鸭梨ACC氧化酶基因克隆及反义转化与枣遗传连锁图谱加密的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨和枣均是我国重要的经济树种,在我国栽培面积极广,是我国农业经济的重要组成部分。深化对这两种果树的分子生物学研究,并应用生物技术对其进行遗传改良,对于加速育种进程至关重要。在本研究中,围绕梨和枣分别开展了基因克隆、遗传转化、遗传图谱加密和QTL分析等一系列研究,填补了相关研究的空白,并为今后生物技术在果树育种中的进一步应用增添了新的理论依据。取得的主要成果如下所示:
     1.根据ACC氧化酶保守序列设计一对引物,以鸭梨果实cDNA为模板扩增得到831bp的鸭梨ACC氧化酶基因cDNA片段,并以此序列为基础RACE扩增该基因cDNA全长,得到了长度的1235bp的鸭梨ACC氧化酶基因cDNA序列,进一步根据得到的cDNA序列开放性读码框设计引物得到鸭梨ACC氧化酶基因DNA序列,结果显示该基因有4个外显子和3个内含子组成,外显子和内含子的长度分别为942bp和634bp。
     2.对鸭梨ACC氧化酶基因所翻译的氨基酸序列进行生物信息学分析,结果表明该氨基酸序列与其它14种植物的ACC氧化酶高度同源,包含一个92个氨基酸残基的2OG-Fe(II) oxygenase超级家族保守结构域,且与异青霉素-N合酶及相关双脱氧酶(PcbC)的功能区域同源性较高,说明鸭梨ACC氧化酶应属于2OG-Fe(II) oxygenase超级家族的异青霉素合酶(IPNS)家族,该家族酶成员在发挥酶促作用时不需要以2-OG作为辅因子。
     3.对所获得的鸭梨ACC氧化酶氨基酸序列进行二级结构和三级结构预测,结果发现该蛋白疏水性氨基酸位于分子内部,亲水性氨基酸位于分子表面,具有可溶性亲水蛋白的典型特征,不属于膜内在蛋白;但研究同时发现该蛋白具有3个豆蔻酰化位点,豆蔻酸可以通过与这些位点的甘氨酸残基相连接将鸭梨ACC氧化酶以可逆共价连接的方式锚定在膜上,故推测鸭梨ACC氧化酶应该是具有酰胺-连接豆蔻酰锚钩结构的脂锚定膜蛋白。
     4.分别用Southern杂交和Northern杂交分析获得的ACC氧化酶基因在鸭梨基因组中的拷贝数及在不同组织中的表达情况,结果发现该基因仅在生殖器官中表达,且在基因组中以单拷贝形式存在,说明该基因主要参与系统Ⅱ型乙烯的内源合成,而系统Ⅰ型乙烯的合成是由与该基因同源性较低的另外ACC氧化酶家族成员控制的。鸭梨上应至少存在两个ACC氧化酶基因家族成员。
     5.首次构建了鸭梨ACC氧化酶基因的反义表达载体,并在农杆菌LBA4404的介导下对鸭梨组培苗进行了遗传转化,经PCR鉴定证实共有4株鸭梨组培苗中外源基因得到成功转化。Southern杂交显示在这4株转基因鸭梨中除有1株外源基因呈双拷贝外,其余3株中外源基因均以单拷贝形式存在。
     6.对影响ISSR扩增的因素进行了优化,建立了枣属植物最适ISSR扩增反应体系,即25μL反应液中包含1×PCR Buffer、2.0 mmol·L-1 Mg2+、0.25 mmol·L-1dNTP、1.5U Taq酶、1.25μmol·L-1引物和50ng模板,PCR反应的最适退火温度为58℃。
     7.应用18条ISSR引物对150株冬枣×临猗梨枣杂交F1代群体进行扩增,共获得ISSR标记44个,其中34个被成功加入到了已有的枣遗传连锁图谱中,使图谱总图距增加了24.41cM,标记间平均距离减少了0.18cM,并填补了原图谱中3个大于10cM的标记空缺,使枣遗传连锁图谱的饱和度得到了进一步提高。
     8.比较了枣针刺长度相关性状包括中心干上长针刺长度、中心干上短针刺长度、二次枝上长针刺长度和二次枝上短针刺长度QTL在新构建的遗传连锁图谱和原图谱上的定位结果,发现仅有10个QTL位点一致,证实遗传连锁图谱的饱和度是影响QTL定位精确性的重要因素之一,同时也推测这10个QTL位点可信度较高,与其紧密连锁的标记可为日后分子标记辅助育种提供指导。
Pear (Pyrus L.) and Chinese jujube (Ziziphus jujuba M.) are both important economic tree species in China, they are widely cultivated in our country and are important parts in China’s agricultural economy. To deepen the molecular biology study and use biotechnology for genetic improvement has important significance in speeding up the breeding process of the two fruit trees. So, in this study, focusing on pear and Chinese jujube, we carried out a series of expriments, such as gene cloning, genetic transformation, density-increasing of genetic linkage map and QTL analysis. The main results as follows:
     1. The full-length cDNA sequence of ACC oxidase gene was isolated from Yali fruits for the first time. It was 1235 bp long including 65 bp of 5’UTR, and 225 bp of 3’UTR and an ORF of 942 bp, encoding a 35.36 kDa protein with 314 amino acid residues. Base on the ORF, the genomic gene of ACO in Yali was also isolated, it had four extrons and three introns, which located in nt 106-347, nt 575-750 and nt 1085-1297. All the introns had GT at 5’end and AG at 3’end.
