母体孕期炎症免疫刺激导致子代大鼠心肌血管重构及其机制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管疾病具有高患病率、高致残率、高死亡率的特点,其发病率和死亡率已超过肿瘤性疾病而跃居第一。心肌血管重构是心血管疾病发生发展的病理基础,心肌重构能够导致猝死、心肌梗死、心律失常等心血管意外事件,其中由重构而心衰是心血管疾病患者死亡的主要原因之一。血管重构是引起血管疾病和循环功能紊乱的病理基础,是引起高血压各种严重并发症的关键环节。对于心肌血管重构的病因研究目前主要包括机械刺激、神经体液因素等,仅仅是围绕成年个体展开,尚未完全阐明。近年来包括我室在内的关于炎症在心血管疾病发病中重要作用的发现是对心血管疾病病因寻找中最重要的进展之一,我室经过近7年的孕期炎症免疫刺激与子代心血管疾病之间关系的探索研究,成功地建立了大鼠孕期腹腔注射脂多糖(lipopolysaccharide,LPS)及酵母多糖(zymosan)引起子代高血压和体重增加的动物模型,并在一系列实验的基础上,提出了高血压病因探索的新假说:原发性高血压的形成可能要追溯来自于孕期的炎症免疫刺激所致,这一发现作为特别首报发表于2007年期刊《Acta Pharmacologica Sinica》。进一步研究发现子代动物出现了肾素-血管紧张素及内皮素系统的高表达,这一系列神经体液因素的改变,是心肌、血管重构发生的重要危险因素,因此,我们推测孕期的炎症免疫刺激可能会导致子代大鼠的心肌、血管重构,从而可能引发患者更为严重的心血管事件发生甚至死亡,据此我们在原有实验基础上,将所提出的假说拟进行范围上的延伸,即:原发性高血压、心肌血管重构等心血管疾病的形成可能要追溯来自于孕期的炎症免疫刺激所致。既往对于高血压、心肌血管重构等心血管疾病的预防和控制都是在病人成年以后,疾病已经发生了,才开始进行对症处理,该理论的提出将会扩大以往人们对于原发性高血压、心肌血管重构预防和治疗的时间窗。
     方法:
     1. 24只通过检查阴栓获得准确妊娠时间的怀孕SD大鼠,随机分为3组,三组孕鼠分别在妊娠8、10、12天,腹腔注射0.79mg/kgLPS(LPS组);在孕第8、10、12天腹腔注射LPS 0.79mg/kg,第8-14天注射LPS后每天腹腔注射PDTC 100 mg/kg(LPS+PDTC组);在孕第8-14天腹腔注射无菌生理盐水1ml无菌生理盐水(对照组);因前期实验发现孕期8-14天单纯注射PDTC,对于孕鼠和仔鼠均没有任何影响,故此本实验未设PDTC组。子代大鼠随机选取用于该实验(雄性:对照组,n=18;LPS组,n=18;L+P组,n=18;雌性:对照组,n=18;LPS组,n=18;L+P组,n=18)。
     2.通过以下方法对孕期炎症免疫刺激及同时给予NF-κB抑制剂后导致子代大鼠的心血管功能变化进行评价:①大鼠血压的测定采用无创尾套法;②超声心动图评价大鼠的左心室、右心室结构和心功能;③心肥厚指数及左心室肥厚指数的测定评价大鼠的心室肥厚程度;④主动脉重构的评价采用病理切片HE染色,图像分析测定大鼠主动脉血管中层壁厚(MT)和内径(LD)并计算二者比值(MT/LD)的方法;⑤HE染色,光镜下观察大鼠心肌、血管平滑肌组织形态学改变;⑥透射电镜观察大鼠心肌细胞、血管平滑肌细胞超微结构的改变。
     3.用放射免疫法检测血浆ET-1水平、硝酸还原酶法测定血清NO含量、用TdT介导的缺口末端标记法(TUNEL)检测左心室心肌细胞凋亡的变化,用免疫组织化学技术观察心肌、血管平滑肌NF-κBp65的激活、血管平滑肌细胞增殖细胞核抗原(PCNA),左心室Bcl-2抗原和Bax抗原表达的变化。
     结果:
     1.对照组、LPS组、L+P组每只孕鼠生育仔鼠的数量、雌雄比例及胎鼠出生体重,各组之间均没有明显统计学差异(P>0.05)。
     2.孕期炎症免疫刺激对于仔鼠血压的影响: LPS组仔鼠从2月龄起,同对照组仔鼠相比较,无论雌雄,血压均出现具有统计学意义的升高(P<0.05),该升高趋势一直持续到8月龄,在6月龄达到高血压标准,而在L+P组,则有效阻止了其血压统计学意义上的升高。
     3.孕期炎症免疫刺激对于仔鼠心室重构的影响:
     (1) LPS模型组仔鼠有明显的左心室重构现象:与正常组相比,LPS模型组仔鼠无论雌雄,在4月龄时出现了左室后壁厚度(PWT)的增厚,8月龄时则出现了左室后壁厚度(PWT)、室间隔厚度(IVST)、心肌肥厚指数(HMI)、左心室肥厚指数(LVMI)明显增高(p<0.05);而在L+P组,则有效改善了这一改变。
     (2) LPS模型组仔鼠有明显的心肌舒张功能障碍:与正常组相比,LPS模型组仔鼠无论雌雄,在8月龄时均出现了E/A指数、Tei指数的升高(p<0.05);而在L+P组,则有效改善了这一改变。
     (3)病理及电镜:
     ①LPS模型组仔鼠,无论雌雄,心肌组织形态及心肌细胞超微结构受到损伤,光镜下可见心肌细胞明显浊肿,空泡样变化;细胞核肥大或固缩;细胞内容物呈颗粒状,断裂融合。电镜下可见心肌细胞肿大,核肥大、畸形、溶解等呈不规则变化;肌浆网扩张;线粒体增生明显,排列紊乱,不同程度(轻、中、重)肿胀,内有空泡形成。②在L+P组,孕期PDTC腹腔注射,能明显改善上述病理改变及心肌细胞超微结构,心肌组织形态及心肌细胞超微结构基本正常。
     4.孕期炎症免疫刺激对于仔鼠血管重构的影响:
     (1) LPS模型组仔鼠血管平滑肌存在明显重构现象:
     与对照组相比,4月龄和8月龄时,LPS组胸主动脉MT明显增加、LD也明显增大,而MT/LD值也明显增高(p<0.05),表明LPS组大鼠胸主动脉在4月龄时即存在着明显的血管重构现象。而在L+P组仔鼠则明显改善了这一现象。
     (2)病理及电镜:
     ①LPS模型组仔鼠,无论雌雄,平滑肌细胞肥大增生明显,排列紊乱,细胞核明显增多。电镜下可见管壁中膜平滑肌细胞明显肥大,核形态不规则,核内常染色质丰富,核浆间隙增大,肌膜下吞饮小泡减少,肌丝成分少,细胞外纤维成分增多,平滑肌细胞内线粒体肿胀,密度低,呈现嵴溶解和空泡样变性,粗面内质网增多。②在L+P组,孕期PDTC腹腔注射,能明显改善上述病理改变及血管平滑肌细胞超微结构,血管平滑肌组织形态及平滑肌细胞超微结构基本正常。
     5.对孕期炎症免疫刺激导致仔鼠心肌血管重构的机制研究;
     (1) LPS模型组子代大鼠第2、4、6、8月龄血浆ET-1较对照组均显著升高(P<0.05),至8月龄子鼠出现心肌血管重构时,其水平升高加快,LPS组血浆ET-1水平为(151.07±19.03)μmol/L,较对照组(78.56±12.39)μmol/L和L+P组的(84.78±5.71)μmol/L明显升高接近1倍。
     (2) LPS模型组大鼠的心肌和血管平滑肌NF-κBp65被激活,从胞浆中转移到细胞核,阳性细胞比率明显较对照组和L+P组增多(P<0.01),在正常心肌和血管平滑肌组织中,则基本没有NF-κBp65表达。
     (3) LPS组子代大鼠左心室心肌细胞TUNEL阳性心肌细胞的数量较对照组和L+P组明显增多(P<0.01),左心室心肌细胞的Bcl-2抗原的表达明显下调(P<0.01)、而心肌细胞的Bax抗原的表达则明显上调(P<0.01)。
     (4)子代大鼠第2、4、6、8月龄血清NO各组之间较对照组无统计学差异(P>0.05),与对照组和L+P组相比,LPS组子代大鼠胸主动脉PCNA表达增加显著增加(P<0.01),说明其血管平滑肌细胞增殖明显。
     结论:
     1.孕期暴露于LPS后,子代大鼠6月龄时高血压形成,成功的建立了孕期炎症刺激导致子代高血压的大鼠动物模型。
     2.孕期暴露于LPS后,子代大鼠4月龄时出现了向心性重构现象,8月龄出现了向心性肥厚并伴有心肌舒张功能障碍,说明孕期LPS刺激导致了子代大鼠心肌重构,其发生于高血压形成之前并在高血压形成后明显加重。
     3.孕期暴露于LPS后,子代大鼠4月龄时出现了血管重构,8月龄时重构更加明显,表明孕期LPS刺激导致了子代大鼠的血管重构,同心肌重构一样发生于高血压形成之前,并在高血压形成后明显加重。
     4.孕期的炎症免疫刺激导致了子代大鼠心肌、血管重构的发生,其发病机制可能与血浆ET-1水平的升高和NF-κBp65的激活有关;其中子代大鼠心肌重构的机制,可能还与心肌细胞凋亡增多有关;血管重构的机制,可能还与ET-1/NO失衡,血管平滑肌细胞增殖增多有关。
