological diversity in Malus sieversii populations from central Asia. Acta Horticulturae, 2000, 538: 43 - 49
    125.Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C. Simple sequence repeats for the genetic analysis of apple. Theoretical and Applied Genetics, 1998, 96: 1069-1076
    126.Gower J C. A general coefficient of similarity and some of its properties. Biometrics, 1971, 27: 857-872.
    127.Grant V. The evolutionary process: a critical study of evolutionary theory. New York:CUP, 1991
    128.Greniera Hamonb P,Bramel C P G. Collection of Sorghum II. Comparison of Three Random Sampling Strategies, Crop Science, 2001, 41: 241-246
    129.Guilford P, Prakash S, Zhu J M, Rikkerink E, Gardiner S, Bassett H, Forster R. Microsatellites in Malus domestica (apple): abundance, polymorphism and cultivar identification. Theoretical and Applied Genetics, 1997, 94: 249-254
    130.Hamrick J L, Loveless M D. Associations between the breeding system and the genetic structure of tropical tree populations. In: Bock J. and Linbart Y.B. Evolutionary ecology of plants. 1989, Weelview, Boulder, 129-146
    131.Hamrick J L. Gene flow distribution of genetic variation in plant populations. In:Urbanska K.Differentiation patterns in higher plants. New York: Academ Press. 1987, 53-57
    132.Harris S A, Robinson J P, Juniper B E. Genetic clues to the origin of the apple. Trends in Genetics, 2002, 18: 426 - 430
    133.He T M, Chen X S, Xu Z, Gao J S, Lin P J, Liu W, Liang Q Wu Y. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genetic Resources and Crop Evolution, 2007, 54: 563-572
    134.Heinkel R, Hartmann W, Stosser R. On the origin of the plum cultivars Cacaks Beauty, Cacaks Best, Cacaks Early, Cacaks Fruitful as investigated by the inheritance of random amplified polymorphic DNA(RAPD)fragments. Scientia Horticulturae, 2002, 83 (2) : 149
    135.Hill I D. Algorithm AS66: the normal integral. Applied Statistics, 1973, 22 (3): 424-427
    136.Hintum van T J L. Comparison of market system and construction of a core collection in a pedigree of European spring barley. Theoretical and Applied Genetics,1994, 89: 991– 9971
    137.Hokanson S C, Lamboy W F, Szewc-McFadden A K, McFerson J R. Microsatellite (SSR) variation in a collection of Malus sieversii (apple) species and hybrids. Euphytica, 2001, 18: 281-294
    138.Hokanson S C, Szewc-McFadden A K, Lamboy W F, McFerson J R. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus×domestica borkh. core subset collection. Theoretical and Applied Genetics, 1998, 97: 671– 683
    139.Holbrook C C. An efficient approach for utilization of peanut genetic resources. Journal of Peanut Science, 2001, 30(3):2-8
    140.Holsinger K E, Lewis P O, Dey D K. Hickory: A package for analysis of population genetic data v1.1 Department of Ecology & Evolutionary Biology, University of Coinnecticut, 2007
    141.Hu J , Zhu J , Xu H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, 2000 , 101 (122) : 264–268
    142.Huaman Z, Orliz R, Comez R. Selecting a Solanum tuberosum subsp andifena core collection using morphological, geographical disease and pest descriptors. American Journal of Potato Research. 2000, 77 (3): 183-190
    143.Huaman Z, Aguilar C, Ortiz R. Selecting a peruvia sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data. Theoretical and Applied Genetics, 1999, 98: 840- 844
    144.Huang W G, Cipriani G, Morgante M, Testolin R. Microsatellite DNA in actinidia chinensis: isolation, charaterisation, and homology in related species. Theoretical and Applied Genetics, 1998, 97: 1269-1278
    145.Jaccard P. Nouvelles rescherches sur la distribution florale. SociétéVaudoise des Sciences Naturelles, 1908, 44:223-270
    146.Jaccard P. Contribution au problème de 1'immigration post-glaciaire de la flore alpine. Bulletin de la SociétéVaudoise des Sciences Naturelles, 1900, 37: 547-579
    147.Janick J. Apples. In: Janick J, Moore J N. ed. Fruit Breeding: Tree and Tropical Fruits. New York: John Wiley & Sons, 1996
