霍山石斛的分子分类、NO生理调节作用研究及FPS基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石斛属(Dendrobium)植物是兰科多年生附生植物、兼性CAM植物,为名贵中药材。其中近40种可以入药,但不同种类石斛药用成分及含量差异较大,药理活性也不尽相同。传统的系统分类和进化研究,主要依据形态学和地理分布,得到的结论不一致,易引起争论。目前,已有多种分子标记方法应用于石斛属植物的遗传多样性及亲缘关系的研究,但序列相关扩增多态性(SRAP)分子标记技术在该属植物中的应用鲜见报道。
     霍山石斛(D.huoshanense)是安徽省霍山县的特有石斛,属药用石斛中的特级珍品,是国家重点保护的药用植物和名贵中药材。由于其生境独特,繁殖困难,加之过度采收,野生资源已濒临绝迹。为增加其药源,前人在霍山石斛人工栽培、组织培养快繁方面做了大量研究工作,但对其生理代谢的调控、关键酶基因的克隆以及利用基因工程的方法调节功能基因表达的研究较少。一氧化氮(nitric oxide,NO)作为植物体一种新的信号分子,参与植物许多生理代谢的调节和次生代谢产物合成调控,而且可以作为胁迫响应的关键信使。但NO对霍山石斛这种兼性CAM植物生理代谢调节的研究未见报道。
     本课题利用两种分子标记技术分析药用石斛的遗传多样性及亲缘关系,确立属下分类系统,为更好地开发利用药用石斛资源奠定基础。同时,本课题以霍山石斛为材料,研究在逆境与非逆境条件下NO对霍山石斛的生理调节作用,为了解NO对兼性CAM植物生理代谢的调节提供理论依据。此外,本研究还通过基于同源性的RT-PCR方法,克隆霍山石斛倍半萜类物质合成途径中的关键酶法呢基焦磷酸合酶基因(FPS),为进一步利用基因工程调控霍山石斛生物碱合成提供基础。主要研究结果如下:
     1.利用SRAP和RAPD两种分子标记技术,研究霍山石斛与其它药用石斛主要产区代表性石斛的亲缘关系。试验以用36个RAPD引物和40个SRAP引物组合分别对9个供试石斛的基因组DNA进行扩增。RAPD引物共产生281条带,多态性带占87.09%,遗传相似性系数在0.4942~0.7731之间;SRAP引物组合共产生1977条带,多态性带占90.2%,遗传相似性系数在0.3302~0.7892之间。基于两种标记的聚类结果存在一定的差异,SRAP聚类结果能较好地体现供试品种的亲缘关系、地域特性和树型特点,与传统的基于形态特征建立的分类结果比较一致。相对而言,SRAP比RAPD可检测到更高的遗传变异、更大的标记效率和较高的多样性检测能力。
     2.以不同浓度的SNP处理霍山石斛野生苗和试管苗,研究外源NO对霍山石斛膜脂过氧化和抗氧化系统的影响,筛选了0.1mmol·L~(-1)和0.5mmol·L~(-1)SNP作为霍山石斛野生苗的处理浓度,而0~75μmol·L~(-1)SNP为霍山石斛试管苗的适宜处理浓度。进一步研究表明,(1)强光胁迫下,0.1mmol·L~(-1)SNP处理增强了霍山石斛野生苗的SOD、POD和CAT三种酶活,提高了抗氧化系统清除活性氧能力,膜脂过氧化程度减轻,缓解了强光的胁迫作用,而0.5mmol·L~(-1)SNP处理后,霍山石斛的SOD、POD和CAT的活性降低,丙二醛含量升高,SNP处理加剧了强光胁迫造成的氧化损伤。(2)以SNP处理霍山石斛试管苗发现,在0~50μmol·L~(-1)SNP处理浓度间,随着SNP浓度的提高,霍山石斛的叶绿素含量、可溶性蛋白、苯丙氨酸解氨酶活和生物碱含量均呈现出逐步的递增,NO可诱导霍山石斛次生代谢产物的合成积累。作为诱导子,50μmol·L~(-1)SNP是处理霍山石斛试管苗的适宜浓度。
     3.总结了强光胁迫下霍山石斛光抑制的生理变化,研究了外源NO在光抑制及暗恢复中的作用。试验采用“lake model”和“puddle model”两种模式,对800μmol·m~(-2)·s~(-1)光强下的霍山石斛叶绿素荧光参数进行了测定。800μmol·m~(-2)·s~(-1)光强下,霍山石斛的Fv/Fm、Φ_(psⅡ)、qP、qL、NPQ、Φ_(NPQ)、ETR显著下降,Φ_(NO)显著上升,PSⅡ反应中心已不能通过有效调控对过剩光能进行耗散,霍山石斛发生严重的光抑制;暗恢复24h后,霍山石斛的Fv/Fm、Φ_(psⅡ)、qP、qL、NPQ、Φ_(NPQ)、ETR上升,PSⅡ反应中心逐渐恢复。通过两种模式下叶绿素荧光参数的比较发现,“lake model”更能简单有效的反映霍山石斛的光能转换系统的运转状态。
     强光胁迫下,0.1mmol·L~(-1)SNP处理提高了石斛PSⅡ的光能转换效率和潜在活性,增加了过剩光能的非光化学耗散,缓解了光抑制的发生,有效保护了光合机构免受强光胁迫的伤害,PSⅡ反应中心得以较快恢复。而经0.5mmol·L~(-1)SNP处理后,霍山石斛的光能转换系统未能通过有效的光能转换和非光化学反应耗散过剩的光能,加剧了PSⅡ反应中心光抑制的发生。
     4.以霍山石斛为材料,根据在GenBank已登录的其它植物法呢基焦磷酸合酶基因的氨基酸序列,设计简并引物,利用RT-PCR技术,克隆出了石斛FPS基因片段(GenBank登录号:EU681273),sh-fps的cDNA序列长为522bp,编码174个氨基酸。sh-fps推断的氨基酸序列与多种植物FPS基因的氨基酸序列具有较高的同源性,同源性为79%-88%,且该基因片段在推测的氨基酸序列中含有FPS基因家族中高度保守的、与其活性有关的2个特异性的富含天冬氨酸的区段。
Dendrobium Sw.,perennial herbages in orchidaceae family,normally grow in shadow environment as facultative CAM plants.Many wild species of Dendrobium are rare traditional Chinese medicine.But there is great difference in medicinal components and pharmacological activities between different species of Dendrobium Sw.The original taxonomy and evolution research are based on morphology and geographical distribution, which make the results different.At present,there are several molecular marker methods has been used in the Dendrobium Sw.to study the genetic diversity and relationship. Sequence-related amplified polymorphism(SRAP) is a molecular marker technology, newly developed by Li and Quiros in 2001,however this new technology has not been applied in research of Dendrobium.