     5.在孕期暴露于LPS同时给予NF-κB的抑制剂PDTC的子代大鼠,有效改善了血压升高、心肌血管重构的现象,NF-κB可能是生命早期有效防治子代心血管疾病发生的靶点之一。
BACKGROUD: Cardiovascular disease ranks among the leading causes of morbidity and mortality in adult populations in most countries in the world. Hypertension is a major risk factor of cardiovascular diseases and its underlying pathogenetic mechanisms are still not well elucidated. Significant progress in understanding the etiology of cardiovascular disease has come from recent recognition that inflammation plays a key role in its development. Accumulating clinical evidences have implied that inflammation was also related to hypertension to some extent. Sesso and his colleagues reported a positive relationship between increased serum levels of C-reactive protein and the risk for development of incident hypertension in participants of the Women’s Health Study. Bautista et al discovered the serum level of IL-6 elevated in hypertensive patients.
     Moreover, Events in utero appear to have a significant role in the development of cardiovascular dysfunction in adulthood. Emerging evidence indicates that there are multiple causes of hypertension and that adverse conditions experienced in utero can increase the incidence of hypertension in adulthood. Systemic inflammatory response during pregnancy represents one form of stressful event for the fetus. In a previous study, we showed that prenatal exposure to lipopolysaccharide (LPS), commonly used to mimic prenatal infection, resulted in hypertension in rat offspring. We mentioned the hypothesis that maternal inflammation could induce hypertension in offspring. However, does the stressful event of maternal inflammation only result in hypertension in offspring? Are there anyother cardiovascular events come out accompanied with hyepertension? Therefore, in the present study, we investigated the prolonged hypothesis that, as a common pathophysiological phenomenon, maternal inflammatory stress can not only cause hypertension but also can cause hypermyotrophy in adult offspring.
     AIM: The study is designed to study the effects of prenatal exposure to LPS on the function and construction of cardiac and vascular in offspring in rats. In addition, the effects of an inhibitor of the nuclear transcription factor NF-κB (pyrrolidine dithiocarbamate, PDTC) on this process were assessed.
     METHODS:
     1. Twenty-four time-mated Sprague-Dawley (SD) rats’dams were randomly divided into three groups: a control group, an LPS group, and an LPS+PDTC group. The rats in these groups were intraperitoneally administered vehicle, 0.79mg /kg LPS, or LPS plus 100mg/kg PDTC, respectively. LPS was given on the 8th, 10th and 12th days, whereas PDTC was given from the 8th to the 14th day during gestation. The pups were randomly chosen to be included in this study (males: controls, n=18; LPS-treated, n = 18; LPS+PDTC-treated, n=18; females: controls, n =18; LPS-treated, n = 18; LPS+PDTC-treated, n=18).
     2. The pups’systolic blood pressure (SBP) was measured once every tow months from the 2th month to 8th month with tail-cuff method. At the end of 4th and 8th month of the experiment, the heart mass index (HMI) and the LV mass index (LVMI) was evaluated. In addition, LV and RV structure and function, vascular structure and their microstructure and ultrastructure were examined using echocardiography, routine light microscopy and transmission electron microscopy, respectively.
     3. The blood plasma level of endothelin-1 (ET-1) was measured by RIA, and the serum level of nitric oxide (NO) was measured by nitrate reductase method.