    148.Jansen J and van Hintum Th. Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivatied lettuce. Theoretical and Applied Genetics, 2007, 114: 421– 428
    149.Joobear T, Pexiam N, de Vicente M C, King G J, Arús P. Development of a second generation linkage map for almond using RAPD and SSR markers. Genome, 2000, 43(4):649-655
    150.Joobeur T, Viruel M A, Vicente M C, Jáuregui B, Ballester J, Dettori M T, Verde I, Truco J, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P. Construction of a saturated linkage map for Prunus using an almond×peach F2 progeny. Theoretical and Applied Genetics, 1998, 97: 1034-1041
    151.Kijas J M H, Thomas M R, Fowsler J C S, Roose M L. Integration of trinucleotide microsatellites into a linkage map of citrus. Theoretical and Applied Genetics, 1997, 94: 701-706
    152.Kim M Y, Ha B K, Jun T H, Hwang E Y, Van K, Kuk Y I, Lee S K. Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx2) in soybean. Euphytica, 2004, 135:169–177
    153.Korban S S and Skirvin R M. Nomenclature of the cultivated apple. Horticultural Science, 1984, 19: 177-180
    154.Laborda P R, Oliveira K M, Garcia A A F, Paterniani M E A G Z, de Souza A P, Tropical maize germplasm: what can we say about its genetic diversity in the light of molecular markers? Theoretical and Applied Genetics, 2005, 111:1288-1299
    155.Lamboy W F, Yu J, Forsline P L, Weeden N F. Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. Journal of the American Society for Horticultural Science, 1996, 121: 982 - 987
    156.Levin D A, Kerster H W. Gene flow in seed plants. Evolutionary Biology, 1974, 7: 139-220
    157.Levinson G, Gutman G A. Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 1978,4: 203-221
    158.Li C T, Shi C H, Wu J G, Xu H M, Zhang H Z, Ren Y L. Methods of developing core collections based on the predicted genogypic value of rice (Oryza sativa L.). Theoretical and Applied Genetics, 2004, 108: 1172– 1176
    159.Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theoretical and Applied Genetics, 2003, 107(1): 168-180
    160.Li G, Quiros C F. Sequence--related amplified polymorphism (SRAP), A newmarker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103: 455-461
    161.Liebhard R, gianfranceschi L, Koller B, et.al. Development and characterisation of 140 new microsatellites in apple (Malus×domestica Borkh.). Molecular Breeding, 2002, 10: 217-241
    162.Lima M L A, Garcia A A F, Oliveira K M, Matsuoka S, Arizono H, de Souza C L Jr, de Souza A P. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharus spp.). Theoretical and Applied Genetics, 2002, 104: 30-38
    163.Loveless M P, Hamrick J L. Ecological determinant of genetic structure in plant populations. Annual Review of Ecology and Systematics, 1984, 15 : 65-95
    164.Lu J, Knox M R, Ambrose M J, Brown J K M, Ellis T H N. Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods. Theoretical and Applied Genetics, 1996, 93: 1103-1111
    165.Machey M C. Utilizing wheat genetic resources in Australia. Wheat Breeding Society of Australia, 1989, 253– 2581
    166.Maguire T L, Peakall R, Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theoretical and Applied Genetics, 2002, 104: 388-398
    167.Magurran A E. Ecological diversity and its measurement New Jersey: Princeton University, 1988
    168.Mahalanobis P C. On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 1936, 2: 49 - 55
    169.Markert G L, Moller F. Multiple forms of enzymes: tissue, ontogenetic and species specific pattems. Proceedings of the National Academy of Sciences of the United States of America, 1959, 45: 753– 763
    170.Marshall D R, Brown A H D. Optimum sampling strategies in genetic conservation. In Frankel OH, Hawkes JD (eds) Crop genetic resources for today and tomorrow. Cambridge: Cambridge University Press, 1975, 53-80
    171.Martins M, Tenreiro R, Oliveira M M. Genetic relatedness of Portuguess almondcultivars assessed by RAPD and ISSR markers. Plant Cell Reports, 2003, 22: 71-78.