     Dendrobium.huoshanense,a precious wild medicinal plant in China,distributes in Huoshan County,Anhui Province.Because the request for environment comparatively stringent,outgrowth propagate frequency is highly low,adding to lasting collection,the wildness plant is close to annihilation.More attention was paid to its tissue culture and artificial cultivation in order to increase its production.However,there is little research about how to increase its production and the contents of medicinal components by regulating physiological metabolism and molecular regulation.Nitric oxide(NO) is a freely diffusible,gaseous compound and an important signal molecule in living organisms. In plants,NO influences aspects of growth and development,as well as the ability of plant responses to stress.Increasing evidences indicated that NO is a key signal messenger in disease resistance in plants.
     In this paper,the genetic diversity and kinship of medicinal Dendrobium Sw.were analyzed using RAPD and SRAP markers,and the subordinate classification system was confirmed,which lay a basis for exploitation and utilization of medicinal Dendrobium Sw. On the other hand,the physiological regulation effects of NO on the Dendrobium.huoshanense under stress and non-stress condition were studied to provide a theoretical foundation for action mechanism of NO to facultative cam plant.In addition,a cDNA fragment of farnesyl phosphate synthase genes was amplified by RT-PCR,which provided basic information for regulation of alkaloid synthesis for Dendrobium.huoshanense by using gene engineering technology.The results were as follows:
     1.This study was carried out in order to analyze genetic diversity and compare the Mark index(MI) between RAPD and SRAP markers in Dendrobium Sw.Using 36 random RAPD primers and 40 SRAP primers combinations,the genetic diversity of 9 species of Dendrobium was studied.A total of 281 loci were generated by 36 RAPD primers,of which 87.09%was polymorphic and the genetic distance ranged from 0.4942 to 0.7731.As for SRAP,1977 bands were obtained and 90.2%of them was polymorphic,and the genetic distance was from 0.3302 to 0.7892.There were some differences existing in the two cluster results revealed by RAPD and SRAP markers,they were as follows:compared to that of RAPD,the result of SRAP could more comfortably manifest the kinship、geographical origin、tree forms and so on,and also was more conformant to the traditional classification.Compared to RAPD,SRAP has higher marker efficiency and diversity detection ability.
     2.Normal conditions,using the wild seedlings and tube seedlings of D.huoshanense by presoaking in different SNP concentrations,the effects of NO on membrane lipid peroxidation and antioxdant enzyme activities were studied.Accordingly,the 0.1mmol·L~(-1) and 0.5mmol·L~(-1)SNP were selected to treat wild seedlings,and 10、25、50 and 75μmol·L~(-1)SNP were determined as a appropriate concentration for tube seedlings.In addition,there were some interesting points revealed as follows.(1) Under high light intensity,the capacity of scavenging Active Oxygen for antioxidant system was increased and the level of cell membrane lipid peroxidation was decreased by presoaking with 0.1mmol/L SNP,which alleviated the photoinhibition on leaves of Dendrobium huoshanense significantly.On the contrary,the leaves presoaked in 0.5mmol/LSNP were severely inhibited by the light and the enzyme activities of SOD、POD and CAT were decreased.(2) The increase of the concentration of SNP can further improve chlorophyll content、soluble protein content、PAL activity and alkaloid content of Dendrobium. huoshanense when presoaking within 0~50μmol·L~(-1)SNP.So,NO can induce the accumulation of secondary metabolic product for Dendrobium.huoshanense.As elicitor, 50μmol·L~(-1)SNP is a suitable concentration.
     3.The physiological change law of photoinhibition for Dendrobium.huoshanense at high light intensity were summarized,and the chlorophyll fluorescence parameters were determined under 800μmol·m~(-2)·s~(-1) light intensity based on lake model and puddle model. As a result,the chlorophyll fluorescence parameters Fv/Fm、Φ_(psⅡ)、qP、qL、NPQ、Φ_(NPQ)、 ETR measured under 800μmol·m~(-2)·s~(-1) light intensity decreased significantly,andΦ_(NO)rose remarkably,which showed that the Dendrobium.huoshanense suffered photoinhibition and the dissipation of excess light energy was not regulated efficiently by PSⅡreaction center. After dark recovery for 24h,the parameters Fv/Fm、Φ_(psⅡ)、qP、qL、NPQ、Φ_(NPQ)、ETR rose back,and the running state of PSⅡreaction center recovered gradually.Comparing with the original florescence parameters based on the puddle model,the new florescence parameters based on the lake model have been found more appropriate for estimating the running state of light energy conversion system of photosystemⅡ.