     4. The expression of NF-κBp65, Bcl-2 and Bax antigen in left ventricles and the NF-κBp65, PCNA on VSMCs were done through immunohistochemical technique. The TdT mediated nick dUTP end labeling (TUNEL) technique was used to observe the apoptosis of cardiomyocytes in left ventricles.
     RESULTS
     1. There were no significant differences in the number of progeny per dam (P>0.05). Meanwhile, no significant differences were discovered about the ratio of male births to female births in each litter (P>0.05). The body weights of newborn pups did not differ much between the LPS, LPS+PDTC and control groups (P>0.05).
     2. All offspring to LPS exposed dams showed increased systolic blood pressure (P<0.05). They reached the standard of hypertension at the end of 6th month.
     3. As compared with the control group, prenatal exposure to LPS increased LV posterior wall thickness(PWT) on 4th month in offspring, and the thickness of the interventricular septum(IVST), LVMI, E/A index and Tei index(P<0.05) on 8th month in offspring were singnificantly increased in LPS group.There were no change in LPS+PDTC group(P>0.05).
     4. In prenatal LPS-treated offspring, the microstructure of left ventricles was as follows: the cardiomyocytes hypertrophy, interstitium fibrosis and myofibrilla lined up in disorder. However, prenatal treated with PDTC improved these morphological changes to some extent.
     5. The MT, LD and the media/lumen ratios (MT/LD) were increased significantly in offspring with LPS-exposed dam by comparison of control (P<0.05) on 4th month. However, there were no change in LPS+PDTC group (P>0.05).
     6. In prenatal LPS-treated rats, the ultrastructure of left ventricular cadiocytes was observed as the mitochondria swell and medullary sheath-like degeneration, the sarcoplasmic reticulum enlarged and the myofilaments dissolved and the Z lines broken. However, prenatal treated with PDTC improved these morphological changes.
     7. At the end of the 2th, 4th, 6th, 8th month, the blood plasma level of ET-1 of LPS-exposed dam was higher than the control (P<0.05). Until the 8th month, the level of ET-1 was (151.07±19.03)μmol/L, which was nearly doubled comparing with the control (78.56±12.39)μmol/L and LPS+PDTC group (84.78±5.71)μmol/L (P<0.01).
     8. The NF-κBp65 was activited in left ventricular cadiocytes and VSMCs in LPS group(P<0.01). However, there was almost no expression in control and LPS+PDTC group.
     9. As compared with the control group, prenatal exposure to LPS induced the apoptosis of cardiomyocytes and the over-expression of the Bax antigen and the low-expression of Bcl-2 antigen in the left ventricle tissues, respectively (P<0.01). However, prenatal treated with PDTC markedly attenuated the above changes.
     10. Compared with the control, the VSMCs proliferation activity was obviously increased in LPS group (P<0.01). While there were no change in the LPS+PDTC group.
     11. There were no significant differences in the serum level of NO in offspring among LPS , LPS+PDTC group and control group at the end of the 2th, 4th, 6th, 8th month (P>0.05).
     CONCLUSION
     1. Prenatal exposure to LPS results in left ventricle and vasuclar remodeling on the 4th month in offspring in rats.
     2. The blood plasma level of ET-1 and the expression of NF-κBp65 of LPS-exposed group is higher than the control. These changes might be the potential underlying mechanism of development of hypermyotrophy and vascular remodeling.
     3. Prenatal LPS exposure induced left ventricle remodeling. The mechanism is associated with the apoptosis in left ventricular cardiomyocytes to some extent. The mechanism may be relative to the overexpression of Bax antigen, low expression of Bcl-2 antigen.
     4. Prenatal LPS exposure induced vascular remodeling, which is relative to the impressing effect on the proliferation of VSMCs and the disequilibrium between the serum level of ET-1 and NO.
     5. There were no hypertension, hypermyotrophy and vascular remodeling in LPS+PDTC group. It showed that prenatal treated with inhibitor of the nuclear transcription factor NF-κB (pyrrolidine dithiocarbamate, PDTC) could reversed the effection of maternal inflammation on cardiovascular diseases in offapring in rats.
引文
1. World Health Organization. World health statistics 2008 [ EB /OL ]. [ 2008- 05- 20 ]. http: / /www. who. int/ whosis/whostat/EN_WHS08_Full. pdf.
    2. Sesso HD, Buring JE, Rifai N, et al. C-reactive protein and the risk of developing hypertension. JAMA, 2003;290 (22): 2945-2951.
    3. Brunton PJ, Meddle SL, Ma S, Ochedalski T, Douglas AJ, Russell JA. Endogenous opioids and attenuated hypothalamic-pituitary-adrenal axis responses to immune challenge in pregnant rats. J Neurosci. 2005, 25(21):5117-26.
    4. Beishuizen A, Thijs LG. Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res . 2003,9(1):3-24.
    5. Volman TJ, Hendriks T, Goris RJ. Zymosan-induced generalized inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome. Shock .2005, 23 (4):291-7.
    6. Lozano FS, Barros MB, Fresnadillo MJ, Garcia-Criado FJ, Gomez-Alonso A. Nitric oxide prevents the bacterial translocation and inhibits the systemic inflammatory response produced by implantation of a vascular prosthesis followed by Zymosan A. Inflamm Res. 2005,54 (6):261-70.
    7. Yan-ling WEI, Xiao-hui LI, Jian-zhi ZHOU. Prenatal exposure to lipopolysaccharide results in increases in blood pressure and body weight in rats. Acta Pharmacologica Sinica 2007, 28 (5): 651-656.
    8. Wenqiang Liao, Yanling Wei, Xiaohui Li, Prenatal exposure to Zymosan results in hypertension in adult offspring rats[J]. Clinical and Experimental Pharmacology and Physiology. 2008, 35(12):1413-1418.
    9. Barbara T Alexander, Norma B. Editoral Commentary: Prenatal Inflammation and the Early Origins of Hypertension. Clin Exp Pharmacol Physiol 2008;35(12):1403-4.
    10. McKinsey TA, Kass DA.Small-molecule therapies for cardiac hypertrophy: moving beneath the cell surface. Nat Rev Drug Discov. 2007; 6(8):617-35.
    11. Domenighetti AA, Boixel C, Cefai D, et al. Chronic angiotensin II stimulation in the heart produces an acquired long QT syndrome associated with IK1 potassium currentdownregulation. J Mol Cell Cardiol. 2007; 42(1):63-70.
    12. Dietrich A, Kalwa H, Fuchs B, et al. In vivo TRPC functions in the cardiopulmonary vasculature. Cell Calcium. 2007; 42(2):233-44.