    172.Mayr E. Animal Species, Evolution. Cambridge: Harvard University Press, 1963
    173.Nei M, H Li. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 1979, 6:5269– 5273
    174.Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70: 3321-3323
    175.Ponomarenko V V. The polymorphylism and the characteristics of Malus species in Russian [Ph. D. Dissertation]. Petersburg: Vavilov Institute of Plant Industry, 1991
    176.Powell W, Morgante M, Andre C. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, 2 (3): 225-238
    177.Ravi S, David W, Steven C S, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature, 2001, 409: 928-933
    178.Rehder A. Manual of Cultivated Trees and Shrubs. New York: MacMillan, 1940
    179.Richter T S, Soltis P S, Soltis D E. Genetic variation within and among populations of the narrow endemic, Delphinium viridescens (Ranunculaceae). American Journal of Botany, 1994, 81: 1070-1076
    180.Robinson J P, Harris S A, Juniper B E. Taxonomy of the genus Malus Mill (Rosaceae) with emphasis on the cultivated apple, M. domestica Borkh. Plant Systemic Evolution, 2001, 226:35– 58
    181.R?der M S, Plaschke J, K?nig S U, B?rner A, Sorrells M E, Tanksley S D, Ganal M W. Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics, 1989: 583-589
    182.Rouppe van der Voort J N A M, Zandvoort P van Eck H J, Folkertsma F T, Hutten R C B, Draaistra J, Gommers F J, Jacobsen E, Helder J, Bakker J. Allele specificity of comigrating AFLP markers used to align genetic maps from different potato genotypes. Molecular and General Genetics, 1997a, 255: 438 - 447
    183.Rouppe van der Voort J, P Wolters, R Folkertsma, et al. Maping of cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers.Theoretical and Applied Genetics, 1997b, 95: 874– 880
    184.Saghai-Maroof M A, Biyashev R M, Yang G P. Extraodinaryily polymorphic microsatellite DNA in barley: species diversity, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91: 5466-5470
    185.Scott K D, Eggle P, Seatox G, Rossetto M, Ablett L, Lee S, Henry R J. Analysis of SSRs derived from grape ESTS. Theoretical and Applied Genetics, 2000, 100(5) : 723-736
    186.Sharon D, Cregan P B, Mhameed S, Kusharska M, Hillel J, Lahav E, Lavi U. An integrated genetic linkage map of avocado. Theoretical and Applied Genetics, 1997, 95 : 911-921
    187.Slatkin M. Rare alleles as indicators of gene flow. Evolution, 1985, 39 (1) : 53– 65
    188.Slifverberg-Dilworth E, Matasi C L, van de W E Weg, Van Kaauwen M P W. Microsatellite markers spanning the apple (Malus×domestica Borkh.) genome. Tree Genetics & Genomes, 2006, 2(4): 202-224
    189.Soltis D E , Soltis P S eds . Isozyme in Plant Biology. Portland OR: Dioscorides Press, 1989
    190.Sokal R R. Distance as a measure of taxonomic similarity. Systematic Zoology, 1961, 10 (2) : 40-51
    191.Sokal R R, Michener C D. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 1958, 38 : 1 409-1 438
    192.Stephen A H, Julian P R, Barrie E J. Genetic clues to the origin of apple. Trends in Genetics, 2002, 18: 426-430
    193.Steven D T, McCouch S R. Seed bank and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063-1066
    194.Strel’tsina S A, Aminov M Kh, Samorodova-Bianki G B, Ponomarenko V V. Phenolic compounds of Malus sieversii (Lebed.) M. Roem. Fruits. Rastitel'nye Resursy, 1995, 31 (4): 44-59
    195.Streisinger G, Owen J. Mechanism of spontaneous and induced frame shift mutation in bacteriophage T4. Genetics, 1985, 109: 633-659
    196.Sun S J, Gao W, Lin S Q, Zhu J, Xie B G,Zhi B L. Analysis of genetic diversity inGanoderma population with a novel molecular marker SRAP. Applied Microbiology and Biotechnology, 2006, 72(2): 537– 543
    197.Szewc-Mcfadden A K, Kresovich S, Bliek S M, Michell S E, Mcferson J R. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theoretical and Applied Genetics, 1996, 93: 534-538
    198.Tai P Y P, Miller J D. A Core Collection for Saccharum spontaneum L. from the World Collection of Sugarcane. Crop Science, 2001, 41:879-885
    199.Thomas M R, Scott N S. Sequence-tagged size markers for microsatellites: amplified technique for rapidly obtaining flanking sequences. Biology Reporter, 1994, 12(1): 58-64
    200.Uptmoor R, Wenzel W, Friedt W, Donaldson G, Ayisi K, Ordon F. Comparative analysis on the genetic relatedness of Sorghum Bicolor accessions from Southern Africa by RAPDs, AFLPs and SSRs. Theoretical and Applied Genetics, 2003, 106:1316-1325
    201.van Treuren R, Tchoudinova I, van Soest L J M, van Hintum Th J L. Marker-assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data. Genet. Genetic Resources and Crop Evolution, 2006, 53: 43–52.
