水稻育性突变体的筛选和育性相关基因OsMSH4及PSS1的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上重要的粮食作物之一,全球一半以上的人口,包括几乎整个东亚和东南亚的人口,都以稻米为食。在我国,水稻种植面积占全国粮食作物的1/4,并且产量占粮食作物的一半以上。可见水稻生产的好坏直接影响我国粮食供应和人民的生活水平。我国的人口还在持续的增长,随着城市建设的发展,土地的荒漠化,耕地面积的逐年减少以及其它农作物对耕地的需求所带来的竞争,要确保水稻的供给必须提高水稻的单产。而育性的高低直接影响着水稻的产量,可是在水稻育种过程中和水稻生产过程中,总是不可避免的会出现育性降低的现象。不同品种间组合带来的内部因素以及高温,低温,病害,等外部因素都影响水稻的育性
     突变体是研究基因表达与功能分析的良好试验材料,也是当前功能基因组学研究的热点之一,本研究从育性突变体入手,首先获得育性突变体材料,接着从细胞水平分析突变体育性降低的原因,从基因水平研究其分子机理。结果,我们从实验室之前得到的有一个Q6537突变体中分离到了一个新的水稻育性基因,对这个基因和实验室已经克隆的花粉半不育基因(PSS1),进行了深入研究。这些结果丰富了人们对水稻育性的认识和理解。
     本论文的主要研究结果如下:
     一.水稻育性突变体的筛选
     从10000份T-DNA插入突变体中,最终筛选到了20个稳定遗传的低育性突变体和7个同时伴随其它性状变异的突变体,遗传分析表明它们受单基因的控制。对其中的一个颖花突变体M3进行了定位,结果表明与水稻extra glume1基因等位。
     二.水稻三体不育突变体Q6537的遗传分析及OsMSH4的克隆和功能分析
     1.本实验室之前获得了一个水稻雌雄不育突变体Q6537,这个突变体来源于水稻的四倍体花药培养。Q6537的自交后代可以稳定的产生结实率为0%的Q6537M,结实率为29.2%的Q6537和少数其它类型,前面两种类型的比例约为3:1。
     2.从34个Q6537株系共1360个单株中,得到19株正常结实的植株,14株出现育性的分离,分离比为3:1(218株可育株Q6537WT比65株不育株Q6537M)。
     3.通过对Q6537的减数分裂观察,发现Q6537的中期Ⅰ会出现12个二价体+1个单价体或11个二价体+1个三价体的染色体构型,这表明Q6537是一个三体水稻。
     4.利用Q6537不育突变体与籼稻9311配制组合,筛选其中的二体F1群体,用做基因的定位群体。利用分子标记的连锁,将定位区间缩小至60kb的范围,通过测序发现区间内OsMSH4的保守位点发生了一个单碱基的突变。
     5.通过对Q6537M的减数分裂观察,发现大部分的同源染色体间不能正常形成二价体,导致同源染色体的分离出现紊乱,雄配子无法获得12条整套染色体,碘-碘化钾染色表明花粉完全不育。
     6.水稻中的()sMSH4与拟南芥中的基因AtMSH4同源,这个基因参与同源染色体的交换,AtMSH4基因的突变使拟南芥的减数分裂时期出现大量单价体,育性降低。
     7.基因的定量PCR验证OsMSH4是减数分裂特异表达的基因,同时,OsMSH4基因的突变对其它减数分裂基因的表达量没有明显的影响。
     三.水稻半不育突变体W207-2的基因PSS1的功能分析以及与其互作的基因的筛选
     本实验室先前从稳定的水稻半不育突变体W207-2中克隆了一个花粉半不育基因PSS1, PSS1编码的是一个驱动蛋白,W207-2中PSS1的单个氨基酸的改变使蛋白的功能丧失,造成部分的减数分裂细胞出现少量的单价体,使花粉出现半不育的表型,导致花药发育成熟后花粉所提供的膨压不足,影响花药的正常开裂,从而使W207-2出现半不育的表型,关于这部分的详细工作已经发表。下面是后续的实验主要包括:
     1.水稻和拟南芥的亚细胞定位结果表明PSS1主要定位在细胞核中,这在空间上与减数分裂染色体和纺锤体出现的位置相一致。
     2.体外的微管结合实验表明,单个氨基酸的突变使PSS1蛋白丧失了与微管结合的能力。
     3.在pssl突变体中,没有观察到纺锤体出现明显的缺陷,仍然以染色体出现单价体为主要缺陷,单价体的形成可能是染色体配对异常导致的或者是由染色体的运动异常导致的,目前的论断更倾向于后者。
     4.通过转RNA干扰载体,对PSS1基因的表达进行干扰,使转基因株中PSS1的表达量明显的降低,结果产生了与W207-2一致的表型。
     5.利用酵母双杂交的方法,通过对水稻的穗cDNA文库进行筛选得到两个与PSS1互作的蛋白,分别是谷氨酸合酶Glutamine synthetase(GS)和Targeting protein for Xklp2(TPX2)。
Rice is one of the most important food crops in the world, more than half of the global population, including almost the entire population of east and southeast Asia, are feed on rice. In China, rice planting area accounting for1/4of food crops's, and yield for more than half of food crops. The production of rice directly affect Chinese food supply and people's living standard. China's population continues to increase, with the development of city construction, land desertification, arable land decrease year by year and the cultivated land demand of other crops, to ensure the supply of rice must increase rice yield per unit. And sterility directly affects the production of rice, but in the process of rice breeding and rice production, always inevitably experience decreased fertility. Combination between different varieties as internal factors as well as high temperature, low temperature, diseases, and so on of many external factors will be more or less affect the sterility of rice, which makes the fertility changes of rice is extremely complex and appears to be no rules to follow.
