铁基耐熔锌腐蚀合金综合性能提高的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷锌锅内加热技术具有加热快,效率高,节约能耗,维护方便的优点,内加热管的外套管材料是整个陶瓷内加热的核心技术,要求材料必须同时具有良好的耐熔锌腐蚀性能和相应的力学性能。现在外套管所用的Fe基耐熔锌腐蚀材料存在耐腐蚀性能和机械性能不能同时满足工况条件的矛盾。耐腐蚀性能较好时,材料的机械性能很差,脆性大,容易发生热裂失效。而材料的机械性能很好时,耐腐蚀性能很差。这使得陶瓷锌锅内加热技术的应用和推广受到了极大的限制。本课题针对以上矛盾,进行了全面、深入的研究,使材料的两方面性能都得到了提高,满足了工业应用的要求。
     在本课题组前面研究的基础上,我们选择在脆性相对较小,耐腐蚀性能较好的Fe-2.5B材料中添加Si、C、Mn、Mo、W等元素,本着少量多元的原则,减小各种元素的负面作用,提高材料的耐腐蚀性和机械性能。Fe-2.5B材料具有网格状结构,即共晶中的网格状硼化物包围着α-Fe基体,硼化物具有很好的耐锌蚀性能,并且网格对锌与铁的反应物有很好的阻挡作用,但是硼化物的脆性很大,α-Fe的机械性能好耐锌腐蚀能力却不足。因此如何提高α-Fe的耐腐蚀性能并细化材料的网格,是我们解决整个矛盾的关键。Si元素可以很好的固溶在α-Fe中,并且提高α-Fe的耐腐蚀能力。但是Si元素增大α-Fe晶粒,增加材料的脆性,并减少网格的数目。C元素可以很好的解决这一问题,它可以分散硼化物,增加网格的密度。Mn元素对材料的耐腐蚀性能有帮助,不降低材料的网格密度,同时提高材料的力学性能。Mo和W不但可以增加材料中网格的强度,而且在α-Fe中析出针状物,对α-Fe与锌的反应生成物有很好的钉扎作用,阻止铁锌反应物向外漂移,同样也增加了材料的耐腐蚀性能。
     经过大量的试验,我们研究的Fe-2.5B-C-0.8Si-0.8Mn-4Mo-W材料具有很好的耐熔锌腐蚀性能,而且力学性能也满足工况应用的要求,目前已经在工业上应用6个多月,能够满足工业应用要求。
Ceramic inner heating galvanizing has the merit of heating-up rapidly and efficiently, energy conservation and maintenance simply. The material of outer shell is the key component in Ceramic inner heating galvanizing system. It requires that the material has good corrosion resistance and corresponding mechanical properties. But the inner heater material used in galvanizing has a contradiction, the corrosion resistance and mechanical properties does not reach the galvanizing requirement at the same time. If the material has a strong resist-corrosion, the mechanical properties is weak in high temperature, brittle greatly and thermal cracked easily. While the material has a fine mechanical properties, the performance of corrosion resistance is hard to reach the inner heating requirement. So the technique extension and application of ceramic inner heating galvanizing is limited.On the basic of our former research, the alloy Fe-2.5B has excellent corrosion resistance and little brittleness. We added the elements C、 Si、 Mn、 Mo is selected, which can promote both resist-corrosion performance and mechanical properties by means of using many elements with small amount and avoiding the disadvantage of all kinds of elements. The alloy Fe-2.5B has a latticed structure, and α -Fe is included by lattice boride in eutectic. The boride has high corrosion resistant and hold the Fe-Zn reactant out ward to melting Zinc, but this kind of boride has a large brittleness, therefore its mechanical properties is not enough used to galvanizing. Mechanical properties of α -Fe is excellent but resist-corrosion is deficiency to hot galvanizing. The key factor is that improving the corrosion resistance of α -Fe and increasing the boride's
    lattice density. In a small amount, the Si is well solid solution in a -Fe completely, and it improve the corrosion resistance to liquid Zinc sharply. But Si enlarge the capacity of the a -Fe crystal grain growth, lower the mechanical properties of a -Fe and decrease the boride lattice density. C can disperse the boride and increase the lattice density, it can settle the question of decreasing the boride lattice density by Si. The Mn element is help the material's corrosion resistance and didn't decrease the boride lattice density, and it is increase the material's mechanical properties. Mo and W not only improve the material's mechanical properties and strength of boride lattice but also precipitate some phase as pin. It can fixed the Fe-Zn reactant hold it outer to melting Zinc and improving the corrosion resistance too.After a great deal of experiment, we find the alloy of Fe-2.5B-C-0.8Si-0.8Mn-4Mo-W has strong corrosion resistance, and the mechanical properties satisfy the industry requirements. It already applied in the industry more than 6 months and has not expired.