     2. Reaserch the deduce amino acids of ACO genes from Yali by bioinformatic analysis, it showed that this protein contained many conserved domains, and there were few differences among ACOs from different kinds of plants. The ACO in Yali had the homologous functional domain with 2OG-Fe(II) oxygenase super family, and was similar with Isopenicillin N synthase and related dioxygenases(PcbC), so it proved the ACO in Yali was belonged to Isopenicillin synthase family, which does not use 2-OG as the acidic substrate.
     3. Predicted the obtained Yali ACC oxidase amino acid sequence to secondary structure and tertiary structure, the results showed that the Yali ACO was a hydrophilic soluble protein but had 3 N-myristoylation sites, so it may be a lipid-anchored membrane protein which had a amide - myristic acid anchor hook to connect the membrane.
     4. Southern and Northern blotting were employed in this study to detect the copys of obtained ACO gene in Yali’s genomic and it’s expression system. The results showed this gene was single copyed in genomic and just expressed in reproductive organs, it is likely this gene only actived in the system II ethylene biosynthesis, but the system I ethylene biosynthesis was controlled by other ACO genes, so we can conclude that there were at least two ACO genes in Yali, and there were very different in nucleotide sequence.
     5. The anti-sense expression vector for obtained Yali ACO gene was constructed and transfromed in to Yali plants by using Agrobacterium-mediated method. Finally, 29 kanamycin resistant plantlets were obtained, identified them with PCR and Southern blot method, results showed the foreign gene had only been successful integrated into 4 of the 29 kanamycin resistant plants, the copies of the foreign gene in the 4 plant’s genome were between 1~2.
     6. The ISSR-PCR reaction system of Chinese jujube was estabblished after analysised the effect of 6 main factors in PCR reaction using the single factor method. The optimal ISSR-PCR reaction system was determined as follows: 1×PCR Buffer、2.0 mmol·L-1 Mg2+、0.25 mmol·L-1dNTP、1.5U Taq polymerase、1.25μmol·L-1primer and 50ng template DNA in total 25μL reaction volume. The optimal annealing temperature was 58℃.
     7. By using 18 ISSR primiers, the research obtained 44 ISSR markers to increase density of the genetic linkage map for Chinese jujube. Finally, a high-density genetic linkage map of Chinese jujube was constructed, which consists of 15 linkage groups, covers 1338.81 cM, includes 388 AFLP markers, 35 RAPD markers and 34 ISSR markers. The average interval distance is 2.92 cM. Compared with the previous linkage map, the total length of map has increased 24.41 cM, the average interval distance has reduced 0.18 cM, and 3 distance >10cM between adjacent marker were filled.
     8. The putative QTLs controlling needle length in Chinese jujube, including trunk long needle length, trunk short needle length, branch long needle length and branch short needle length were identified based on the newly constructed genetic linkage map. Totally 34 QTLs were obtained, but only 10 QTLs of it were located on the same position as the QTLs analysis result base on previous linkage map, so it proved the density of genetic linkage map has impact on the accuracy of QTLs anlysis, and it also indicated these 10 QTLs have higher credibility that the tightly linked markers of it could be used in marker-assisted breeding.
引文
[1] Abeles F B. Ethylene in Plant Biology Academic[M]. New York, 1973.
    [2] Morris Lieberman. Biosynthesis and Action of Ethylene[J]. Ann. Rev Plant Physil, 1979, 30: 533~591.
    [3] Barry C S, Llop-Tous M I, Grierson D. The regulation of 1-aminocyclopropane-1-car- -boxylic acid synthasa gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato[J]. Plant Physiol, 2000, 123: 979~986.