     Mutants is the ideal source material for studying gene expression and function, it is one of the current hot topics in the study of functional genomics. In this study, first we get sterility mutant materials, then analysis the fertility reduced reason at cytology level, finally we get the genes function to explain the molecular mechanism. As a result, we isolated to a new rice sterility gene from Q6537mutants and study the pollen sterility gene (PSS1)which have been cloned. The results enrich our understanding of rice sterility. Main research results of this paper were as follows:
     (A) rice sterility mutants screening
     From about10,000T-DNA insertion mutants, that we picked up the20stable genetic lines with low fertility that separated by3:1ratio (controlled by a single gene) and7lines in addition to alone with other phenotype variation. On one of these mutants, M3has carried on the map based cloning, results show that it was allelic of rice Extra glume1.
     (B) genetic analysis of rice trisome sterility mutant line Q6537,from this line we cloned OsMSH4and analysis the gene's function
     1. Our lab have been got a rice male sterile mutants Q6537, the mutant was collected from an anther culture mutants population originated from autotetraploid indica/japonica hybrid H3774(H2088×H891). we surveyed419progenies'individual from Q6537and found the phenotypic ratio of Q6537to Q6537M is111to308(roughly1:3)
     2. We then attempted to obtain the wild type of mutant Q6537M from the progeny of Q6537. As a result,19normal seed setting plants were selected out of1360individuals consisting of34Q6537plant lines. Among their progeny,14of them displayed further fertility segregation fitting to a ratio of3:1
     3. We then surveyed the meiotic cell to inspect chromosome constitution of Q6537. At metaphase I, other than a full set of12pairs chromosome, one extra chromosome presenting either outside the equatorial plate, or, in most situation (over90%of total56spreads), synapsed with a bivalent to form trivalent, we deduced that Q6537is a typical trisomic line, trisomic Q6537make the inheritance accessible of a full sterility mutant Q6537M.
     4. To map the gene, we crossed the trisomic Q6537as female parent with9311, an Indica variety, to construct a genetically segregating population. Using the molecular markers, further mapped into a60-kb interval, the mapped region contains9recognizable open reading frames (ORFs). One of the ORFs (ORF8) encodes a protein homologous to AtMSH4, in which there is a single nucleotide substitution at codon482(G/C) in the third exon, resulting in an amino acid change from Ala-118to Pro.
     5. Through the Q6537M meiotic observation, the most obvious defects became apparent at diakinesis when all meiocytes (>200cells) had<12bivalents, mostly at the range of2-4. The remaining are unsynapsed univalents. Subsequently all bivalents and some univalents aggregated on the metaphase I equatorial plane, make the pollens of Q6537M fully empty that stained by iodium potassium iodide.
     6. OsMSH4is the homologous of AtMSH4gene in arabidopsis, the gene involved in the exchange of homologous chromosomes, the mutations of Atmsh4gene in the arabidopsis make a large number of univalent during meiosis period, it also make the fertility reduced significant but still have some fertility.
     7. Gene's quantitative PCR indicate OsMSH4was meiosis specific gene, at the same time, there are no obvious different expression between Q6537M and WT with other meiotic gene at the upstream and downstream of OsMSH4.