引文
[1] 化工部化工机械研究院.腐蚀与防护手册.北京:化学工业出版社,1989
    [2] 黄叔菊.金属的腐蚀与防护.西安:西安交通大学出版社,1984:127
    [3] 张启富,刘邦津,仲海峰.热镀锌技术的最新进展.钢铁研究学报.2002.14(4):65-72
    [4] Vickers, C. W., Commercial Hot Dip Galvanizing, Materials Protection, 1962, Vol. 2: (30)
    [5] 陈厚载,热镀锌技术(1000例),上海交通大学出版社,前言
    [6] Ritchie, J.G., Application of Galvanized High Strength Bolts to Steel Structures In Australia, Proceeding of the 9th International conference on Hot Dip Galvanizing 1971, Vol. 305
    [7] 宋加,国内外镀锌板市场及技术发展概况,1999,Vol.6:(4),61
    [8] 杨冬华,强文华,2005年国内镀锌板带需求预测,冶金经济与管理,2001,(3),267
    [9] 曹晓明,温鸣,姜信昌.锌液对金属的腐蚀机制.钢铁研究学报.1998,10(4):54-58
    [10] 黄润六.降低钢丝热镀锌锌耗的途径.金属制品.1996,22(5):43-46
    [11] 黄颖,热镀锌熔炼锅的现状和发展,机械工程材料,1990,Vol.14:(2),25
    [12] 刘经国,对热镀锌铁锅及其炉子的探讨,河南电力增刊,1989,91
    [13] Nicholas V. Ross etc., Induction heating of strip for galvanneal, Iron and Steel Engineer, 1988, Vol. 65: (1), 40
    [14] 顾乃健,耐火材料锌锅与节能,河南电力,1989(增刊),83
    [15] 易福明,内加热耐火材料锌锅在钢丝热镀锌中的应用金属制品,1998 Vol.24:(3),9
    [16] F. Teichmann, Technical and Operating Data for Some Top-heated Baths 6th International Galvanizing Conference, London, U.K., 1961, 358
    [17] 王宁,铁基多元合金耐熔锌腐蚀机理的研究及应用,河北工业大学,2004,4
    [18] 李志平,工频感应熔锌炉应用于生产近三十年小结,金属制品,1990,Vol.6:(4),47
    [19] Nicholas V. Ross etc., Induction heating of strip for galvanneal, Iron and Steel Engineer, 1988, Vol. 65: (1), 40
    [20] 李霞,无芯感应电炉熔炼技术的发展趋势,铸造设备研究,1997,03,21~24
    [21] 白听生等,一种镀锌电炉感应加热器,CN 2138779Y
    [22] E. C. Green, Survey of Galvanizing Practice and Applications, 6th International Galvanizing Conference, London, U. K., 1961, (3)
    [23] 孙建中,低碳钢丝热镀锌法,冶金工业出版社,1958,(106),101
    [24] A. Parent. Electric Bath Heating. The 5th International Conference on Hot Dip Galvanizing. Holland. 1958: 79-82
    [25] A. J. Vazquez, Economy of Radiant Energy in Galvanizing Bath and Improvement of Heat Transfer in Surface-heated Ceramic Galvanizing Bath, 14th International Galvanizing Conference, Munich, Germany, 1985, Vol. 4: (1)
    [26] P. H. Roebuck, etc., Electric Immersion Heater, 14th International Galvanizing Conference, Munich, Germany, 1985, Vol. 4: (1)
    [27] 刘祥清,新型内加热镀锌锅直接内加热的设计探讨,金属制品,1998,Vol.24:(1),17
    [28] Burns, J etc., Emersion Tube Heating-Lower Galvanizing Costs With Higher Thermal Efficiency, 59th Annual Convention and 1989 Division Meetings, Wire Association International, P. O. Box H, 1570 Boston Post Rd., Guilford, Connecticut 06437, USA, 130-139
    [29] 牛宏茂,那加热镀锌锅及加入元件的设计与应用,金属制品,1999,Vol.25(3)33.