     In the experiment,the effects of NO donor sodium nitroprusside(SNP) on the chlorophyll fluorescence under high light stress were studied too.The result showed that the efficiency of light energy conversion and regulated non-photochemical dissipation of excess light energy for PSⅡwere improved by presoaking with 0.1mmol/L SNP,which alleviated the photo inhibition on leaves of Dendrobium huoshanense significantly. Therefore the PSⅡwas protected efficiently and the recovery was faster.On the contrary, the leaves presoaked in 0.5mmol/LSNP were severely inhibited under the strong light.
     4.Total RNA was extracted from young leaves of D.huoshanense.The degenerate primers were designed and synthesized according to the highly conservative sequences among the known famesyl phosphate synthase genes.A cDNA fragment(sh-fps) of 522bp was amplified by RT-PCR,which was subsequently cloned into pUCm-T Vector for sequencing.The sequence has been submitted to the GenBank data base,the accession number is EU681273.The sequence encoded 174 amino acids.By using the program of Blast on GenBank database,the amino acid sequence deduced from this fragment presented 79%-88%similarity with the FPP synthases from other plants.The amino acid sequence also contains two FPS conservative core fragments.The two areas always appear in isoprenoid transferase,which possibly represent the active center of the sort of enzymes.
引文
[1]陈心启,吉占和.中国兰花全书[M].北京:中国林业出版社,1998.
    [2]中华人民共和国卫生部药典委员会.中国药典(二部)[M].北京:化学工业出版社,2005:63.
    [3]李满飞,徐国均.商品石斛的调查及鉴定(Ⅱ)[M].中草药,1991,22(4):173.
    [4]Lin TH,Chang SJ,Chen CC,et al.Two phenanthraquinnes from Dendrobium momiliforme[J].J Nat Prod,2001,64(8):1084-1086
    [5]Fan C,Wang W,Wang Y,et al.Chemical constituents from Dendrobium densiflorum[J].Phytochemistry,2001,57(8):1255
    [6]Qing-Hua Ye,Wei-Min Zhao,Guo-Wei Qin.Lignans from Dendrobium chrysanthum[J].Journal of Asian Natural Products Research,2004,39-43
    [7]Hong Yang,Gui-Xin Chou,Zheng-Tao Wang,et al.Two new fluorenones from Dendrobium chrysotoxum[J].Journal of Asian Natural Products Research,2004,6(1):35-38
    [8]Zhang Xue,Gao Hao,Wang Nai-Li,et al.Three new bibenzyl derivatives from Dendrobium nobile[J].Journal of Asian Natural Products Research,2006,8(2):113-118
    [9]Xue-Qiang Zha,Jian-Ping Luo,Shui-Zhong Luo,et al.Structure identification of a new immunostimulating polysaccharide from the stem of Dendrobium huoshanense[J].Journal of Carbohydrate Polymers,2007,69(1):86-93
    [10]王宪楷,赵同芳.石斛属植物的化学成分与中药石斛[J].药学通报,1986,21(11):666
    [11]Morita H,Fujiwara M,Yoshida N,et al.New picrotoxinin-type and dendrobine-type sesquiterpenoids from Dendrobium snowflake "red star"[J].Tetrahedron,2000,56:5801-5805.
    [12]李满飞,平田羲正.粉花石斛化学成分研究[J].药学学报,1991,26(4):307.
    [13]Qun Fang Liu,Wei Min Zhao.A New Dendrobine-Type Alkaloid from Dendrobium nobile[J].Chinese Chemical Letters,2007,14(3):278-279
    [14]Liu Wen-Hong,Hua Yun-Fen,Zhan Zha-Jun.Moniline,a new alkaloid from Dendrobium moniliforme[J].Journal of Chemical Research,2007,6:317-318
    [15]黄民权,蔡体育,刘庆伦.铁皮石斛多糖对小白鼠白细胞数和淋巴细胞移动抑制因子的影响[J].天然产物研究与开发,1996,8(3):39
    [16]罗慧玲,蔡体育,陈巧伦,等.石斛多糖增强脐带血和肿瘤病人外周血LAK细胞体 外杀伤作用的研究[J].癌症,2000,19(12):1124
    [17]Ohsugi M,Fan W,Hase K,et al.Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of Rhodiola sacra[J].J Ethnopharmacol,1999,67(1):111
    [18]徐红,刘俊,王峥涛,等.五种石斛及其组织培养物对活性氧的清除作用[J].植物资源与环境学报,2001,10(2):35
    [19]高建平,金若敏,吴耀平,等.铁皮石斛原球茎与原药材免疫调节作用的比较研究[J].中药材,2002,25(7):487
    [21]马国祥,徐国均,徐珞珊,等.反相高效液相色谱法测定18种石斛类生chrysotoxene,erianin及chrysotoxine的含量[J].中国药科大学学报,1994,25(2):103-105
    [22]陈晓梅,郭顺星.石斛属植物化学成分和药理作用的研究进展[J].天然产物研究与开发,2000,13(1):70-75
    [23]吉占和.中国石斛属的初步研究[J].植物分类学报,1980,18(4):427-449