    [4]潘瑞炽,董愚得.植物生理学(第3版)[M].北京:高等教育出版社,1995.
    [5]杨世杰.植物生物学[M].北京:科学出版社,2000.
    [6] Zarnmbinski T I, Theologis A. Ethylene biosynthesis and action: a case of conservation [J]. Plant Mol Biol, 1994, 26: 1579~1597.
    [7] Gane R. Production of ethylene by some fruits[J]. Nature, 134:1008
    [8]刘宏道主编.果蔬采后生理[M].中国农业出版社,北京1993.
    [9] Blale J B, In Ruhland W. Encyclopedia of plant physiology[M].VOL XII,1960.
    [10] Iwata T, Qmata I, Ogata K. Relationship between the ripening of harvested fruits and the respiratory patterIII, changes of ethylene concentration in fruits and responses to applied ethylene with relation to respiratory Pattern[J]. J Jap Soc Hort Sci, 1969, 38(4): 64~69
    [11] Kidd FD, West C. Dept Sci Indus Res Food Invest Spec Rpt. 1927, 30
    [12] Biale JB, Young RE. Friend J et al. Advances in the biochemistry of fruits and vegetables. London: Academic Press. 1981.
    [13]余叔文.植物生理学与分子生物学[M].北京:科学出版社,1992.
    [14]尹金华,高飞飞,叶自行,等.乙烯对荔枝果实成熟的影响[J].果树科学,1999,16(4): 272-275.
    [15] McMurchie E J, McGlasson W B and Eaks I L. Treatment of fruit with propylene gives information about the biogenesis of ethylene[J]. Nature, 1972, 237: 235~236
    [16] Yang S F and Hoffman N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annu. Rev. Plant Physiol. 1984, 35: 155~189.
    [17] Kende H. Ethylene biosynthesis[J]. Annu. Rev. Plant Physiol. 1993, 44: 283~307
    [18] Woodson W R. Molecular biology of flower senescence in carnation. In: Scott R J, Stead A D. Molecular and cellular aspects of plant reproduction (Society for experimental biology seminar series, Vol 55)[M]. Cambridge University Press, 1994, 255~267.
    [19] Oetiker J H and Yang S F.The role of ethylene in fruit ripening[J]. Acta Hort, 1995, 398: 167~178.
    [20] Lieberman M, Kunishi A, MaPson L W, et al. Stimulation of ethylene production in apple tissue slices by methionine[J]. Plant Physiol, 1966, 41: 376~382.
    [21] Adams D O and Yang S F. Methionine metabolism in apple tissue: implicationof S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene[J]. Plant Physiol. Suppl. 1977, 67: No. 274(Abstr.)
    [22] Adams D O and Yang S F. Ethylene biosynthesis: identification of 1-aminocy- -clopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J]. Proc Natl Acad Sci USA, 1979, 76: 170~174.
    [23]傅达齐,李正国,曾凯芳.乙烯生物合成及其调控研究进展[J]. 9-13
    [24]姚泉洪,黄晓敏,刘宗镇.植物乙烯生物合成与抗衰老基因工程[J].上海农业学报,1994,10(2):89-96
    [25]周胜军.园艺作物成熟和衰老的分子生物学[J].生物学杂志,2002,19(5):5~8.
    [26] Hoffman N E, Yang S F, Ichiara A, et al. Stereo specific conversion of 1-aminocyclo- -propane-1-carboxylic acid to ethylene by plant tissues. Conversion of stereoisomers of 1-aminocyclopropane-1-carboxylic acid to 1-butent[J]. Plant Physiol, 1982, 70: 195~199.
    [27] Peiser G D, Wang T T, Hoffman N E, et al. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene[J]. Proc. Natl. Acad. Sci. USA, 1984, 81: 3059~3063.
    [28] Slater A, Maunders M J, Edwards K, et al. The use of sodium perchlorate in deproteinization during the preparation of nucleic acids[J].Plant Mol. Biol,1985,5:137~147.
    [29] Van Der Straeten D, Wiemeersch L, Goodman H M, et al. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato[J].Proc. Natl. Acad. Sci. USA, 1990, 87: 48~59.
    [30] Bleecker A B, Herner R C, Kende H. Use of monoclonal antibodies in the purification and characterization of l-aminocyclopropane-l-carboxylate synthase, an enzyme in ethylene biosynthesis[J].Proc Natl Acad Sci USA, 1986, 83: 7755~7759.
    [31]汤富强,刘愚.植物乙烯生物合成研究进展[J].植物生理学通讯,1994,30(1): 3~10.