     (C) Analysis the function of PSS1gene that from a semi-sterility mutant line W207-2and found other proteins that interact with PSS1
     Our laboratory previously got a stable heredity rice semi-sterility line W207-2, and cloned pollen sterility gene PSS1from the line, PSS1is a kinesin, there is a single amino acid change of the protein which make it lose its function, causing part of the meiotic cell appear a small amount of the univalents, makes the pollen exhibit infertile phenotypes, lead to reduced mechanical pressure generated in the pollen sacs, affect the normal anther dehiscence, allowing the semi-sterility phenotype in W207-2, detailed work has been published about this part. Here are the follow-up experiments:
     1. PSS1-GFP subcellular localization in rice and arabidopsis protoplast cells showed that it mainly locate near and in the nucleus space, where chromosomes and spindles appeared at meiosis stage
     2. Microtubules combined experiments in vitro show that a single amino acid mutation makes the PSS1protein lost the ability to combine with microtubules.
     3.In the pssl mutants, no spindle appear observed flaws. The univalents are the main defects, the formation of the univalents may be the result of abnormal chromosome pairing or is caused by abnormal chromosome movement.
     4. By the RNA interference of the PSS1gene expression, it make the expression capacity of PSS1in the transgenic plant is significantly lower, the phenotypes of the transgenic plants are the similar with the phenotypes of W207-2.
     5. By using yeasts two-hybrid method, screening with rice panicle cDNA library, we found two proteins are glutamate synthase Glutamine synthetase (GS) and Targeting protein for Xklp2(TPX2) could interact with PSS1.
引文
[1]Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development[J]. J Genet Genomics,2011,38(9):379-390.
    [2]Zeng Y X, Hu C Y, Lu Y G, et al. Abnormalities occurring during female gametophyte development result in the diversity of abnormal embryo sacs and leads to abnormal fertilization in indica/japonica hybrids in rice[J]. J Integr Plant Biol,2009,51(1):3-12.
    [3]Wang K, Tang D, Wang M, et al. MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice[J]. J Cell Sci,2009,122(Pt 12):2055-2063.
    [4]Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants[J]. Annu Rev Plant Biol,2005,56:393-434.
    [5]Golubovskaya I, Grebennikova Z K, Avalkina N A, et al. The role of the ameioticl gene in the initiation of meiosis and in subsequent meiotic events in maize[J]. Genetics, 1993,135(4):1151-1166.
    [6]Golubovskaya I, Avalkina N, Sheridan W F. New insights into the role of the maize ameioticl locus[J]. Genetics,1997,147(3):1339-1350.
    [7]Pawlowski W P, Sheehan M J, Ronceret A. In the beginning:the initiation of meiosis[J]. Bioessays,2007,29(6):511-514.
    [8]Mercier R, Vezon D, Bullier E, et al. SWITCH1 (SWI1):a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis[J]. Genes Dev, 2001,15(14):1859-1871.
    [9]Agashe B, Prasad C K, Siddiqi I. Identification and analysis of DYAD:a gene required for meiotic chromosome organisation and female meiotic progression in Arabidopsis[J]. Development,2002,129(16):3935-3943.
    [10]Mercier R, Armstrong S J, Horlow C, et al. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis[J]. Development, 2003,130(14):3309-3318.
    [11]Che L, Tang D, Wang K, et al. OsAMl is required for leptotene-zygotene transition in rice[J]. Cell Res,2011,21 (4):654-665.
    [12]Hong L, Tang D, Zhu K, et al. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin[J]. Plant Cell,2012,24(2):577-588.
    [13]Stevens R, Grelon M, Vezon D, et al. A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing[J]. Plant Cell,2004,16(1):99-113.
    [14]Azumi Y, Liu D, Zhao D, et al. Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein[J]. EMBO J, 2002,21(12):3081-3095.
    [15]Wang Y, Magnard J L, McCormick S, et al. Progression through meiosis Ⅰ and meiosis Ⅱ in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase I[J]. Plant Physiol,2004,136(4):4127-4135.
    [16]Chang L, Ma H, Xue H W. Functional conservation of the meiotic genes SDS and RCK in male meiosis in the monocot rice[J]. Cell Res,2009,19(6):768-782.
    [17]Dawe R K, Sedat J W, Agard D A, et al. Meiotic chromosome pairing in maize is associated with a novel chromatin organization [J]. Cell,1994,76(5):901-912.
    [18]Zickler D, Kleckner N. Meiotic chromosomes:integrating structure and function[J]. Annu Rev Genet,1999,33:603-754.
    [19]Okada T, Endo M, Singh M B, et al. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3[J]. Plant J,2005,44(4):557-568.
    [20]Shi J, Dawe R K. Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27[J]. Genetics,2006,173(3):1571-1583.
    [21]Yang X, Timofejeva L, Ma H, et al. The Arabidopsis SKP1 homolog ASK1 controls meiotic chromosome remodeling and release of chromatin from the nuclear membrane and nucleolus[J]. J Cell Sci,2006,119(Pt 18):3754-3763.