    [24]吉占和,陈心启,罗毅波,等.中国植物志[M].北京:科学出版社,1999,19:67-257
    [25]马国祥,郭寅龙,徐国钧,等.中药石斛茎显微构造的聚类分析[J].中国药科大学学报,1996,27(4):208-210
    [26]张铭,黄华荣,廖苏梅.石斛属RAPD分析及鉴定铁皮石斛特异性引物设计[J].中国中药杂志,2001,26(7):442-445
    [27]王慧中,卢江杰,施农农,等.利用RAPD分析13种石斛属植物的遗传多样性和亲缘关系[J].中草药,2006,37(4):588-592
    [28]虞泓,和锐,倪念春,等.石斛属4种植物的AFLP分析[J].中草药,2004,35(7):808-810
    [29]白音,包英华,王文权,等.国产石斛属植物亲缘关系的AFLP分析[J].园艺学报,2007,34(6):1569-1574
    [30]张婷,徐珞珊,王峥涛,等.药用植物束花石斛、流苏石斛及其形态相似种的PCR-RFLP鉴别研究[J].药学学报,2005,40(8):728-733
    [31]沈颖,徐程,万小凤,等.ISSR-PCR在石斛种间鉴别中的应用[J].中草药,2005,36(3):423-427
    [32]Lau D T w,Shaw P C,Wang J,et al.Authentication of medical Dendrobium species by the internal transcribed spacer ofribosomal DNA[J].Planta Med,2001,67:456-460
    [33]徐红,李晓波,王峥涛,等.中药黄草石斛rDNA ITS序列分昕[J].药学学报,2001, 36(10):777-783
    [34]丁小余,王峥涛,徐红,等.枫斗类石斛rDNAITS区的全序列数据库及其序列分析鉴别[J].药学学报,2002,37(7):567-573
    [35]应依,徐红,王峥涛.球花石斛的位点特异性PCR鉴别研究[J].药学学报,2007,42(1):98-103
    [36]滕艳芬,吴晓俊,徐红.石斛及其常见混淆品的matK基因序列比较[J].中国药科大学学报,2002,33(4):280-283
    [37]卢炯林,高立献.河南石斛属的调查研究[J].武汉植物学研究,1991,9(2):148-152
    [38]吉占和.中国石斛属的初步研究[J].植物分类学报,1980,18(4):427-449
    [39]Vellupillai M,Swarup S,Chong Jingoh.Histological and Protein Chang During Early Stages of Seed Germination in the Orchid,Dendrobium Erumenatum[J].Journal of Horticultural Science,1997,726:941.
    [40]苏文华,张光飞.铁皮石斛叶片光合作用的碳代谢途径[J].植物生态学报,2003,27(5):631-637
    [41]丑敏霞,朱利泉,张玉进,等.光照强度对石斛生长与代谢的影响[J].园艺学报,2000,27(5):380-382
    [42]任光俊,陆贤军,高方远,等.作物光合作用的遗传与产量改良[J].西南农业学报,2004,17(1):102-105
    [43]Huang QL,Roessner CA,Corteau R,et al.Engineering Escherichia coli for the Synthesis of Taxadiene,a key Intermediate in the Biosynthesis of Taxol[J].Bioorg Med Chem,2001,9:2237-2242
    [44]Jennewein S,Park H,DeJong JM,et al.Coexpression in yeast of Taxus cytochrome P450reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis[J].Biotechnol Bioeng,2005,5:588-598
    [45]Zhang L,Ding R,Chai Y,et al.Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures[J].Proceedings of the National Academy of Sciences of USA,2004,101:6786-6791
    [46]Chen DH,Ye HC,Li GF.Expression of a chimeric famesyl diphosphate synthase gene in Artemisia annua L.transgenic plants via Agrobacterium tumefaciens-mdiated transformation[J].Plant Sci,2000,55:179-185
    [47]Nan G L,Tang C S,Kuchnle A R,et al.Dendrobium orchids contain inducer of Agrobaterium virulence genes[J].Physiological and Molecular Plant Pathology,1997,51(6):391-399
    [48]Men S Z,Ming X Y,Liu R W.Agrobaterium-mediated genetic transformation of a Dendrobium orchid[J].Plant Cell,2003,75:63-71
    [49]Kuchnle A R.Transformation of Dendrobium orchid using particle bombardment of protocorms[J].Plant Cell Reports,1992,11(9):484-488
    [50]Chia T F,Chan Y S,Chan N H.The firefly gene as a no-invasive reporter for Dendrobium transformation[J].Plant Journal,1994,6(3):441-446
    [51]Janna OA,Maziah M,Ahmad Parveez GKA,et al.Factors affecting delivery and transient expression of β-glucuronidase gene in Dendrobium Sonia protocorm-like-body[J].African Journal of Biotechnology,2006,5(2):88-94
    [52]张明,夏鸿西,朱利泉,等.石斛组织培养研究进展[J].中国中药杂志,2000,25(6):323-326
    [53]曾宋君,程式君.石斛的试管苗快速繁殖[J].中药材,1996,19(10):490-491
    [54]赵学敏.本草纲目拾遗[M].北京:人民卫生出版社影印,1957:83
    [55]唐振缁,程式君.中药“霍山石斛”原植物的研究[J].植物研究,1984,4(3):14
    [56]袁超.亟待保护与开发的濒危中草药—霍山石斛[J].安徽科技,2001,9(21)
    [57]于力文,蔡永萍,张鹤英,等.安徽霍山3 种石斛营养成分分析及其分布规律[J].安徽农业科学,1996,24(4):369-370
    [58]丁亚平,杨道麒,吴庆生,等.安徽霍山三种石斛总生物碱的测定及其分布规律研究[J].安徽农业大学学报,1994,21(4):503-506
    [59]吴庆生,丁亚平,杨麒道,等.安徽霍山三种石斛中游离氨基酸分析[J].安徽农业科学,1995,23(3):268-271
    [60]蔡永萍,李合生,骆炳山,等.霍山3种石斛的生长节律及其与生态因子关系的研究[J].武汉植物学研究,2003,21(4):351-355
    [61]徐云(昌鸟),于力文,吴庆生,等.霍山石斛的光合特性研究[J].应用生态学报,1993,4(1):18-21
    [62]蔡永萍,李玲,林毅,等.霍山三种石斛的内源GA、ABA含量对茎高生长的影响[J].激光生物学报,2004,13(5):345-349.