    13. Gradman AH, Alfayoumi F. From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis. 2006;48(5): 326-341.
    14. Kota M, Krishna Gopisetty S, Gopal Chitrapu R.V. A non-invasive evaluation by Doppler echocardiography in streptozotocin-induced diabetic rats. Vasc. Pharmacol. 2005; 43:91–100.
    15. Akula A, Kota MK, Gopisetty SG, et al. Biochemical histological and echocardiographical changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol. Res. 2003; 48:429–35.
    16. Rizzoni D, Muiesan ML, Porteri E, De Ciuceis C, Boari GE, Salvetti M, Paini A, Rosei EA.Vascular remodeling, macro- and microvessels: therapeutic implications[J]. Blood Press. 2009;18(5):242-6.
    17. Kai H, Kudo H, Takayama N, Yasuoka S, Kajimoto H, Imaizumi T.Large blood pressure variability and hypertensive cardiac remodeling--role of cardiac inflammation[J]. Circ J. 2009;73(12):2198-203.
    18. Torchinsky A, Toder V. To die or not to die: the function of the transcription factor NF-kappaB in embryos exposed to stress[J]. Am J Reprod Immunol,2004, 51(2): 138-143.
    19. Toder V, Carp H, Fein A ,et al. The role of pro-and anti–apoptotic molecular interactions in embryonic maldevelopment [J]. Am J Reprod Immunol,2002,48(4): 235-244.
    20. Olivetti G, Cigola E, Maestri R, et al. Recent advances in cardiac hypertrophy. Cardiovascular Research .2000; 45: 68-75.
    21. Pérez-Garijo A, Martín FA, Morata G.Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila[J]. Development. 2004;131(22):5591-8.
    22. Gupta S, Das B, Sen S. Cardiac hypertrophy: mechanisms and therapeutic opportunities.Antioxid Redox Signal. 2007; 9(6):623-652.
    23. Bussani R, Abbate A, Biondi-Zoccai GG, et al. Right ventricular dilatation after left ventricular acute myocardial infarction is predictive of extremely high peri-infarc-tual apoptosis at postmortem examination in humans. J Clin Pathol. 2003; 56: 672-676.
    24. Gorska D, Andrzejczak D. Influence of mianserin on the activity of some hypotensive drugs in spontaneously hypertensive rats. Pol J Pharmacol JT - Polish journal of pharmacology, 2003,55(3):409-17.
    25. Suzuki J, Ogawa M, Futamatsu H, et al. Tea catechinsimprove left ventricular dysfunction,suppress myocardial inflammation and fibrosis,and alter cytokine expression in rat autoimmune myocarditis. Eur. J. Heart Fail. 2007; 9:152-9.
    26. Lee SS, Naqvi TZ, Forrester J, et al. The effect of granulocyte colony stimulatingfactor on regional and global myocardial function in the porcine infarct model. Int. J.Cardiol.2007; 116:225-30.
    27. Plante E, Lachance D, Roussel E, et al. Impact of Anesthesia on Echocardiographic Evaluation of Systolic and Diastolic Function in Rats. J. Am. Soc. Echocardiogr. 2006; 19:1520-5.
    28. Jones JE, Mendes L, Rudd MA,et al. Serial noninvasive assessment of progressive pulmonary hypertension in a rat model. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H364-371.
    29. Mazzolai L, Pedrazzini T, Nicoud F et al. Increased cardiac angiotensin levelsinduce right and left ventricular hypertrophy in normotensive mice. Hypertension. 2000; 35:985-91.
    30. Hu CT, Chang HR, Hsu YH, et al. Ventricular hypertrophy and arterial hemodynamics following deprivation of nitric oxide in rats. Life Sci. 2005; 78:164-73.
    31. Jens Dyckmans, Charles M. Scrimgeour, Olaf Schmidt. A simple and rapid method for labelling earthworms with 15N and 13C. Soil Biology and Biochemistry. 2005; 37(5): 989-93.
    32. Barker DJ, Osmond C, Kajantie E, Eriksson JG. Growth and chronic disease: findings in the Helsinki Birth Cohort[J]. Ann Hum Biol. 2009;36(5):445-58.
    33. Olivotto I, Cecchi F, Gistri R, et al. Relevance of coronary microvascular flowimpairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2006; 47(5): 1043-8.
    34. Simko F, Luptak I, Matuskova J, et al. Heart remodeling in the hereditary hypertriglyceridemic rat : effect of captopril and nitric oxide deficiency. Ann N Y Acad Sci. 2002 ; 967 (3) :454– 462.
    35. Kota M, Krishna Gopisetty S, Gopal Chitrapu R.V. A non-invasive evaluation by Doppler echocardiography in streptozotocin-induced diabetic rats. Vasc. Pharmacol. 2005; 43:91–100.
    36. Akula A, Kota MK, Gopisetty SG, et al. Biochemical histological and echocardiographical changes during experimental cardiomyopathy in STZ-induced diabetic rats. Pharmacol. Res. 2003; 48:429–35.
    37. Watson LE, Sheth M, Denyer RF, et al. Baseline echocardiographic values for adult male rats. J. Am. Soc. Echocardiogr. 2004; 17:161-7.
    38. Brown L, Fenning A, Chan V, et al. Echocardiographic assessment of cardiac structure and function in rats. Heart Lung Circ. 2002; 11:167-73.
    39. Devi S, Kennedy RH, Joseph L, et al.Joseph J. Effect of long-term hyperhomocysteinemia on myocardial structure and function in hypertensive rats. Cardiovasc. Pathol. 2006; 15:75-82.
    40. Jones JE, Mendes L, Rudd MA,et al. Serial noninvasive assessment of progressive pulmonary hypertension in a rat model. Am. J. Physiol. Heart Circ. Physiol. 2002; 283: H364-371.
    41. Griendling K K, Dan S ,Mascko V F. NAD( P) H oxidase role in cardiovascular biology and disease [ J ] . Circ Res , 2000 ,86 (5) :494-501.
    42. Olivetti G, Cigola E, Maestri R, et al. Recent advances in cardiac hypertrophy. Cardiovascular Research .2000; 45: 68-75.
    43. Ishizuya-Oka A, Hasebe T, Shi YB. Apoptosis in amphibian organs during metamorphosis[J]. Apoptosis. 2010 ;15(3):350-64.
    44. Gupta S, Das B, Sen S. Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2007; 9(6):623-652.
    45. Klein D, Hohn HP, Kleff V, Tilki D, Ergün S. Vascular wall-resident stem cells[J].Histol Histopathol. 2010;25(5):681-9.