    [32] Holdsworth M J, Birds C R, Ray J, et al. Structure and expression of an ethylene -rela- -ted-mRNA from tomato[J]. Nucl Acids Res, 1987, 15: 731-739.
    [33] Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants[J]. Nature, 1990, 346: 284~287.
    [34] Hamiton A J, Bouzayen M, Grierson D. Identification of a tomato gene for the ethyle- -ne forming enzyme by expression in yeast[J]. Proc. Natl. Acad. Sci. USA, 1991, 88: 7434~7437.
    [35] Spanu P, Reinhardt D, Boller T. Analysis and cloning of the ethylene forming enzyme from tomato by functional expression of its mRNA in X enopus laevis cocytes[J].EMBO J, 1991, 10: 2007~2013.
    [36] Ververidis P and John P. Complete recovery in vitro of ethylene forming enzyme acti- -vity[J]. Phytochemistry, 1991, 30: 725~727
    [37] Britsch L and Grisebach H. Purification and characterization of (2S)-flavanone-3-hyd- -roxylase from Petunia hybrida[J]. Eur. J. Biochem, 1986, 156:569~577.
    [38] Dong J G, Fernandez-Maculet J C, Yang S F. Purification and characterization of 1-a- -minocyclopropane-1-carboxylate oxidase from apple fruit[J]. Proc. Natl. Acad. Sci. USA, 1992, 89: 9789~9793.
    [39] Kao C H and Yang S F. Light inhibition of the conversion of 1-aminocyclopropane-1- carboxylic acid to ethylene in leaves is mediated through carbon dioxide[J]. Planta, 1982, 155: 261~266.
    [40] Guy M and Kende H. Conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene by isolated vacuoles of Pisum sativum L[J]. Planta, 1984, 160: 281~287.
    [41] Imaseki H and Watanabe A. Inhibition of ethylene production by osmotic shock. Further evidence for membrane control of ethylene production[J].Plant Cell Physiol, 1978, 19: 345~348.
    [42] Yu Y B, Adams D O and Yang S F. Inhibition fo ethylene production by 2, 4-dinitrophenol and high temperature[J]. Plant Physiol, 1980, 66: 286~290.
    [43] Rombaldi C, Lelievre J M, Latche M, et al. Immunocytolocalization of 1-am- inocyclopropane-1-carboxylic acid oxidase in tomato and apple fruit[J]. Planta, 1994, 192(04): 453~460 .
    [44] Malerba M, Cerana R and Crosti P. Fusicoccin induces in plant cells a programmed cell death showing apoptotic features[J]. Protoplasma, 2003, 222: 113~116.
    [45] Dupille E and Zacarias L. Extraction and biochemical characterization of wound-indu- -ced ACC oxidase from citrus peel[J]. Plant Science, 1996, 114(1): 231~234
    [46] Ross G S, Knighton M L, Lay-Yee M et al. An ethylene-related cDNA from ripening apples[J]. Plant Mol Biol, 1992, 18: 231~234
    [47] MacDiarmid C W B and Gardner R C. A cDNA sequence from kiwifruit homologous to 1-aminocyclopropane-1-carhoxylic acid oxidase[J]. Plant Physiol, 1993, 101: 691~692
    [48] Dong J G, Olson D, Silverstone A et al. Sequence of a cDNA coding for a 1-aminocyclopropane-l-carboxylate oxidase homolog from apple fruit[J]. Plant Physiol, 1992, 98: 1530~1531
    [49] Scott C P, Olson D C, Kende H et a1. A cDNA sequence encoding ACC oxidase from pea[J]. Plant Physiol, 1993, 101: 689~671
    [50] Wang H and Woodson W R. A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis[J]. Plant Physiol,1991, 96: 1000~1001
    [51] Callahan A M, Morgens P H, Wright P et a1.Comparison of pch313(pTOM13 homology) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars[J]. Plant Physiol, 1992, 100: 482~488
    [52] McGarvey D J, Yu H, Christofferson R E et al. Nucleotide sequence of a ripening-related cDNA from avocado fruit [J]. Plant Mol Biol, 1990, 15: 165~167
    [53] Yang S F, et a1. Ethylene biosynthesis and its regulation in higher plants[J]. Annu Rev Plant Physiol, 1984, 35: 185~189
    [54]王俊英,张开春,王俊平等.樱桃ACC氧化酶基因的克隆和序列分析[J].华北农学报,2002,16(1):11~15
    [55] Tang X, et al. Organization and structure of the 1-aminocyclopropane-1-carhoxylic oxidase genes in petunia flowers[J]. Plant Cell, 1993, 6: 1227~1239
    [56]饶景萍,杨书珍,中野隆平等.柿果实ACC氧化酶cDNA的克隆及其序列分析[J].中国农业科学,2002,35(6):695~699
    [57]王自章,李杨瑞,张树珍等.甘蔗ACC氧化酶基因片断的克隆与序列分析[J].遗传学报, 2003, 30(1):62~69
    [58]金勇丰,张上隆,陈昆松.果实成熟的分子生物学[J].植物生理学通讯,1996,32(5):390~396
    [59] Barry C S, et a1. Differential expression of the 1-aminocyclopropane-l-carboxylate oxidase gene family in tomato[J]. Plant J., 1996, 9: 525~535
    [60] Kahana A, Silberstein L, Kessler N, et al. Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber[J]. Plnat Molecular Biology, 1999, 41(4): 517~528.