    [63]贾书华,王娣,高橼,等.继代周期对霍山石斛试管苗生长及培养基成分的影响[J].中草药,2007,38(8):1239-1242
    [64]贾书华.光照对霍山石斛试管苗生长特性及有效成分积累的影响:[硕士学位论文].合肥:安徽农业大学,2007
    [65]汪曙,林毅,蔡永萍,等.霍山石斛杂交种与其亲本生长生理指标及药效成分含量的比较[J].中国中药杂志,2006,31(17):1401-1404.
    [66]罗建平,查学强,姜绍通.药用霍山石斛原球茎的液体悬浮培养[J].中国中药杂志,2003,28(7):611-615
    [67]魏明,姜绍通,罗建平.植酸对霍山石斛类原球茎悬浮培养细胞生长和多糖合成的影响[J].核农学报,2007,21(1):30-34
    [68]金国虔,蔡春海,于凌杰,等.霍山地区4种石斛属植物的遗传多态性分析[J].药物生物技术.2006,13(1):28-31
    [69]刘石泉,李小军,余庆波,等,霍山石斛及相似种的位的点特异性PCR鉴别[J].中草药,2006,37(1):111-114
    [70]史庆华,赖齐贤,朱祝军,等.一氧化氮在植物中的生理功能[J].细胞生物学杂志.2005,27:39-42
    [71]Delledonne M,Xia Y,Dixon RA,et al.Nitric oxide functions as a signal in plant disease resistance[J].Nature,1998,394:585-588
    [72]Durner J,Wendehemme D,Klessig DF.Defense gene induction in tobacco by nitric oxide,cyclic GMP and cyclic ADP-ribose[J].Proceedings of the National Academy of Sciences of USA,1998,95:10328-10333
    [73]Klepper L.Evolution of nitrogen oxide gases from herbicide treated plant tissues[J].WSSA Abstracts,1975,184
    [74]Klepper L.Nitric oxide and nitrogen dioxide emissions from herbicide-treated soybean plants[J].Atmos Environ,1979,13:537-542
    [75]Klepper L.NO_x evolution by soybean leaves treated with salicylic acid and selected derivatives[J].Pestic Biochem Phys,1991,39(1):43-48
    [76]刘维忠,张润杰,裴真明,等.一氧化氮在植物中的信号分子功能研究:进展和展望[J].自然科学进展,2008,18(1):10-24
    [77]Grubisic D,Konjevic R.Light and nitrate interaction in phytochrome-controlled germination of Paulownia tomentosa seeds[J].Planta,1990,181:239-243
    [78]Grubisic D,Giba Z,Konjevic R.The effect of organic nitrates in phytochrome-controlled germination of Paulownia tomentosa seeds[J].Photochem Photobiol,1992,56:629-632
    [79]Giba Z,Grubisiae D,Todorovic S,et al.Effect of nitric oxide-releasing compounds on phytochrome-controlled germination of empress tree seeds[J].Plant Growth Regulation,1998,26:175-181
    [80]Beligni MV,Lamattina L.Nitric oxide stimulates seed germination and de-etiolation,and inhibits hypocotyl elongation,three light-inducible responses in plants[J].Planta,2000,210:215-221.
    [81]Gouvea CMCP,Souza JF,Magalhaes ACN,et al.NO-releasing substances that induce growth elongation in maize root segments[J].Plant Growth Reguationl,1997,21:183-187
    [82]Pagnussat GC,Simontacchi M,Puntarulo S,et al.Nitric oxide is required for root organogenesis[J].Plant Physiology,2002,129:854-956
    [83]Hu,X.,Neill,S.J.,Tang,Z.,et al.Nitric oxide mediates gravitropic bending in soybean roots[J].Plant Physiol,2005,137,663-670.