    202.Vanghan A D. Choosing rice germplasm for evaluation. Euphytica, 1991, 54: 147-1541
    203.Vavilov N I. Studies on the origin of cultivated plants. Trudy Byuro po Prikladnoy Botanik, 1926, 16: 139 - 245.
    204.Vavilov N I. Wild progenitors of the fruit trees of Turkistan and the Caucasus and the problem of the origin of fruit trees. International Horticultural Congress, 1930, 271-287
    205.Volk G M, Richards C M, Reilley A A, Henk A D, Forsline P L, Aldwinckle H S. 2005. Ex situ conservation of vegetatively propagated species: Development of a seed-based core collection for Malus sieversii. Journal of the American Society for Horticultural Science, 130 (2): 203 - 215
    206.Wang J C, Hu J, Xu H M, Zhang S. A strategy on constructing core collections by least distance stepwise sampling. Theoretical and Applied Genetics, 2007, 115: 1– 8.
    207.Waugh R, Bonar N, Baird E, Thomas B, Graner A, Hayes P, Powell W. Homology of AFLP products in three mapping populations of barley. Molecular and General Genetics, 1997, 255 (3): 31l– 321
    208.Weir B S. Sampling properties of gene diversity. In: Brown A H D, Clegg M T, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Assoc, Sunderland, Mass., 1990: 23-42
    209.Weising K R, Fung W M, Kelling D J. Characterization of microsatellites from Actinidia chinensis. Molecular Breeding, 1996, 2: 117-131
    210.Wiedow C, Dehmer K J, Geibel M. Molecular diversity in populations of Malus sieversii (Leded.) Roem. Acta Horticulturae, 2004, 663: 539-543
    211.Wright S. The genetical structure of populations. Ann. Eugen, 1951 ,15:323-354
    212.Wright S. Evolution mendelian population. Genetics, 1931, 16:97
    213.Yan G R, Long H, Song W Q, Chen R Y. Genetic polymorphism of Malus sieversii populations in Xinjiang, China. Genetic Resources and Crop Evolution, 2008, 55(1): 171-181
    214.Yuan Z H, Chen X S, He T M, Feng J R, Feng T, Zhang C Y. Population genetic structure in apricot (prunus armeniaca L.) cultivars revealed by fluorescent-AFLP markers in southern Xinjiang, China. Journal of Genetics and Genomics, 2007, 34: 947-955
    215.Zewdie Y, Tong N, Bosland P. Establishing a core collection of Capsicum using a cluster analysis with enlightened selection of accessions. Genetic Resources and Crop Evolution, 2004, 51: 147-151
    216.Zhang X R,Zhao Y Z, Establislment of sesame germplasm core collection in China. Genetic Resource and Crop Evolution, 2000, 47: 273-279
    217.Zhang Q F, Maroof M A S, Lu T Y, et al. Genetic diversity and differentiation of indica an japonica rice detected by RFLP analysis. Theoretical and Applied Genetics, 1992, 83:495 - 499
    218.Zhou Z Q, Li Y N. The RAPD evidence for the phylogenetic relationship of the closely related species of cultivated apple. Genetic Resources and Crop Evolution, 2000, 47: 353-357

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700