    [61] Kim W T and Yang S F. Structure and expression of cDNAs encoding 1-aminocyclopropane-1-carboxylate oxidase homologs isolated from excised mung bean hypocotyls[J]. Planta, 1994, 194(1):223~229.
    [62]金勇丰,张耀洲.桃ACC氧化酶基因的克隆和植物表达载体的构建[J].园艺学报,1998,25(1):37~44
    [63]陆璐,王鸣.哈密瓜ACC氧化酶cDNA克隆及其序列分析[J].园艺学报,2000,27(1):32~36
    [64]丁晓东.荔枝分子生物学研究——品种分类,RAPD标记在F1中的分离规律,ACO基因的克隆[D].福州,福建农业大学, 1999.
    [65] Barry J P, Christopher C D, Kevin M D. Differential expression of two 1- arninocyclopropane-1-carboxylic acid oxidase genes in Broccoli after harvest[J]. Plant Physiology, 1995, 108: 651~657.
    [66] Balague C, Watson C F, Turner A J, et al. Isolation of a ripening and wound-induced cDNA from Cucumis melo L. encoding a protein with homology to the ethylene-forming enzyme[J]. Eur J Biochem, 1993, 212: 27~34.
    [67] Lasserre E. Bouquin T. Hernandez J A, et al.Structure and expression of three genesencoding ACC oxidase homologs from melon[J]. Mol Gen Genet, 1996, 251:81~90
    [68]徐忠传.成熟称猴桃果实不同组织中ACC氧化酶基因的表达差异研究[J].中国科学技术大学学报,2001,31(2):235~240.
    [69] Donald A, Hunter, Sang D Y, et al. Expression of 1-aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover[J]. Plant Physiology, 1999, 120: 131~141.
    [70] Liu X J, Shiomi S J, Akira N, et al. Characterization of ethylene biosynthesis associated with ripening in banana fruit[J]. Plant Physiol, 1999, 121: 1257~1265.
    [71] Simons R and Kleckner N. Translation control of IS 10 transposition[J]. Cell, 1983, 34: 683~691.
    [72]李祥,易自力,蔡能等.反义RNA及其在植物基因工程领域的应用[J].生物技术通讯.2003.14:162~164
    [73]王关林,方宏绮主编.植物基因工程原理与技术[M].北京,科学出版社,1998
    [74]张西锋,沈伟,潘庆杰等.反义RNA技术原理及其在疾病治疗中的应用[J].莱阳农学院学报.2004. 21:20~22
    [75]崔尚金,宋晓华,于康震等.反义RNA技术研究简述[J].中国预防兽医学报.2000,22:159~160
    [76]田苗苗,周延清,苑保军等.反义RNA技术及其在植物中的应用[J].河南农业科学.2006:20~22
    [77] Vander Krol A R, Lenting P E, Vennstra J, et al. Antisense chalcone synthrase gene in transgenetic plants inhibits flower pigmentation[J]. Nature, 1988, 333: 866~876
    [78] Cuorney-Gutterson N, Napoli C, Lemienx C, et al. Modification of flower color in florist’s chrysanthe mum: Production of a white-flowering varity through molecular genetics[J]. Biotechnology, 1994, 12: 268~271
    [79] Day A G, Bejarano E R, Buck K W, et al. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic viurs[J]. Proc. Natl. Acad. Sci. USA, 1991, 88: 6721~6725
    [80] Smith C J S, Watson C F, Morris P C, et al. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes[J].Plant Mol. Biol. 1990. 14: 369~379
    [81]叶志彪,李汉霞,周国林.番茄多聚半乳糖醛酸酶反义cDNA克隆的遗传转化及转基因植株再生[J]园艺学报,1994,22:305~307
    [82] Oeller P W, Lu M W, Taylor L P, et al. Reversible inhibition of tomato fruit senescence by antisense RNA[J]. Science. 1992. 254: 427~439
    [83] Tieman D M, Harriman R W, Ramamohan G, et al. An antisense pectin methylesterase gene alters pectine hemistry and soluble solids in tomato fruit[J]. Plant Cell. 1992. 4: 667~679
    [84] Knutzon D S, Thompson G A. Modification of brassica seed oil by antisenseexpression of a stearoyl-aycl carrier protein desaturase gene[J]. Proc Natl Acad Sci USA, 1992, 89: 2624~2632
    [85] Bachem C W B, Speckmann, G J, Van der Linde, et al. Antisense expression of polyphenol oxidase genes inhibits enzymatic browning in potato tubers[J]. Bio Technol, 1994, 12: 1101~1105.