    [84]Zhang L,Wang Y,Zhao L,et al.Involvement of nitric oxide in light-mediated greening of barley seedlings[J].J Plant Physiol,2006,163(8):818-826
    [85]Tu J,Shen WB,Xu LL.Regulation of nitric oxide on the aging process of wheat leaves[J].Acta Botanica Sinica,2003,45:1055-1062
    [86]Barnabás Wodala,Zsuzsanna Deák,lmre Vass,et al.Nitric oxide modifies photosynthetic electron transport in pea leaves[J].Acta Biologica Szegediensis,2005,49(1-2):7-8
    [87]Bamabás Wodala,Zsuzsanna Deák,Imre Vass,et a.In Vivo Target Sites of Nitric Oxide in Photosynthetic Electron Transport as Studied by Chlorophyll Fluorescence in Pea Leaves[J].Plant Physiology,2008,146:1920-1927
    [88]Leshem YY,Haramaty E.The characterisation and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn.foliage[J].Journal of Plant Physiology,1996,148:258-263
    [89]Leshem YY,Pinchasov Y.Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa(Duch.) and avocados Persea americana(Mill.)[J].Journal of Experimental Botany,2000,51:1471-1473
    [90]Leshem Y(2001) Nitric oxide in plants.Kluwer Academic Publishers.London,UK
    [91]孙丽娜,刘孟臣,朱树华,等.一氧化氮处理对冬枣贮藏期间乙醇代谢及相关品质 的影响.中国农业科学,2007,40(12):2827-2834
    [92]Mishina TE,Lamb C,Zeier J.Expressin of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis[J].Plant Cell Environ,2007,30(1):39-52
    [93]Tun N N,Holk A,Scherer G F E.Rapid increase of NO release in plant cell cultures induced by cytokinin[J].FEBS Lett,2001,509(2):174-176
    [94]Sutherland M W.The generation of oxygen radicals during host plant responses to infection[J].Physiol Mol Plant Pathol,1991,39:79-94
    [95]Beligni MV,Lamattina L.Nitric oxide counter acts cytotoxic processes mediated by reactive oxygen species in plant tissues[J].Planta,1999,208:337-344
    [96]肖强,郑海雷.一氧化氮与植物胁迫响应[J].植物生理学通讯,2004,40(3):379-384
    [97]Schrbder M,Hahlbropck K,KombrickB.Temporal and spatial patterns of 1,3-β-glucanase induction in potato leaves infected by Phytophthora infestans[J].Plant J 1992.2:161-172
    [98]Yamasaki H,Sakihama Y,Takahasli S.An alternative pathway for nitric oxide production in plant:new features of an old enzyme[J].Trends Plant Sci,1999,4:129
    [99]Beligni MV,Lamattina L.Is nitric oxide toxic or protective?[J].Trends Plant Sci,1999,4:299-300
    [100]Levine A,Tenhaken R,Dixon R,et al.H_2O_2 from the oxidative burst orchestrates the plant hypersentive disease resistance response[J].Cell Develop Biol,1994,79:583-593
    [101]Mata C G,Lamattina L.Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J].Plant Physiology,2001,126:1196-1204.
    [102]王宪叶,沈文飚,徐朗莱.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J].植物生理与分子生物学学报,2004,30:195-200
    [103]Zhang H,Shen W B,Xu L L.Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress[J].Acta Botanica Sinica,2003,45:901-905.
    [104]王淼,李秋荣,付士磊,等.一氧化氮对杨树耐旱性的影响[J].应用生态学报,2005,16:805-810.
    [105]相昆,李宪利,王晓芳,等.水分胁迫下外源NO对核桃叶绿素荧光的影响[J].果树学报,2006,23(4):616-619
    [106]闻玉,赵翔,张骁.水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响[J].作 物学报,2008,34(2):344-348
    [107]Uchida A,Jagendorf A T,Hibino T,et al,Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J].Plant Sci,2002,163:515-523
    [108]Mackerness SAH,John CF,Jordan B,et al.Early signaling components in ultraviolet-B responses:Distinct roles for different reactive oxygen species and nitric oxide[J].FEBS Lett,2001,489(2-3):237-242
    [109]Neill SJ,Desikan R,Hancock JT.Nitric oxide signaling in plants[J].New Phytologist,2003,159:11-35
    [110]Suyun Shi,Gang Wang,Yading Wang.Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation[J].Nitric Oxide,2005.13:1-9
    [111]王松华,周正义,何庆元,等.一氧化氮对小麦叶片镍毒害的缓解作用[J].云南植物研究,2007,29(1):115-121
    [112]You-Sheng Wang,Zhi-Min Yang.Nitric Oxide Reduces Aluminum Toxicity by Preventing Oxidative Stress in the Roots of Cassia tora L[J].Plant Cell Physiol,2005,46(12):1915-1923
    [113]Laspina NV,Groppa MD,Tomaro ML et al.Nitric oxide protects sunflower leaves against Cd- induced oxidative stress[J].Plant Science,2005,169(2):323-330
    [114]Yu CC,Hung KT,Kao CH.Nitric oxide reduces Cu toxicity and Cu-niduced NH~(4+)accumulation in rice leaves[J].J Plant Physiol,2005,162(12):1319-1330
    [115]Kopyra M,Gwozdz EA.Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus[J].Plant Physiol Biochem,2003,41:1011-1017
    [116]Foryer C H,Descourvières P,Kunert K J.Protection against oxygen radicals:an important defense mechanism studied in transgenic plants[J].Plant Cell Environ,1994,17:507-523
    [117]Uchida A,Jagendorf A T,Hibino T,et al.Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J].Plant Sci,2002,163:515-523
    [118]Mata C G,Lamattina L.Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J].Plant Physiology,2001,126:1196-1204.
    [119]Zhao L Q,Zhang F,Guo J K,et al.Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed[J].Plant Physiology,2004,134:849-857.
    [120]赵志光,谭玲玲,王锁民,等.植物一氧化氮研究进展[J].植物学通报,2002,19(6):659-665
    [121]Clarke A,Desikan R,Hurst RD,et al.NO way back:Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures[J].Plant J,2000,24(5):667-677
    [122]Neill SJ,Desikan R,Clanke A,et al.Nitric oxide is a nivel component of abscisic acid signaling in stomatal guard cells[J].Plant Physiol,2002,128(1):13-16
    [123]NeillS J,Desikan R,Hancock JT.Nitric oxide signaling in plants[J].New Phytologist,2003,159:11-35
    [124]Modolo LV,Cunha FQ,Braga MR,et al.Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorumf sp.meridionalis,elicitor[J].Plant Physiol,2002,130:1288-1297
    [125]徐茂军,董菊芳,张刚.NO对金丝桃悬浮细胞生长及金丝桃素生物合成的促进作用研究[J].生物工程学报,2005,21(1):66-70
    [126]郝岗平,杜希华,史仁玖.NO对银杏悬浮细胞生长及黄酮类物质合成的影响[J].西北植物报,2007,27(2):272-277
    [127]徐茂军,董菊芳,朱睦元.NO通过水杨酸(SA)或者茉莉酸(JA)信号途径介导真菌诱导子对粉葛悬浮细胞中葛根素生物合成的促进作用[J].中国科学C辑,2006,36(1):66-75
    [128]徐茂军.一氧化氮:植物细胞次生代谢信号转导网络可能的关键节点[J].自然科学进展,2007,17(12):1622-1630
    [129]陈晓梅,郭顺星.石斛属植物化学成分和药理作用的研究进展[J].天然产物研究与开发,2000,13(1):70-75
    [130]Li.G,Quiros.C.F,Sequence-related amplified polymorphisim(SRAP),a new maker system based on a simple RCR reaction:Its application to mapping and gene tagging in Brassica[J].Theor Appl Genet,2001,103:455-461.