    [22]Kaszas E, Cande W Z. Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin[J]. J Cell Sci,2000,113 (Pt 18):3217-3226.
    [23]Houben A, Demidov D, Rutten T, et al. Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells[J]. Cytogenet Genome Res,2005,109(1-3):148-155.
    [24]Ross K J, Fransz P, Armstrong S J, et al. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines[J]. Chromosome Res,1997,5(8):551-559.
    [25]Caryl A P, Armstrong S J, Jones G H, et al. A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1[J]. Chromosoma,2000,109(1-2):62-71.
    [26]Armstrong S J, Caryl A P, Jones G H, et al. Asyl, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica[J]. J Cell Sci, 2002,115(Pt18):3645-3655.
    [27]Nonomura K. I, Nakano M, Murata K, et al. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J]. Mol Genet Genomics,2004,271(2):121-129.
    [28]Nonomura K, Nakano M, Eiguchi M, et al. PAIR2 is essential for homologous chromosome synapsis in rice meiosis Ⅰ[J]. J Cell Sci,2006,119(Pt 2):217-225.
    [29]Revenkova E, Jessberger R. Shaping meiotic prophase chromosomes:cohesins and synaptonemal complex proteins[J]. Chromosoma,2006,115(3):235-240.
    [30]Chelysheva L, Diallo S, Vezon D, et al. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis[J]. J Cell Sci,2005,118(Pt 20):4621-4632.
    [31]Liu C C, McElver J, Tzafrir I, et al. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype[J]. Plant J,2002,29(4):405-415.
    [32]Dong F, Cai X, Makaroff C A. Cloning and characterization of two Arabidopsis genes that belong to the RAD21/REC8 family of chromosome cohesin proteins[J]. Gene, 2001,271(1):99-108.
    [33]Bai X, Peirson B N, Dong F, et al. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis[J]. Plant Cell,1999,11(3):417-430.
    [34]Bhatt A M, Lister C, Page T, et al. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family[J]. Plant J, 1999,19(4):463-472.
    [35]Cai X, Dong F, Edelmann R E, et al. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing[J]. J Cell Sci,2003,116(Pt 14):2999-3007.
    [36]Peirson B N, Bowling S E, Makaroff C A. A defect in synapsis causes male sterility in a T-DNA-tagged Arabidopsis thaliana mutant[J]. Plant J,1997,11(4):659-669.
    [37]Zhang L, Tao J, Wang S, et al. The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis[J]. Plant Mol Biol,2006,60(4):533-554.
    [38]Golubovskaya I N, Hamant O, Timofejeva L, et al. Alleles of afdl dissect REC8 functions during meiotic prophase I[J]. J Cell Sci,2006,119(Pt 16):3306-3315.
    [39]Pawlowski W P, Golubovskaya I N, Cande W Z. Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition[J]. Plant Cell,2003,15(8):1807-1816.
    [40]Harper L, Golubovskaya I, Cande W Z. A bouquet of chromosomes[J]. J Cell Sci,2004,117(Pt 18):4025-4032.
    [41]Martinez-Perez E, Shaw P, Reader S, et al. Homologous chromosome pairing in wheat[J]. J Cell Sci,1999,112 (Pt 11):1761-1769.
    [42]Bass H W, Riera-Lizarazu O, Ananiev E V, et al. Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophase[J]. J Cell Sci,2000,113 (Pt 6):1033-1042.
    [43]Cowan C R, Cande W Z. Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules[J]. J Cell Sci,2002,115(Pt 19):3747-3756.
    [44]Noguchi J. Homolog pairing and two kinds of bouquets in the meiotic prophase of rye, Secale cereale[J]. Genes Genet Syst,2002,77(1):39-50.
    [45]Maestra B, Hans D J J, Shepherd K, et al. Chromosome arrangement and behaviour of two rye homologous telosomes at the onset of meiosis in disomic wheat-5RL addition lines with and without the Phl locus[J]. Chromosome Res,2002,10(8):655-667.
    [46]Niwa O, Shimanuki M, Miki F. Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis[J]. EMBO J, 2000,19(14):3831-3840.
    [47]Trelles-Sticken E, Dresser M E, Scherthan H. Meiotic telomere protein Ndjlp is required for meiosis-specific telomere distribution, bouquet formation and efficient homologue pairing[J]. J Cell Biol,2000,151(1):95-106.
    [48]Golubovskaya I N, Harper L C, Pawlowski W P, et al. The paml gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.)[J]. Genetics, 2002,162(4):1979-1993.
    [49]Keeney S, Giroux C N, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spol 1, a member of a widely conserved protein family[J]. Cell,1997,88(3):375-384.