    46. Amorim RL, Pinczowski P, Neto RT, Rahal SC.Immunohistochemical evaluation of prostaglandin E2 and vascular endothelial growth factor in canine cutaneous mast cell tumours[J]. Vet Comp Oncol. 2010; 1;8(1):23-7.
    47. Zhang T, Feng Q. Nitric oxide and calcium signaling regulate myocardial tumor necrosis factor-alpha expression and cardiac function in sepsis[J]. Can J Physiol Pharmacol. 2010;88(2):92-104.
    48. Lima RF, Criddle DN, et, al. Bryothamnion seaforthii Lectin Relaxes Vascular Smooth Muscle: Involvement of Endothelium and NO Synthase. Protein Pept Lett. 2010;17(3):305-10.
    49. Miyamae M, Kaneda K, Domae N, Figueredo VM.Cardioprotection by regular ethanol consumption: potential mechanisms and clinical application[J].Curr Drug Abuse Rev. 2010 ;3(1):39-48.
    50. Chapman AB, Stepniakowski K, Rahbari-Oskoui F.Hypertension in autosomal dominant polycystic kidney disease[J]. Adv Chronic Kidney Dis. 2010;17(2):153-63.
    51. Aggarwal BB. Nuclear factor2kappaB: the enemy within [ J ]. Cancer Cell, 2004,6: 203-208.
    52. Ahn BH, Park HK, Cho HG, et al. Estrogen and enalapril attenuate the development of right ventricular hypertrophy induced by monocrotaline in ovariectomized rats. J Korean Med Sci. 2003; 18:641-648.
    53. Wright JW, Mizutani S , Harding JW, et al . Pat hways involved in the transition f rom hypertension to hypert rophy to heart failure : treatment st rategies. Heart Fail Rev , 2008 , 13 (3) : 367-375.
    54. Liu Y, Sun YF , Ma GX, et al. Correlating endothelin releasing function of vascular endothelial cells to tea polyphenols and angiotensinⅡ. J Clin Rehabi Tis Engine Res , 2008 , 12(2) :381-384.
    55. DeSmet HR , Menadue MF , Oliver J R , et al . Endot helin ETA receptor antagonism does not attenuate angiotensin II induced cardiac hypert rophy in vivo in rat s. Clin Exp Pharm Physiol , 2003 , 30 (4) : 278-283.
    56. Bredin F , Franco2Cereceda A. Reversed remodelling in dilated cardiomyopat hy bypassive containment surgery is associated wit h decreased circulating levels of endot helin-1. Eur J Cardio thorac Surg , 2006 , 29 (3) : 299-303.
    57. Laurance S, Pellay FX, et al. Hydroxycarbamide stimulates the production of proinflammatory cytokines by endothelial cells: relevance to sickle cell disease[J]. Pharmacogenet Genomics. 2010 ;20(4):257-68.
    58. Lesman A, Gepstein L, Levenberg S. Vascularization shaping the heart[J].Ann N Y Acad Sci. 2010;1188:46-51.
    59.王向宇,吴可贵,许昌声,等.血管紧张素Ⅱ、内皮素对SHR主动脉平滑肌细胞增殖的作用[J ] .高血压杂志,2000 ,8 (2) :176-178.
    60. Watanabe Y, Buckingham M.The formation of the embryonic mouse heart: heart fields and myocardial cell lineages[J]. Ann N Y Acad Sci. 2010;1188:15-24.
    61. Malan D, Wenzel D, et, al. Endothelial beta1 integrins regulate sprouting and network formation during vascular development. Development. 2010;137(6):993-1002.
    62.邱志宏,肖践明,杨百晖. ETA受体拮抗剂BQ123对急性心肌梗死后梗死面积与左室重构影响[J ] .云南医药,2005 ,26 (1) :226.
    63.曾欣.心脏胶原纤维增生及其影响因素[J] .心血管病学进展,2003 ,24 (4) :303-306.
    64. Hao XQ, Zhang HG, Yuan ZB, Yang DL, Hao LY, Li XH. Prenatal exposure to lipopolysaccharide alters the intrarenal renin-angiotensin system and renal damage in offspring rats. Hypertens Res. 2010;33(1):76-82.
    65. Leah S, Jason AP, Mon HS, et a1. Endothelin-induced increases in Ca2+ entry mechanisms of vascular contraction are enhanced during high-salt diet. Hypertension, 2003, 41(part 2):787-793.
    66. Farhad A, Agostino V, Mario FN, et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation, 2004, 110:2233-2240.
    67. Aggarwal BB. Nuclear factor2kappaB: the enemy within [ J ]. Cancer Cell, 2004,6: 203-208.
    68. Shishodia S,AggarwalBB. Nuclear factor-kappaB activation mediates cellular transformation, p roliferation, invasion angiogenesis and metastasis of cancer[ J ]. Cancer Treat Res, 2004, 119: 139-173.
    69. NeumannM,NaumannM. Beyond IκB s: alternative regulation of NF-κB activity [ J ]. FASEB J Rev, 2007, 21: 2642-2654.
    70. Bosco MC, Puppo M,et al. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration[J]. Immunobiology. 2008;213(9-10):733-49.
    71. Kawamura N, Kubota T, Kawano S, et al. B lockade of NF-κB imp roves cardiac function and survivalwithout affecting inflammation in TNF-αinduced cardiomy opathy[ J ]. Cardiovasc Res, 2005, 66: 520-529.
    72. B rownM,McGuinnessM,Wright T, et al. Cardiac specific blockade of NF-κB in cardiac pathophysiology: differences between acute and chronic stimuli in vivo [ J ]. Am J Physiol Heart Circ Physiol, 2005, 289: H466-H476.
    73. YANG Wei,YE Ping,ZHOU Xin,et al.Effects of pioglitazone on the expression of inflammatory cytokine of rats’hypertrophic cardiocytes.Chinese Journal of Geriatric Cardiovascular and Cerebrovascular Diseases, 2006,8(8):552-555.
    74. GUO Rui-wei,YANG Li-xia.Study of NF-κB in treatment of heart failure.Advances in Cardiovascular Diseases,2005, 26(3):288-290
    75. LIU Yi-wen. Study advances on relation of NF-κB and hypertrophic cardiomyopathy. Molecular Cardiology of China,2004,4(1):48-51.
    76. Kawamura N, Kubota T, Kawano S, et al.Blockade of NfkappaB improves cardiac function and survival without affecting nflammation in TNF-alpha-induced cardiomyopathy. CardiovascRes,2005,66(3):520-529.
    77. Bas L,Wick H, Rene A, et al. Angiotensin (127) attenuates neointintal forntation after stent imp lantation in the rat [ J ]. Hypertension, 2005, 45 (1) : 138-141.