    [86] Price G D, Caemmerer S, Evans J R, et al, Photosynthesis is strongly reduced by antisense suppression of chloroplastic cytochrome bf complex in transgenic tobacco[J]. Australian J. Plant Physiol. 1998. 25(4): 445~452
    [87] Zabaleta E, Mouras A, Hemould M, et al. Transgenic male-sterile plant induced by an unetdited atpg gene is restored to fertility by inhibiting it expression with antisense RNA[J]. Pro. Nati. Acad. Sci. USA, 1996, 93: 11259~11263
    [88]陈建南,傅鸿仪,秦环英,等.HSP-(70)反义RNA对高粱花粉的正常形成的影响[J].科学通报,1997,42:1993~1996
    [89] Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plant[J]. Nature, 1990, 334: 724~726
    [90] Picton S, Barton S L, Bouzayen M, et al. Altered fruit ripening and leaf senescence in tomato expressing an antisense ethylene-forming enzyme transgene[J]. Plant J, 1993, 3: 469~481
    [91] Pua E C and Lee J E E. Enhanced de novo shoot morphogenesis in vitro by expression of antisense 1-aminocyclopropane-1-carboxylate oxidase gene in transgenic mustard plant[J]. Planta, 1995, 196: 69~76
    [92]张淑珍,汤火龙,杨本鹏.康乃馨ACC氧化酶基因反义基因遗传转化康乃馨的研究[J].园艺学报.2003,30:6992~7021
    [93] Brondt A S, Woodson W K. Variation in flower senescence and ethylene biosynthesis amony carnation[J]. Hortscience, 1992, 27(10): 1100~1102
    [94] Savin K W, Baudinette S C, Graham M W, et al. Antisense ACC oxidase RNA delays carnation petal senescence[J]. HortScience, 1995, 30(5): 970~972
    [95]金志强,李瑞珍,徐碧玉等.香蕉果实特异性ACC合成酶基因的克隆及反义载体的构建[J].农业生物技术学报,2002,10(3):305~306
    [96]王春霞,简志英,刘愚等.ACC合成酶基因及其反义基因对西瓜的遗传转化[J].植物学报,1997,39(5):445~450
    [97]徐晓峰,黄学林,黄霞.ACC氧化酶反义基因转化花青菜的研究[J].中山大学学报,2003,42(4):64~68
    [98] Peck S C, Olson D C, Kende H. A cDNA sequence encolding 1-aminocyclopropane- 1-carboxylate oxidase from pea[J].Plant Physiol, 1993, 101: 689~690.
    [99] Colin W B, Macdiamid, Richard C, et al. A cDNA sequence from kiwi fruit homologous to 1-aminocyclopropane-1-carboxylic acid oxidase[J]. Plant Physiol, 1993, 101:691~692.
    [100] Cooper W, Bouzayen M, Hamilton A, et al. Use of transgenic plants to study the role of ethylene and polygalacturonase during infection of tomato fruit by Colletotrichum gloeosporioides[J]. Plant Pathology, 1998, 47(3): 308~316
    [101] Ma Q H, Song Y R. Expression of tomato antisense ACC synthase gene in transgenic tomato and its role in shoot formation[J]. Acta Botanica Sinica, 1997, 39(11): 1047~1052
    [102] Paterson A, Brubaker C, Wendle J. A rapid method for extraction of (Gossypium spp) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Bilolgy Reporter, 1993, 11(2):122~127.
    [103] Marchler-Bauer A et al. CDD: a conserved domain database for interactive domain family analysis[J]. Nucleic Acids Res, 2007, 35(D):237~240.
    [104] Marchler-Bauer A et al. CDD: a conserved domain database for protein classification[J]. Nucleic Acids Res, 2005, 33(D):192~196.
    [105] Marchler-Bauer A and Bryant S H. CD-Search: protein domain annotations on the fly[J]. Nucleic Acids Res, 2004, 32(W):327~331.