    [50]Hartung F, Puchta H. Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants[J]. Gene,2001,271 (1):81-86.
    [51]Stacey N J, Kuromori T, Azumi Y, et al. Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination [J]. Plant J,2006,48(2):206-216.
    [52]Grelon M, Vezon D, Gendrot G, et al. AtSPO11-1 is necessary for efficient meiotic recombination in plants[J]. EMBO J,2001,20(3):589-600.
    [53]Pawlowski W P, Golubovskaya I N, Timofejeva L, et al. Coordination of meiotic recombination, pairing, and synapsis by PHS1[J]. Science,2004,303(5654):89-92.
    [54]Gallego M E, Jeanneau M, Granier F, et al. Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity[J]. Plant J,2001,25(1):31-41.
    [55]Daoudal-Cotterell S, Gallego M E, White C I. The plant Rad50-Mrell protein complex[J]. FEBS Lett,2002,516(1-3):164-166.
    [56]Bleuyard J Y, Gallego M E, White C I. Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination[J]. Chromosoma,2004,113(4):197-203.
    [57]Puizina J, Siroky J, Mokros P, et al. Mrell deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spoll-dependent genome fragmentation during meiosis[J]. Plant Cell,2004,16(8):1968-1978.
    [58]Akutsu N, Iijima K, Hinata T, et al. Characterization of the plant homolog of Nijmegen breakage syndrome 1:Involvement in DNA repair and recombination[J]. Biochem Biophys Res Commun,2007,353(2):394-398.
    [59]Klimyuk V I, Jones J D. AtDMCl, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression[J]. Plant J,1997,11(1):1-14.
    [60]Doutriaux M P, Couteau F, Bergounioux C, et al. Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana[J]. Mol Gen Genet,1998,257(3):283-291.
    [61]Jones G H, Armstrong S J, Caryl A P, et al. Meiotic chromosome synapsis and recombination in Arabidopsis thaliana; an integration of cytological and molecular approaches[J]. Chromosome Res,2003,11(3):205-215.
    [62]Li W, Chen C, Markmann-Mulisch U, et al. The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis[J]. Proc Natl Acad Sci U S A, 2004,101 (29):10596-10601.
    [63]Neale M J, Keeney S. Clarifying the mechanics of DNA strand exchange in meiotic recombination[J]. Nature,2006,442(7099):153-158.
    [64]Terasawa M, Shinohara A, Hotta Y, et al. Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages[J]. Genes Dev,1995,9(8):925-934.
    [65]Franklin A E, McElver J, Sunjevaric I, et al. Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase[J]. Plant Cell,1999,11(5):809-824.
    [66]Anderson L K, Hooker K D, Stack S M. The distribution of early recombination nodules on zygotene bivalents from plants[J]. Genetics,2001,159(3):1259-1269.
    [67]Anderson L K, Doyle G G, Brigham B, et al. High-resolution crossover maps for each bivalent of Zea mays using recombination nodules[J]. Genetics,2003,165(2):849-865.
    [68]Anderson L K, Offenberg H H, Verkuijlen W M, et al. RecA-like proteins are components of early meiotic nodules in lily[J]. Proc Natl Acad Sci U S A,1997,94(13):6868-6873.
    [69]Couteau F, Belzile F, Horlow C, et al. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmcl mutant of Arabidopsis[J]. Plant Cell, 1999,11(9):1623-1634.
    [70]Siaud N, Dray E, Gy I, et al. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmcl[J]. EMBO J,2004,23(6):1392-1401.
    [71]Lin Z, Kong H, Nei M, et al. Origins and evolution of the recA/RAD51 gene family:evidence for ancient gene duplication and endosymbiotic gene transfer[J]. Proc Natl Acad Sci U S A, 2006,103(27):10328-10333.
    [72]Abe K, Osakabe K, Nakayama S, et al. Arabidopsis RAD51C gene is important for homologous recombination in meiosis and mitosis[J]. Plant Physiol,2005,139(2):896-908.
    [73]Bleuyard J Y, White C I. The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis[J]. EMBO J,2004,23(2):439-449.
    [74]Li W, Yang X, Lin Z, et al. The AtRAD51C gene is required for normal meiotic chromosome synapsis and double-stranded break repair in Arabidopsis[J]. Plant Physiol, 2005,138(2):965-976.
    [75]Sharan S K, Pyle A, Coppola V, et al. BRCA2 deficiency in mice leads to meiotic impairment and infertility[J]. Development,2004,131 (1):131-142.
    [76]Dray E, Siaud N, Dubois E, et al. Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc 1, and Dss1 [J]. Plant Physiol,2006,140(3):1059-1069.