    78.蔡文琴.主编.现代实用细胞与分子生物学实验技术.北京:人民军医出版社.2003.
    79. Farleyj, Ozbun L, Samimi G, et al. Cell cycle and reated protein. Dis Markers , 2007; 23: 433-443
    80. Li X, Stith CM, Burgers PM, Heyer WD. PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta[J]. Mol Cell. 2009, 25;36(4):704-13.
    81. Kret M, Arora R. Pathophysiological basis of right ventricular remodeling. J. Cardiovasc. Pharmacol. Ther. 2007; 12: 5-14.
    82. Olivetti G, Cigola E, Maestri R, et al. Recent advances in cardiac hypertrophy. Cardiovascular Research .2000; 45: 68-75.
    83. James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation. 1994; 90(1):556-573.
    84. Gupta S, Das B, Sen S. Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal. 2007; 9(6):623-652.
    85. Ruan M, Yan M, Yang WJ, et al. Role of NF-kappaB pathway in shikonin induced apoptosis in oral squamous cell carcinoma Tca-8113 cells. Shanghai Kou Qiang Yi Xue. 2010;19(1):66-71.
    86.王嘉宁,郭宁.细胞凋亡的检测技术与方法.中国药理学与毒理学杂志. 2005; 19(6): 466-470
    87. Kniewald H, Malcic I, Radosevic K, Gaurina Srcek V, Slivac I, Polancec D, Matijasic M, Kniewald J, Kniewald Z. Application of flow cytometry in the study of apoptosis in neonatal rat cardiomyocytes. Methods Find Exp Clin Pharmacol. 2007;29(10): 681-687.
    88. Isodono K, Takahashi T, et al. PARM-1 Is an Endoplasmic Reticulum Molecule Involved in Endoplasmic Reticulum Stress-Induced Apoptosis in Rat Cardiac Myocytes[J]. PLoS One. 2010 18;5(3):e9746.
    89. Anselmi A, Gaudino M, Baldi A, et al. Role of apoptosis in pressure-overload cardiomyopathy. J. Cardiovasc. Med. (Hagerstown). 2008; 9:227-232.
    90. Spender LC, Inman GJ.Targeting the BCL-2 family in malignancies of germinal centre origin[J].Expert Opin Ther Targets. 2009;13(12):1459-72.
    91.李醒三,文宏.缬沙坦对野百合碱所致肺动脉高压大鼠心肌细胞凋亡的影响.广西医科大学学报2004;21(6):816-819
    92. Papait R, Condorelli G.Epigenetics in heart failure[J]. Ann N Y Acad Sci. 2010 ;1188:159-64.
    93. Wang Z, Cao Y, et, al.Inhibition of endothelin converting enzyme-1 activity or expression ameliorates angiotensin II-induced myocardial hypertrophy in cultured cardiomyocytes[J]. Pharmazie. 2009;64(11):755-9.
    94. Koshman YE, Piano MR, Russell B, Schwertz DW. Signaling responses after exposureto 5{alpha}-dihydrotestosterone or 17{beta}-estradiol in norepinephrine-induced hypertrophy of neonatal rat ventricular myocytes[J]. J Appl Physiol. 2010;108(3): 686-96.
    95. Lu YM, Han F, Shioda N, et al. Phenylephrine-induced cardiomyocyte injury is triggered by superoxide generation through uncoupled endothelial nitric-oxide synthase and ameliorated by 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5, 6-dimethoxyindazole (DY-9836), a novel calmodulin antagonist.Mol Pharmacol. 2009; 75(1):101-112.
    96. Ren A, Yan X, Lu H, et al..Antagonism of endothelin-1 inhibits hypoxia-induced apoptosis in cardiomyocytes.Can J Physiol Pharmacol. 2008; 86(8):536-540.
    97. Xu J, Lu XW, Huang Y, et al. Synergism of simvastatin with losartan prevents angiotensin II-induced cardiomyocyte apoptosis in vitro. Pharm Pharmacol. 2009; 61(4):503-510.
    98. Sun CK, Chang LT, Sheu JJ, et al. Losartan preserves integrity of cardiac gap junctions and PGC-1 alpha gene expression and prevents cellular apoptosis in remote area of left ventricular myocardium following acute myocardial infarction. Int Heart J. 2007; 48(4):533-546.
    99. Villar AV, Cobo M, et al. Plasma levels of transforming growth factor-beta1 reflect left ventricular remodeling in aortic stenosis. PLoS One. 2009 30;4(12):e8476.
    100. Paolo P,Davide F,Elena R,et al. A role for calcium in Bcl-2 action Biochimie, 2002;84: 195-201.
    101.季红斌,翟琦巍,刘新垣,等. Bcl-2基因的转录调控.生物化学与生物物理学报, 2000,32: 95-99.
    102. Giotakis J, Gomatos IP, et al. Bax, cytochrome c, and caspase-8 staining in parotid cancer patients: Markers of susceptibility in radiotherapy? Otolaryngol Head Neck Surg. 2010;142(4):605-611.
    103. Xi YF, Wang GP, Li Y, Wang JF, Sun RF. Correlation of Bcl-2 with immunological subtype and prognosis in diffuse large B-cell lymphoma[J]. Zhonghua Xue Ye Xue Za Zhi. 2010;31(1):34-7.
    104. Xiao G, Fang H, Xing C, Xu W.Structure, function and inhibition of bcl-2 familyproteins: a new target for anti-tumor agents[J].Mini Rev Med Chem. 2009;9(14): 1596-604.
    105. Jin X, Sun J,et al. Study of geniposide-acid on anti-inflammatory action for adjuvant-induced arthritis rats and mechanism of synoviocyte apoptosis in vitro[J]. Zhongguo Zhong Yao Za Zhi. 2009;34(23):3082-6.
    106. Chen F, Yan ZK, Yang B.Effects of electroacupuncture on cerebral Bcl-2 and caspase-3 expression after cerebral ischemia reperfusion in rats[J]. Zhen Ci Yan Jiu. 2009;34(6): 363-7.
    107. Ott M, Robert JD, Gogvadze V, et al. Cytochrome C release from mitochondria proceeds by a two step process. Proc Natl Acad Sci USA. 2002, 99(3): 1259-1263.
    108. Hasnan J, Yusof MI, et al. Relationship between apoptotic markers (Bax and Bcl-2) and biochemical markers in type 2 diabetes mellitus. Singapore Med J. 2010;51(1): 50-5.
    109. Syk J, Undén AL, Alving K.Relationship between exhaled nitric oxide and IgE sensitisation in patients with asthma: influence of steroid treatment[J]. Clin Respir J. 2009 1;3(3):143-51.