    [106] Geourjon C, Deleage G.. SOPMA:significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments[J]. Comput. Appl. Biosci., 1995, 11: 681~684.
    [107] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006, 22: 195~201.
    [108] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server[J]. Nucleic Acids Research, 2003, 31: 3381~3385.
    [109] Guex N and Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling[J]. Electrophoresis 1997, 18: 2714~2723.
    [110] Bairoch A, Bucher P and Hofmann K. PROSITE is a database of functional motifs. scanprosite, finds all functional motifs in your sequence that are annotated in the prosite db[J]. Nucleic Acids Research, 1997, 25: 217~221.
    [111] Aravind L and Eugene V Koonin. The DNA-repair protein AikB, EGL-9, andleprecan define new families of 2-oxoglutarate and iron-dependent dioxygenases[J]. Genome Biology, 2001, 2: 0007.1~0007.8.
    [112] Fang G and Hammars G. A quick and inexpensive method for removing polysaccarids from plant genomic DNA[J]. Bio. Techniques, 1992, 13: 52~56.
    [113] Lingle S E, Dyear J M. Cloning and expression of sucrose synthase-1 cDNA from sugarcane[J]. Journal of Plantphys. Biology, 2001, 158(1): 129~131.
    [114] Reddy M K, Nair S, Singh B N. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene(33RNP) from pea that is light stimulated[J].Gene, 2001, 263(1): 179~187.
    [115] Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in trans-genic plants[J]. Nature, 1990, 346: 284~287.
    [116] Zhang Z, Barlow J N, Baldwin J E and Schofied C J. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-amino-cyclepropane-1- carboxylate oxidase[J]. Biochemistry, 1997, 36:15999~16007.
    [117] Zhang Z, Ren J S, Clifton I J, et al. Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase-the ethylene-forming enzyme [J].Chem Biol., 2004, 11:1383~1394.
    [118] Mayne R G and Kende H. Ethylene biosynthesis in isolated vacuoles of Vicia fahet L. requirement for membrane integrity[J]. Plnata, l986, 67: 159~165.
    [119] Hamilton A J, Bouzayen M and Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast[J]. Proc Natl Acad. Sci. USA. 1991, 88:7434~7437
    [120]王镜岩,朱圣庚,徐长法.生物化学(第三版)[M].北京:高等教育出版社,2002.
    [121]韦军,田边贤二.鸭梨、茌梨果实采前乙烯生物合成特性研究[J].园艺学报,1994,21(3):231~234.
    [122]李桂琴.鸭梨多酚氧化酶基因克隆及其反义基因转化研究[D].河北保定,河北农业大学,2009.
    [123]叶志彪.乙烯形成酶反义基因转化番茄及耐贮藏品种的选育[D].武汉,华中农业大学,2000.
    [124] Mitiouchkina T Y and Dolgov S V. Modifieation of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction[J]. Acta Horticulturae, 2000, 508:163~169.
    [125] Urban L A, Sherman J M, Moyer J W, et al. High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema gran- -diflora)[J]. Plant Scienee, 1994, 98(1): 69~79.
    [126] Renou J P, Brochard P, Jalouzot R. Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection[J]. Plant Scienee, 1993, 89(2):185~197.
    [127]鹿金颖,毛永民,申连英,等.枣实生后代性状分离研究[J].河北农业大学学报, 2003,26(4): 53~58.
    [128]李鹏丽.枣实生后代主要性状遗传变异规律的研究[D].河北保定,河北农业大学, 2003.
    [129]马庆华.冬枣实生后代主要性状遗传变异规律及枣实生苗抗寒性研究[D].河北保定,河北农业大学,2004.
    [130]刘孟军.RAPD技术在枣和酸枣种质鉴定上的应用研究[C].中国科协第二届青年学术年会,园艺学论文集,北京农业大学出版社,1995,337~341.
    [131]彭建营,束怀瑞,孙仲序,等.枣RAPD技术体系建立与几个品种亲缘关系的研究[J].农业生物技术学报,2000,8(2):155~159.
    [132]刘平,彭建营,等.应用RAPD标记探讨枣与酸枣的分类学关系[J].林业科学,2005,41(2):182~185.
    [133]吴臻.枣种植资源的RAPD研究与分析[D].西安:陕西师范大学,2002.
    [134]李守勇.不同产地冬枣品质特性及其遗传变异研究[D].北京:北京林业大学,2004.
    [135]赵锦,刘孟军.枣树品种、品系及其近缘种的RAPD分析[J].中国农业科学,2003,36(5):590~594.
    [136] Welsh J, Mclelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res, 1990, 18: 7213~7218.