    [77]Allers T, Lichten M. Differential timing and control of noncrossover and crossover recombination during meiosis[J]. Cell,2001,106(1):47-57.
    [78]Hunter N, Kleckner N. The single-end invasion:an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination[J]. Cell, 2001,106(1):59-70.
    [79]Higgins J D, Armstrong S J, Franklin F C, et al. The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination:evidence for two classes of recombination in Arabidopsis[J]. Genes Dev,2004,18(20):2557-2570.
    [80]Jean M, Pelletier J, Hilpert M, et al. Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana[J]. Mol Gen Genet,1999,262(4-5):633-642.
    [81]Jackson N, Sanchez-Moran E, Buckling E, et al. Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis[J]. EMBO J,2006,25(6):1315-1323.
    [82]Franklin F C, Higgins J D, Sanchez-Moran E, et al. Control of meiotic recombination in Arabidopsis:role of the MutL and MutS homologues[J]. Biochem Soc Trans,2006,34(Pt 4):542-544.
    [83]Chen C, Zhang W, Timofejeva L, et al. The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation[J]. Plant J,2005,43(3):321-334.
    [84]Mercier R, Jolivet S, Vezon D, et al. Two meiotic crossover classes cohabit in Arabidopsis:one is dependent on MER3,whereas the other one is not[J]. Curr Biol,2005,15(8):692-701.
    [85]Wijeratne A J, Chen C, Zhang W, et al. The Arabidopsis thaliana PARTING DANCERS gene encoding a novel protein is required for normal meiotic homologous recombination[J]. Mol Biol Cell,2006,17(3):1331-1343.
    [86]Copenhaver G P, Housworth E A, Stahl F W. Crossover interference in Arabidopsis[J]. Genetics,2002,160(4):1631-1639.
    [87]Stack S M, Anderson L K. Crossing over as assessed by late recombination nodules is related to the pattern of synapsis and the distribution of early recombination nodules in maize[J]. Chromosome Res,2002,10(4):329-345.
    [88]Moens P B, Kolas N K, Tarsounas M, et al. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination[J]. J Cell Sci, 2002,115(Pt8):1611-1622.
    [89]Pawlowski W P, Cande W Z. Coordinating the events of the meiotic prophase[J]. Trends Cell Biol,2005,15(12):674-681.
    [90]Stack S M, Anderson L K.A model for chromosome structure during the mitotic and meiotic cell cycles[J]. Chromosome Res,2001,9(3):175-198.
    [91]Moore G. CEREAL CHROMOSOME STRUCTURE, EVOLUTION, AND PAIRING[J]. Annu Rev Plant Physiol Plant Mol Biol,2000,51:195-222.
    [92]Martinez-Perez E, Shaw P, Moore G. The PhI locus is needed to ensure specific somatic and meiotic centromere association[J]. Nature,2001,411 (6834):204-207.
    [93]Mikhailova E I, Naranjo T, Shepherd K, et al. The effect of the wheat PhI locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting[J]. Chromosoma, 1998,107(5):339-350.
    [94]Prieto P, Shaw P, Moore G. Homologue recognition during meiosis is associated with a change in chromatin conformation[J]. Nat Cell Biol,2004,6(9):906-908.
    [95]Prieto P, Moore G, Reader S. Control of conformation changes associated with homologue recognition during meiosis[J]. Theor Appl Genet,2005,111(3):505-510.
    [96]Page S L, Hawley R S. The genetics and molecular biology of the synaptonemal complex[J]. Annu Rev Cell Dev Biol,2004,20:525-558.
    [97]Higgins J D, Sanchez-Moran E, Armstrong S J, et al. The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over[J]. Genes Dev,2005,19(20):2488-2500.
    [98]Mikhailova E I, Phillips D, Sosnikhina S P, et al. Molecular assembly of meiotic proteins Asyl and Zyp1 and pairing promiscuity in rye (Secale cereale L.) and its synaptic mutant sy10[J]. Genetics,2006,174(3):1247-1258.
    [99]Osman K, Sanchez-Moran E, Higgins J D, et al. Chromosome synapsis in Arabidopsis:analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex[J]. Chromosoma,2006,115(3):212-219.
    [100]Hamant O, Golubovskaya I, Meeley R, et al. A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions[J]. Curr Biol, 2005,15(10):948-954.
    [101]Liu Z, Makaroff C A. Arabidopsis separase AESP is essential for embryo development and the release of cohesin during meiosis[J]. Plant Cell,2006,18(5):1213-1225.
    [102]Chen C, Marcus A, Li W, et al. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis[J]. Development,2002,129(10):2401-2409.