    [131]李永祥,李斯深,李立会,等.披碱草属12个物种遗传多样性的ISSR和SSR比较分析[J].中国农业科学,2005,38(8):1522-1527
    [132]林忠旭,张献龙,聂以春,等.棉花SRAP遗传连锁图构建[J].科学通报,2003,48(15):1676-1679
    [133]Zou Y P,Ge S,Wang X D.Molecular Marker for Systematic and Evolutionary Botany(系统与进货植物学中的分子标记)[M].Beijing:Science Press,2001
    [134]任羽,王得元,张银东,等.辣椒SRAP-PCR反应体系的建立与优化[J].分子植物育种,2004,2(5):689-693
    [135]Sanguinetti CJ,Dias Neto E,Simpson AJ.Rapid silver staining and recovery of PCR products separated on polyacrylamide gels[J].Biotechniques,1994,17(5):914-921
    [136]Milbourne D,Rhonda M,Bradshaw J E,et al.Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivared potato[J].Molecular Breeding,1997,3:127-136
    [137]Archak S,Gaikwad A B,Gautan D,et al.Comparation assessment of DNA fingerprinting techniques(RAPD,ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India[J].Genome,2003,46:362-369
    [138]Mantel N.The detection of disease clustering and a generalized regression approach[J].Cancer Research,1967,27:209-220.
    [139]Powell W,Morgante M.The comparison of RFLP,RAPD,AFLP and SSR (microsatellite) markers for germplasm analysis[J].Molecular Breeding,1996,2:225-238.
    [140]马国祥,郭寅龙,徐国钧,等.中药石斛显微构造的聚类分析[J].中国药科大学学报,1996,27(4):208-210
    [141]蔡永萍,汪曙,林毅,等.霍山石斛F1代生长、有效成分和生理特性的研究[J].中国中药杂志,2005,30(14):1064-1068
    [142]丁鸽,丁小余,沈洁,等.铁皮石斛野生居群遗传多样性的RAPD分析与鉴别[J].药学学报,2005,40(11):1028-1032
    [143]房守敏,余泉友,李斌,等.家蚕RAPD、AFLP和SSR标记的研究及比较分析[J].中国农业科学,2007,40(12):2926-2930
    [144]刘万勃,宋明,刘富中,等.RAPD和ISSR标记对甜瓜种质遗传多样性的研究[J].农业生物技术学报,2002,10(3):231-236
    [145]刘石泉,李小军,余庆波,等.霍山石斛不同生长阶段遗传稳定性的RAPD分析[J].中国中药杂志,2007,32(10):902-905
    [146]刘石泉,李小军,余庆波,等.铁皮石斛不同生长阶段遗传稳定性的RAPD分析[J].上海师范大学学报(自然科学版),2005,34(2):72-76
    [147]任羽,王得元,张银东.相关序列扩增多态性(SRAP)一种新的分子标记技术[J].中国农学通报,2004,20(6):11-13.
    [148]Li G,Gao M,Yang B,et al.Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J].Theor Appl Genet,2003,107:168-180
    [149]Ferriol M,Pico B,Nuez F.Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J].TheorAppl Genet,2003,107:271-282
    [150]贺道华,林忠旭,张献龙,等.陆地棉纤维品质遗传基础的分子标记剖析[J].棉花学报,2004,16(3):131-136
    [151]李严,张春庆.西瓜杂交种遗传多态性的SRAP标记分析[J].园艺学报,2005,32(4):643-647
    [152]郭庆华,郭美丽.与红花苞叶刺性状紧密连锁的SRAP分子标记研究[J].药学学报,2007,42(7):794-797
    [153]程远辉,周昌华,马爱芬.重庆何首乌遗传多样性的SRAP研究[J].中国中药杂志,2007,32(8):631-633
    [154]叶庆华,赵维民,秦国伟.石斛属植物化学成分及生物活性研究进展[J].药物化学进展,2004(3):113
    [155]Yang JD,Zhao HL,Zhang TH,et al.Effects of Exogenous Nitric Oxide on Photochemical Activity of Photosystem Ⅱ in Potato Leaf Tissue Under Non-stress Condition[J].Acta Bot Syn,2004,46:1009-1014
    [156]赵世杰,等.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207-210
    [157]陈贻竹,B 帕特森.低温对植物叶片中超氧物歧化酶、过氧化氢酶和过氧化氢水平的影响[J].植物生理学报,1988,14:323-328
    [158]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000,168-172
    [159]Hammerschmidt R,Nuckles E M,Kuc J.Association of enhanced peroxidase activity with induced systemic resistance of cucumber to colletotrchum lagenarium[J].Physiol Plant Pathol,1982,20:73-82
    [160]李合生.植物生理生化实验原理和技术[M].武汉:华中农业大学出版社,1994,99
    [161]李如亮.生物化学实验[M].武汉:武汉大学出版社,1998:57
    [162]Assis J S,Maldonado R,Munoz T,et al.Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit[J].Postharvest Biol.Technol.2001,23:33-39
    [163]丁亚平,杨道麒,吴庆生,等.安徽霍山三种石斛总生物碱的测定及其分布规律研究[J].安徽农业大学学报,1994,21(4):503-506
    [164]李亚芳,张晓华,孙国明.石斛中总生物碱和多糖的含量测定[J].中国药事,2002,16(7):426-428
    [165]徐宁.石斛中总生物碱的含量测定方法研究[J].基层中药杂志,2001,15(3):24
    [166]金蓉鸾,孙继军,张远名.11种石斛的总生物碱的测定[J].南京药学院学报,1981,16(1):9-13
    [167]刘开力,韩航如,徐颖洁,等.外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用[J].中国水稻科学,2005,19(4):333-337
    [168]张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学学报,2004,30(4):455-459
    [169]张文利,沈文飙,徐朗莱.一氧化氮在植物体内的信号分子作用[J].生命的化学,2002,22(1):61-62
    [170]Poliandri AHB,Velardez MO,Cabilla JP,et al.Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis[J].Free Radical Biol Med,2004,37(9):1463-1471
    [171]汤绍虎,周启贵,孙敏,等.外源NO对渗透胁迫下黄瓜种子萌发、幼苗生长和生理特性的影响[J].中国农业科学,2007,40(2):419-425
    [172]吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗生理影响[J].中国农业科学,2006,39(3):575-581
    [173]张绪成,上官周平,高世铭.NO对植物生长发育的调控机制[J].西北植物学报,2005.25:812-818.