    [137] Willians J G K, Kubelik A R, Lirak K J, et al. DNA Polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18: 6513~6535.
    [138] Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA finger printing[P]. European Patent Office Publication 1993, 0535858AI.
    [139]鹿金颖.枣自然授粉实生后代杂种鉴定及遗传变异研究[D].河北保定,河北农业大学,2003.
    [140]申连英.枣遗传连锁图谱的构建及性状的QTL定位研究[D].河北保定,河北农业大学,2005.
    [141]白瑞霞.AFLP技术在枣种植资源鉴别和分离研究中的应用[D].河北保定,河北农业大学,2005.
    [142] Zictkicwicz E, Rafalski A,Lahuda D. Genomc fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J]. Genomics, 1994, 20: 176~ 183.
    [143] Litt M, Luty J. A hypervariable microsatellite revealed by invitro amplification of a dinucleotide repeat within the cardiac muscle action gene[J]. Aner J Hum Genet,1989,44: 391~401.
    [144]郑成木主编.植物分子标记原理与方法[M].长沙:湖南科学技术出版社,2002.
    [145]吴兴恩,范眸天,等.22份柑橘资源的ISSR分析[J].云南农业大学学报, 2006, 21(1):36~41.
    [146]张如莲,傅小霞,等.菠萝17份种质的ISSR分析[J].中国农学通报, 2006, 22(6):428~431.
    [147] R S Obeed, M M Harhash. Fruit properties and genetic diversity of five ber (Ziziphus mauritiana lamk) Cultivars[J]. Pakistan Journal of Biological Sciences, 2008, 11 (6): 888~893.
    [148] Sagar S, Pandit. Genetic diversity analysis of Mango cultivars Using inter simple sequence repeat markers[J]. Current Science, 93 (8 ): 1135~1141.
    [149]张如莲,傅小霞,等.30个香蕉品种遗传多样性的ISSR分析[J].中国农学通报,2006,22(2): 336~370.
    [150]冯晨静,张元慧,等.14份杏种质的ISSR分析[J]河北农业大学学报, 2005, 28(5):52~62.
    [151]吴子龙,方连玉,等.15份葡萄种质亲缘关系的ISSR分析[J]果树学报, 2006, 23(4):605~608.
    [152]余贤美,艾呈祥.杧果野生居群遗传多样性ISSR分析[J].果树学报2007, 24(3):329~333.
    [153]魏守兴,陈业渊.海南部分荔枝种质的ISSR分析[J].热带作物学报,2006,27(4):51~55.
    [154]邹游,黄敏,等.ISSR标记技术在猕猴桃遗传研究中的运用[J].西南师范大学学报(自然科学版), 2008,33(1):111~115.
    [155]何新华,李杨瑞,等.23个广西本地芒果品种的ISSR分析[J].分子植物育种,2005,3(6): 829~834.
    [156]姜帆,高慧颖,等.龙眼ISSR-PCR反应体系的优化及指纹图谱初探[J].福建农业学报,2007, 22(3):256~260.
    [157]刘威生,冯晨静,等.杏ISSR反应体系的优化和指纹图谱的构建[J].果树学报,2005,22(6): 625~629.
    [158]齐靖.枣树形和针刺性状的QTL定位与分析[D].河北保定,河北农业大学,2006.
    [159] Paterson A, Brubaker C, Wendle J. A rapid method for extraction of (Gossypium spp) genomic DNA suitable for RFLP or PCR analysis[J]. Plant Molecular Bilolgy Reporter, 1993, 11(2):122~127.
    [160]王美,张凤兰,孟样栋,等.中国白AFLP分子遗传图谱的构建[J].华北农学报,2004,19(1):28~33.
    [161]于拴仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析[J].中国农业科学, 2003, 36(2): 190~195.
    [162]吕蓓,张丽霞,宛煜嵩,等.用AFLP标记饱和大豆SSR遗传连锁图[J].分子植物育种, 2003, 3(2): 163~172.
    [163]辛翠华,朱美云,吴俊,等.利用AFLP对桃遗传连锁图的加密及加密前后连锁图的比较分析[J].农业生物技术学报, 2006,14(3):387~390.
    [164]熊立仲,王石平,刘克德,等.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布[J].植物学报, 1998, 40 (7 ):605~614.
    [165] Tanksley S D, Medina-Filho H P, Rick C M. Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato[J]. Heredity, 1982, 49: 11~25.
    [166] Tinker N A, Mather D E, Rossnagel B G, et al. Regions of the genome that affect agronomic performance in two-row barly[J]. Crop Science, 1996, 36: 1053~1062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700