    [103]Brady S T. A novel brain ATPase with properties expected for the fast axonal transport motor[J]. Nature,1985,317(6032):73-75.
    [104]Kim A J, Endow S A. A kinesin family tree[J]. J Cell Sci,2000,113 Pt 21:3681-3682.
    [105]Vale R D, Fletterick R J. The design plan of kinesin motors[J]. Annu Rev Cell Dev Biol, 1997,13:745-777.
    [106]Ruden D M, Cui W, Sollars V, et al. A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation[J]. Dev Biol,1997,191 (2):284-296.
    [107]Kidane D, Sakkas D, Nottoli T, et al. Kinesin 5B (KIF5B) is required for progression through female meiosis and proper chromosomal segregation in mitotic cells[J]. PLoS One, 2013,8(4):e58585.
    [108]Chen C, Marcus A, Li W, et al. The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis[J]. Development,2002,129(10):2401-2409.
    [109]Zhou S, Wang Y, Li W, et al. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice[J]. Plant Cell,2011,23(1):111-129.
    [110]Page S L, Hawley R S. The Drosophila meiotic mutant mei-352 is an allele of klp3A and reveals a role for a kinesin-like protein in crossover distribution[J]. Genetics,2005,170(4):1797-1807.
    [111]Endow S A, Chandra R, Komma D J, et al. Mutants of the Drosophila ncd microtubule motor protein cause centrosomal and spindle pole defects in mitosis[J]. J Cell Sci,1994,107 (Pt 4):859-867.
    [112]Giunta K L, Jang J K, Manheim E A, et al. subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster[J]. Genetics, 2002,160(4):1489-1501.
    [113]Ambrose J C, Cyr R. The kinesin ATK5 functions in early spindle assembly in Arabidopsis[J]. Plant Cell,2007,19(1):226-236.
    [114]Heald R. Motor function in the mitotic spindle[J]. Cell,2000,102(4):399-402.
    [115]Maney T, Ginkel L M, Hunter A W, et al. The kinetochore of higher eucaryotes:a molecular view[J]. Int Rev Cytol,2000,194:67-131.
    [116]Rieder C L, Salmon E D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle[J]. J Cell Biol,1994,124(3):223-233.
    [117]McKim K S, Hawley R S. Chromosomal control of meiotic cell division[J]. Science, 1995,270(5242):1595-1601.
    [118]Goldstein L S, Philp A V. The road less traveled:emerging principles of kinesin motor utilization[J]. Annu Rev Cell Dev Biol,1999,15:141-183.
    [119]Wittmann T, Wilm M, Karsenti E, et al. TPX2, A novel xenopus MAP involved in spindle pole organization[J]. J Cell Biol,2000,149(7):1405-1418.
    [120]Gruss O J, Carazo-Salas R E, Schatz C A, et al. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity[J]. Cell,2001,104(1):83-93.
    [121]Bayliss R, Sardon T, Vernos I, et al. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle[J]. Mol Cell,2003,12(4):851-862.
    [122]Setou M, Nakagawa T, Seog D H, et al. Kinesin superfamily motor protein KIF17 and mLin-10 inNMDA receptor-containing vesicle transport[J]. Science,2000,288(5472):1796-1802.
    [123]Klopfenstein D R, Vale R D. The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans[J]. Mol Biol Cell, 2004,15(8):3729-3739.
    [124]Peretti D, Peris L, Rosso S, et al. Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles[J].J Cell Biol,2000,149(1):141-152.
    [125]Huckaba T M, Gennerich A, Wilhelm J E, et al. Kinesin-73 is a processive motor that localizes to Rab5-containing organelles[J]. J Biol Chem,2011,286(9):7457-7467.
    [126]Sadananda A, Hamid R, Doodhi H, et al. Interaction with a kinesin-2 tail propels choline acetyltransferase flow towards synapse[J]. Traffic,2012,13(7):979-991.
    [127]Li H, Xue D, Gao Z, et al. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice[J]. Plant J,2009,57(4):593-605.
    [128]Sha Y, Li S, Pei Z, et al. Generation and flanking sequence analysis of a rice T-DNA tagged population[J]. Theor Appl Genet,2004,108(2):306-314.
    [129]Brunaud V, Balzergue S, Dubreucq B, et al. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites[J]. EMBO Rep,2002,3(12):1152-1157.
    [130]Nonomura K, Miyoshi K, Eiguchi M, et al. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice[J]. Plant Cell,2003,15(8):1728-1739.
    [131]Jung K H, Han M J, Lee Y S, et al. Rice Undeveloped Tapetum1 is a major regulator of early tapetum development[J]. Plant Cell,2005,17(10):2705-2722.