    110. Yang C, Liu X, Li S.Effect of long-term treatment with urocortin on the activity of somatic angiotensin-converting enzyme in spontaneously hypertensive rats[J]. Can J Physiol Pharmacol. 2010;88(2):168-76.
    111. Adatia I, Shekerdemian L.The role of calcium channel blockers, steroids, anticoagulation, antiplatelet drugs, and endothelin receptor antagonists[J]. Pediatr Crit Care Med. 2010;11(2 Suppl):S46-52.
    112. Rastaldo R, Cappello S, et al. Low concentrations of an nitric oxide-donor combined with a liposoluble antioxidant compound enhance protection against reperfusion injury in isolated rat hearts. J Physiol Pharmacol. 2010 ;61(1):21-7.
    113. Taljaard M, Ward MR, et al. Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am Heart J. 2010;159(3):354-60.
    114. Blanco EE, Pinge MC, Andrade Neto OA, Pessoa NG.Effects of nitric oxide inmucociliary transport[J]. Braz J Otorhinolaryngol. 2009;75(6):866-71.
    115. Cicco G, Cicco S.The influence of oxygen supply, hemorheology and microcirculation in the heart and vascular systems[J]. Adv Exp Med Biol. 2010;662:33-9.
    116. Yuan L, Li X, Xu GL, Qi CJ Effects of renin-angiotensin system blockade on islet function in diabetic rats[J]. J Endocrinol Invest. 2010;33(1):13-9.
    117. Salazar Vázquez BY, Martini J,et al. Cardiovascular benefits in moderate increases of blood and plasma viscosity surpass those associated with lowering viscosity: Experimental and clinical evidence. Clin Hemorheol Microcirc. 2010;44(2):75-85.
    118. Schiffrin EL. Vascular endothelin in hypertension. Vascul Pharmacol, 2005, 43(1):19-29.
    119. Yagi S, Akaike M, et al. Endothelial Nitric Oxide Synthase-Independent Protective Action of Statin Against Angiotensin II-Induced Atrial Remodeling via Reduced Oxidant Injury. Hypertension. 2010 ;55(4):918-23.
    1. J?rg M. Strotmann, Bj?rn Lengenfelder, Jacques Blondelot,et al.Functional Differences of Left Ventricular Hypertrophy Induced by Either Arterial Hypertension or Aortic Valve Stenosis. The American Journal of Cardiology. 2008; 101(10):1493-97.
    2. Juan Liu, Qin Shen, Yang Wu. Simvastatin prevents cardiac hypertrophy in vitro and in vivo via JAK/STAT pathway. Life Sciences. 2008; 82(19-20) 991-96 .
    3. Schillaci G, Verdecchia P, Porcekkati C, et al.Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertens. 2007; 35:580-86.
    4. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension[ J ]. Hypertension, 1989, 13: 968 - 72.
    5.田翔,马爱群.机械牵张致心肌细胞肥大的信号机制[ J ].中国分子心脏病学杂志, 2002, 2 (5) : 46 - 9.
    6.尹智炜,史力生,陈志强,等.儿茶酚胺-β受体- cAMP系统在急性心肌梗死左室重塑中的生物学调控作用[ J ].中国老年学杂志, 2006, 26 (4) : 447– 50。
    7.刘仲;邹杰.氯沙坦对高血压性心脏病肥厚心肌的逆转效应及心功能的影响[ J ].安徽医药, 2006, 10 (7) : 506.
    8.张菁. G蛋白耦联受体激酶与心力衰竭[ J ].医学综述, 2007,13 (22) : 1686 - 8.
    9.王优,谭建新.钙调神经磷酸酶信号通路与心肌重构[J].岭南心血管病杂志, 2004, 2: 139 - 41.
    10. Kayo Hayato, Makoto Okawa, Yoshihisa Matsumura,et al.Hypertrophic cardiomyopathy with mild left ventricular remodeling: Echocardiographic assessment using left ventricular wall motion score. Journal of Cardiology. 2008; 51(2): 95-105.
    11. Edward P. Havranek, Caroline D.B. Emsermann, Desiree N. Froshaug, et al. Thresholds in the relationship between mortality and left ventricular hypertrophy defined by electrocardiography. Journal of Electrocardiology. 2008; 14(4):465-71.
    12. Zhang HG, Li XH. Optimization of G protein inhibitory polypeptide and its activities on cardiac hypertrophy (Abstract). Acta Pharmacol Sin. 2006; 27(suppl): 182-183.
    13. Cooper G 4th. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med. 2007; 48:13-23.
    14. C.E. Huggins, P.L. McLennan, T. Pedrazzini, et al. Dietary omega-3 fatty acids improves ex vivo heart recovery after ischemia in AngII induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology. 2006;41(4):749.
    15. Miura S, Zhang J, Matsuo Y, et al. Activation of extracellular signal-activated kinase by angiotensin II-induced Gq-independent epidermal growth factor receptor transactivation. Hypertens Res. 2007; 27(10):765-70.
    16. Mo Yang, Chee Chew Lim, Ronglih Liao, et al. A novel microfluidic impedance assay for monitoring endothelin-induced cardiomyocyte hypertrophy. Biosensors and Bioelectronics. 2007; 22(8):1688-93.
    17. Neyses L, Nouskas J, Luyken J,et al.Induction of immediate-early genes by angiotensinII and endothelin-1 in adult rat cardiomyocytes. J Hypertens.2006;11(9): 927-34.
    18. Oie E, Yndestad A, Robins SP,et al.Early intervention with a potent endothelin- A/endothelin-B receptor antagonist aggravates left ventricular remodeling after myocardial infarction in rats. Basic Res Cardiol. 2007; 97(3):239-47.
    19. ZimmerHG.. Catecholamine-induced cardiac hypertrophy: significance of proto-oncogene expression. J Mol Med. 2007 ; 75(11~12):849-59.
    20. Tsoporis JN, Marks A, Kahn HJ, et al. Inhibition of norepinephrine-induced cardiac hypertrophy in s100beta transgenic mice. J Clin Invest. 2006; 102(8):1609-16.
    21. Hannan RD, Stennard FA, West AK. Expression of c-fos and related genes in the rat heart in response to norepinephrine. J Mol Cell Cardiol. 2007; 25(10):1137-48.
    22. Starksen NF, Simpson PC, Bishopric N, et al.Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA. 2006;83(21): 8348-50.
    23. Singal T, Dhalla NS, Tappia PS. Phospholipase C may be involved in norepinephrine- induced cardiac hypertrophy. Biochem Biophys Res Commun. 2004; 320(3):1015-19.