    [174]任小林,张少颖,于建娜.一氧化氮与植物成熟衰老的关系[J].西北植物学报,2004.24:167-171
    [175]Giba Z,Grubisiae D,Konjevic R.Nitrogen oxides as environmental sensors for seeds[J].Seed Science Research,2003,13:187-196
    [176]樊怀福,郭世荣,杜长霞,等.外源NO对NaCI胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响[J].西北植物学报,2006,26(10):2063-2068
    [177]Qiu-Ying Tian,Dong-Hua Sun,Min-Gui Zhao,et al.Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos [J].New Phytologist,2007,174:322-331
    [178]Jia-Ding YANG,Jian-Ying YUN,Tong-Hui ZHANG,et al.Presoaking with nitric oxide donor SNP alleviates heat shock damages in mung bean leaf discs[J].Botanical Studies,2006,47:129-136
    [179]Yakahashi S,Yamasaki H.Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide[J].FEBS Letter,2002,512:145-148
    [180]蔡永萍,李玲,李合生,等.霍山石斛叶片光合速率和叶绿素荧光参数的日变化[J].园艺学报,2004,31(6):778-783
    [181]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochim.Biophys.Acta,1989,990:87-92
    [182]Demmig-Adams B,Adams WW lll,Barker DH,et al.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation to of excess excitation[J].Physiol Plant,1996,98:253-264
    [183]David M.Kramer,Giles Johnson,Olavi Kiirats,et al.New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J].Photosynthesis Research,2004,79:209-218
    [184]许大全.光合作用效率[M].2002,上海:上海科技出版社
    [185]Patricia Muller,XiaoPing Li,Krishna K,et al.Non-Photochemical Quenching.A Response to Excess Light Energy[J].Plant Physiology,2001,125:1558-1566
    [186]A.Calatayud,D.Roca,P.F.Martinez.Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging[J].Plant Physiology and Biochemistry,2006,44:564-573
    [187]Heinz Walz GmbH.IMAGING-PAM M-series Chlorophyll Fluorometer[M],Germany,2006,96
    [188]万兆良,丑敏霞,别之龙,等.金钗石斛硫素吸收规律的研究[J].西南农业大学学报,1999.21(3):26-28
    [189]Chappell J.Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants[J].Annu Rev Plant Physiol Plant Mol Biol,1995,46:521-547
    [190]Joseph.Sambrook,David.W.Russell Molecular Clone:a Laboratory Manual(3rd ed)[M].Beijing:Science Press,2003,518-522
    [191]Han J.H.,Stratawa C.,Rutter W.J.Isolation of full-length putative rat lysophospolipase cDNA using improved methods for mRNA isolation and cDNA cloning[J].Biochemisty,1987,26:1617-1625.
    [192]Lopez-Gomez R,Gomez-Lim MA.A method for extracting intact RNA from fruits rich in polysaccharides using ripe mango mesocarp[J].HortScience,1992,27:440-442.
    [193]Li C.P.,Larkins B.A.Identification of a maize endosperm-specific cDNA encoding farnesyl pyrophosphate synthetase[J].Gene,1996,171(2):193-196
    [194]Matsushita Y,Kang W,Charlwood B.V.Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua[J].Gene,1996,172(2):207-209
    [195]Delourme D,Lacroute F,Karst F.Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast[J].Plant Mol Biol,1994,26:1867-1873
    [196]生秀杰,周伟强,姜莉.应用以菌落为模板的聚合酶链式反应技术筛选重组阳性克隆[J].中华检验医学杂志,2002,25(4):239-240
    [197]Marrero P F,Poulter C D,EdwardsP A.Effect of site-directed mutagenesis of the highly conserved aspartate residues in domain Ⅱ of famesyl diphosphate synthase activity[J].J.Biol.Chem,1992,267:21873-21878
    [198]Chen A,Kroon PA,Poulter CD.Isoprenyl diphosphate synthase:protein sequence comparisons,a phylogenetic tree,and predictions of secondary structure[J].Protein Sci,1994,3:600-607
    [199]李宏,王新力.植物组织RNA提取的难点及对策[J].生物技术通报,1999,(1):36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700