    [132]Li N, Zhang D S, Liu H S, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. Plant Cell,2006,18(11):2999-3014.
    [133]Chen R, Zhao X, Shao Z, et al. Rice UDP-glucose pyrophosphorylasel is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility[J]. Plant Cell,2007,19(3):847-861.
    [134]Nonomura K, Morohoshi A, Nakano M, et al. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice[J]. Plant Cell,2007,19(8):2583-2594.
    [135]Caryl A P, Armstrong S J, Jones G H, et al. A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asyl[J]. Chromosoma,2000,109(1-2):62-71.
    [136]Armstrong S J, Caryl A P, Jones G H, et al. Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica[J]. J Cell Sci, 2002,115(Pt 18):3645-3655.
    [137]Nonomura K I, Nakano M, Murata K, et al. An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis[J]. Mol Genet Genomics,2004,271(2):121-129.
    [138]Nonomura K, Nakano M, Eiguchi M, et al. PAIR2 is essential for homologous chromosome synapsis in rice meiosis I[J]. J Cell Sci,2006,119(Pt 2):217-225.
    [139]Nonomura K, Nakano M, Fukuda T, et al. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis[J]. Plant Cell,2004,16(4):1008-1020.
    [140]Yuan W, Li X, Chang Y, et al. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis[J]. Plant J,2009,59(2):303-315.
    [141]Deng Z Y, Wang T. OsDMCl is required for homologous pairing in Oryza sativa[J]. Plant Mol Biol,2007,65(1-2):31-42.
    [142]Kant C R, Rao B J, Sainis J K. DNA binding and pairing activity of OsDmcl, a recombinase from rice[J]. Plant Mol Biol,2005,57(1):1-11.
    [143]Rajanikant C, Kumbhakar M, Pal H, et al. DNA strand exchange activity of rice recombinase OsDmcl monitored by fluorescence resonance energy transfer and the role of ATP hydrolysis[J]. FEBS J,2006,273(7):1497-1506.
    [144]Zhang L, Tao J, Wang S, et al. The rice OsRad21-4, an orthologue of yeast Rec8 protein, is required for efficient meiosis[J]. Plant Mol Biol,2006,60(4):533-554.
    [145]Wang K, Tang D, Wang M, et al. MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice[J]. J Cell Sci,2009,122(Pt 12):2055-2063.
    [146]程治军,秦瑞珍,张欣,等.多倍体化引起植物表型突变的分子机理研究[J].作物学报,,2005,31(7):940-943.
    [147]秦瑞珍,程治军,郭秀平.利用同源四倍体花培途径创建水稻突变体群的研究[J].作物学报,2005,3 1(3):392-394.
    [148]Obmolova G, Ban C, Hsieh P, et al. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA[J]. Nature,2000,407(6805):703-710.
    [149]Lamers M H, Perrakis A, Enzlin J H, et al. The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch[J]. Nature,2000,407(6805):711-717.
    [150]Obmolova G, Ban C, Hsieh P, et al. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA[J]. Nature,2000,407(6805):703-710.
    [151]Timsit Y. Convergent evolution of MutS and topoisomerase Ⅱ for clamping DNA crossovers and stacked Holliday junctions[J]. J Biomol Struct Dyn,2001,19(2):215-218.
    [152]Ribarits A, Mamun A N, Li S, et al. Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen[J]. Plant Biotechnol J,2007,5(4):483-494.
    [153]Muhitch M J. Distribution of the glutamine synthetase isozyme GSpl in maize (Zea mays)[J]. J Plant Physiol,2003,160(6):601-605.
    [154]Schoenbeck M A, Temple S J, Trepp G B, et al. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene[J]. J Exp Bot,2000,51(342):29-39.
    [155]Greber U F, Way M. A superhighway to virus infection[J]. Cell,2006,124(4):741-754.
    [156]Hoepfner S, Severin F, Cabezas A, et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B[J]. Cell,2005,121 (3):437-450.
    [157]Gallardo F, Fu J, Canton F R, et al. Expression of a conifer glutamine synthetase gene in transgenic poplar[J]. Planta,1999,210(1):19-26.
    [158]Migge A, Carrayol E, Hirel B, et al. Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings[J]. Planta, 2000,210(2):252-260.
    [159]Brauer E K, Rochon A, Bi Y M, et al. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetasel[J]. Physiol Plant,2011,141 (4):361-372.
    [160]杨弘远.水稻生殖生物学[b].浙江大学出版社,2006.
    [161]WayneM.B, Lewis j.K, jeff H, et al. World of the cell [b]. pearson Benjamin cummings,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700