    [30] 刘铭,肖俊明,李志强等,热镀锌用内加热管的试验研究,金属制品,Vol.23(4)26
    [31] 曹晓明,耐锌腐蚀金属间化合物的研究,鉴定文件,冀科鉴字2013号,(1994)
    [32] 彭解.Mo-30W合金材料在热镀锌工艺装备上的应用.金属制品.1988,14(2):44-47
    [33] J.C.伍德等,普拉塞尔.S.T.技术有限公司,耐熔锌腐蚀合金及其制造方法,CN1083112A,(1993)
    [34] Tamas Torok, The Corrosion and Abrasion Attack of Molten Zinc on the Bath Wall During Hot Dipping, 10th International Congress on Metallic Corrosion, Vol. 4: Sessions 14-19, Madras India, (1987), 3433
    [35] 藤野,Kubota株式会社,耐熔锌腐蚀高强度合金,特开平6-41694,(1994)
    [36] 中国腐蚀与保护学会主编.核工业中的腐蚀与保护.北京:化学工业出版社,1993:133
    [37] O. K. Chopra, Liquid Metal Corrosion/deposition in a fission reaction planked, 1986 DE85009790
    [38] 左景尹,应力腐蚀破裂,西安:西安交通大学出版社,1985,7-8
    [39] 曾大新,苏俊义,陈勉己.固体金属在液态金属中的熔化与溶解.铸造技术.2000(1):33-36
    [40] 虞觉奇,易文质,陈邦迪等:二元合金状态图集;上海科学技术出版社,1987,140
    [41] 顾国成,刘邦津,热浸镀,化学工业出版社出版,1991,7-8
    [42] Henke F. [J]. Ciesserei Praxis. 1974,(3),453-459
    [43] 张承忠,金属的腐蚀与保护[M].北京:冶金工业出版社,1985
    [44] 陈襄武.钢铁冶金物理化学.北京:冶金工业出版社,1990:321-326
    [45] A. J. Vazquez, Economy of Radiant Energy in Galvanizing Bath and Improvement of Heat Transfer in Surface-heated Ceramic Galvanizing Baths, 14th International Galvanizing Conference, Munich, Germany, 1985, Vol. 4: (1)
    [46] 邹敦叙,贾天聪,陈振兰等.耐熔融金属腐蚀合金.,CN 1387017,2002.12
    [47] 王俊,李克,疏达,等.渗硼层的制备及其在锌液中的耐蚀性.上海交通大学学报.2003,37(12):1840-1843
    [48] 余忠荪,稀土-硼共渗层抗腐蚀性能的研究,理化检验(物理分册),No.2,(1990)26
    [49] 苏建成,王勇,韩彬,火焰喷涂玻璃涂层的耐蚀性研究,中国表面工程,2003(1),23
    [50] 尚丽娟,才庆魁,张忠礼等,井筒提升罐道表面的防护,东北大学学报(自然科学版),2002,(11).