    24. Zeng C, Zhou Y, Liu G, et al. The signal transduction pathway causing the synergistic hypertrophic effects of neuropeptide Y and norepinephrine on primary cardiomyocyte. Neuropeptides. 2001; 35(5-6):211-18.
    25. Chen M, Li X, Dong Q,et al. Neuropeptide Y induces cardiomyocyte hypertrophy via calcineurin signaling in rats. Regul Pept. 2005; 125(1-3):9-15.
    26. Harada E, Nakagawa O, Yoshimura M, et al. Effect of interleukin-1 beta on cardiac hypertrophy and production of natriuretic peptides in rat cardiocyte culture. J Mol Cell Cardiol. 2006; 31(11):1997-2006.
    27. Tanaka T, Kanda T, Takahashi T, et al. Interleukin-6-induced reciprocal expression of SERCA and natriuretic peptides mRNA in cultured rat ventricular myocytes. J Int Med Res. 2007; 32(1):57-61.
    28. Kardami E, Jiang ZS, Jimenez SK,et al. Fibroblast growth factor 2 isoforms and cardiac hypertrophy. Cardiovasc Res. 2007; 63(3):458-66.
    29. Tanamura A, Takeda N, Iwai T. et al. Myocardial contractility and ventricular myosin isoenzymes as influenced by cardiac hypertrophy and its regression. Basic Res Cardiol.1993; 88(1):72-79.
    30. Jalili T,Takeishi Y,Wslsh RA. Signal transduction during cardiac hypertrophy: the role of Gαq,PLCβⅠ, and PKC. Cardiovasc Res. 1999; 44(1):5-9.
    31. Akhter SA, Lutterll LM, Rockman HA, et al. Targeting the receptor the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science.1998; 280(5363):574-377.
    32. Williams B. AngiotensinⅡand the pathophysiology of cardiovascular remodeling[ J ]. Am J Cardiol, 2001, 87 ( Supp l) : 10C-17C.
    33. Agata J,Ura N, Yoshida H, et al. Olmesartan is an angiotensinⅡrecep tor blockerwith an inhibitory effect on angiotensin converting enzyme[ J ]. Hypertens Res, 2006, 29 (11) : 8652874.
    34. Grobe JL,Mecca AP,LingisM, et al. Prevention of angiotensinⅡinduced cardiac remodeling by angiotensin2(127) [ J ]. Am J Physiol Heart Circ Physiol, 2007, 292 (2) : H736-H742.
    35. Udelson JE. Ventricular remodeling in heart failure and the effectof beta blockade[ J ]. Am J Cardiol, 2004, 93 (9A) : 43B-48B.
    36. Ariff B, Zambanini A,Vamadeva S, et al. Candesartan- and atenolol- based treatments induce different patterns of carotid artery and left ventricular remodeling in hypertension [ J ]. Stroke, 2006, 37(9) : 2381-2384.
    37. ZhaoW, Ahokas RA,Weber KT, et al. ANGⅡ-induced cardiac molecular and cellular events: role of aldosterone[ J ]. Am J Physiol Heart Circ Physiol, 2006, 291 (1) :H336-H343.
    38. RousseauMF, GurnéO,Dup rez D, et al. Beneficial neurohormonal profile of sp ironolactone in severe congestive heart failure: Results from the RALES neurohormonal substudy[ J ]. J Am Coll Cardiol,2002, 40 (9) : 1596-1601.
    39. Patel R, Nagueh SF, Tsybouleva N, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and imp roves cardiac function in a transgenic rabbitmodel of human hypertrophic cardio myopathy[ J ]. Circulation, 2001, 104 (3) : 3172324.
    40.王安才,成蓓,谢晓竞,等.阿托伐他汀对自发性高血压大鼠心室重构的影响[ J ].中国临床药理学与治疗学, 2004, 9 ( 8 ) :880-884.
    41. Kaftan HA, Evrengul H, Tanriverdi H, et al. Effect of insulin resistance on left ventricular structural changes in hypertensive patients [ J ]. Int Heart, 2006, 47 (3) : 391-400.
    42. Lariviere R,LelelM. Endothelin-1 in chronic renal failure and hypertension[ J ]. Can J Pharmacol, 2003, 81 (6) : 607-621.
    43. Goddard J, Johnston NR, Hand MF, et al. Endothelin-A receptor antagonism reduces blood pressure and increases renal blood flow in hypertensive patientswith chronic renal failure: a comparison of selective and combined endothelin recep tor blockade [ J ]. Circulation, 2004, 109 (9) : 1186-1193.
    44.汪涛,康毅,娄建石.激肽释放酶2激肽系统的心血管领域研究进展[ J ].中国药理学与毒理学杂志, 2003, 17 (6) : 466-470.
    45. Allan A, FenningA,Levick S, et al. Reversal of cardiac dysfunction by selective ET-A receptor antagonism[ J ]. Br J Pharmacol, 2005,146 (6) : 846-853.
    46. KirchengastM,LuzM. Endothelin receptor antagonists: clinical realities and future directions[ J ]. J Cardiovasc Pharmacol, 2005, 45(2) : 182-191.
    47.刘补尚,冷吉燕,付军.胰激肽原酶对自发性高血压大鼠心室重构的影响[ J ].中华高血压杂志, 2006, 14 (11) : 887-890.
    48. Tanaka Y,NagaiM,Date T, et al. Effects of bradykinin on cardiovascular remodeling in renovascular hypertensive rats[ J ]. Hypertens Res, 2004, 27 (11) : 865-875.
    49. CagalinecM, Kyselovic J, Blaskova E, et al. Comparative study of the effects of lacidip ine and enalapril on the left ventricular cardiomyocyte remodeling in spontaneously hypertensive rats[ J ]. J Cardiovasc Pharmacol, 2006, 47 (4) : 561-570.
    50. Takemori K, Ishida H, Dote K, et al. Prophylactic effects of an N and L-type Ca2+ antagonist, cilnidipine, against cardiac hypertrophy and dysfunction in stroke prone, spontaneously hypertensive rats[J]. Can J Physiol Pharmacol, 2005, 83 (8 /9) : 785-790.
    51.程宇宁,张善纲,吴赛珠.运动疗法对高血压患者心室重建及心功能的影响[J].心血管康复医学杂志, 2006, 15 ( 3 ) :211-214.
    52.周建中,雷寒,陈运贞,等.灯盏细辛注射液对自发性高血压大鼠心室及血管重构的影响[ J].中国中西医结合杂志, 2002, 22(2) : 122-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700