    [51] 上海交通大学.耐锌液腐蚀的涂层及其使用方法.CN 1449876,2003.10
    [52] 卢燕平,渗镀,机械工业出版社,1985
    [53] 曹晓明等,耐液态锌腐蚀材料的研究及应用,金属热处理学报,1997,Vol.18:(2),25
    [54] 钱立,铸铁热镀锌的腐蚀问题,河北工学院学报,1993,(4),37
    [55] 利亚霍维奇,金属和合金的化学热处理手册,上海科学技术出版社,1986,235
    [56] 日根野,Kubota株式会社,耐熔融锌腐蚀合金材料,日本,特开平5-125533,1993
    [57] 王桂新,韩文祥,渗硼层耐锌液腐蚀性的研究,河北工业大学学报,2001,Vol.30:(5),10
    [58] 曹晓明,温鸣等,耐熔锌腐蚀材料及热镀锌内加热技术,中国机械工程,2002,Vol.13:(19),10
    [59] D. N.Tsipas, Degradation behavior of boronized carbon and high alloy steels in molten aluminium and zinc, Materials letter, 1998, (37), 128-131
    [60] 谷志刚等,渗硼低碳钢在热浸镀锌中的耐蚀性,金属热处理,1998,(4),12
    [61] 刘金海等,铸铁渗硼层在高温锌液中的耐蚀性,材料保护,1995,Vol.28:(2),34
    [62] 谷志刚,刘竹风,白虹,等.渗硼低碳钢在热浸镀锌中的耐蚀性.金属热处理.1998,4:12-14
    [63] 曹晓明,耐熔锌蚀材料和器件的研究及其在热镀锌工业中的应用,北京科技大学博士学位论文,1999,6
    [64] 董允,张廷森,林晓娉 现代表面工程技术,北京:机械工业出版社,2001,101-114
    [65] Tomita. T Tami Durability of Sprayed WC/Co Coatings in Aluminum-Added Zinc Bath J. Iron Steel Inst., 1993, Vol. 79:(9), 1095
    [66] John C. Wood, etc., Molten Zinc Resistance Alloy and Its Manufacturing Method, US, 1334, 005360675A
    [67] 水昭,新日本制铁株式会社名古屋制铁所,耐磨耐蚀压线轴,平4-13854,1992
    [68] 辛钢,高阳,黑祖昆 高速火焰喷涂层耐腐蚀性能的比较,大连海事大学学报,2002,Vol28:(1)
    [69] 刘秀晨,安成强.金属腐蚀学.北京:国防工业出版社,第一版.2002.9:17-21
    [70] 邹敦叙,贾天聪,陈振兰,等.耐熔融金属腐蚀合金.,CN 1387017,2002.12
    [71] 齐育红,马永庆,张占平,等.Al铸铁抗锌液腐蚀机制研究.1999.10:23-26
    [72] 马永庆,王庆华,齐育红,等.Al-Si合金铸铁抗锌液腐蚀的研究.材料保护.1999,32(3):37-39
    [73] 上海交通大学.用涂有非晶玻璃釉的金属钢管内加热器融化工业纯锌的方法.CN 1387017,2002.04
    [74] Kubota Corp. Alloy excellent in corrosion resistance to molten zinc. JP 6041694, 1994.02
    [75] Sumitomo Metal Ind Ltd. Steel having erosion resistance to molten zinc. JP 56016651,1981.02
    [76] Taihei Kinzoku Kogyo KK. Alloy provided with corrosion resistance to molten zinc. JP 58207358, 1983.12
    [77] 徐华,王慧,曹晓明等,Fe-B合金的耐锌液腐蚀性能的研究,河北工业大学学报,2002.5
    [78] Cao Xiaoming, Long Yi, Wang Run. Mechanism of liquid zinc corrosion on metals. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng. Ed.). 4 (1997) 3:22-26
    [79] JFE Steel KK. Steel material superior in corrosion resistance and embrittlement resistance to molten zinc. JP 2003231942, 2003.08
    [80] 日根野,Kubota株式会社,镀锌用压线轴部件的制造方法,特开平10-102176,(1996)
    [81] 罗飞,天然气蒸气转化管剩余寿命预测,石油天然气化工,2005,Vol.66(4)
    [82] Standrinelli, Conditions Determining the Formation of Dross in the Hot Galvanizing of Ferrous Material with Particular Reference to Carbon Steels, 6th International Galvanizing Conference, R. London, U.K., (1961), 351
    [83] D. Horstmann, The Influence of Steel Composition on the Attack by Molten Zinc in the Parabolic Range, 6th International Galvanizing Conference, London, U.K., (1961), 319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700