利用双模腔QED和中性里德伯原子系统进行量子信息处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,我们主要研究基于腔QED系统和中性里德伯原子系统的量子信息处理方案。在量子光学中,非经典光场通常由Wigner函数或者Glauber-Sudarshan P函数定义。非经典光场的特性(如压缩、光子亚泊松分布等)通常由Mandel Q因子、二阶关联函数等物理量描述。利用这些物理量,在第二章第一部分中,我们讨论了双模场与Λ型三能级原子相互作用系统的压缩性质、光子统计和Cauchy-Schwarz不等式的违背等,此外,我们研究了双模场的关联函数。在第二部分中,我们提出直接测量双模场Wigner函数的方案。在这个方案中,正交偏振腔模与强驱动多能级原子的相互作用可以用时间平均有效哈密顿来描述,该有效哈密顿与光子数算符对易。原子基态的探测几率直接给出相平面空间上一点的Wigner函数的大小,我们把它推广至光场的非破坏性测量。
     一个原子穿过多个光学腔的实验装置可用于纠缠量子化腔场。量子计算的逻辑0和1可以分别由单光子的左旋偏振态和右旋偏振态表示。利用这个装置,在第三章中,我们首先讨论通过绝热演化制备四模光子纠缠态的方案。该方案对原子位置的浮动和激光脉冲精确度的微小变化不敏感。接着,我们讨论在经典场驱动下,原子通过两个独立的拉曼跃迁过程与两个正交偏振模同时耦合制备多个腔模一维团簇态的方案。在大失谐条件下,原子自发辐射对态制备的影响可以减弱。
     第四章主要讨论原子比特团簇态的制备和量子逻辑门的实现。原子的超精细能级用于存储量子信息。为了制备原子团簇态,我们使用包含光子探测器的腔QED实验系统。如果在态制备过程中没有光子泄漏,系统的耗散动力学可以由非厄密哈密顿描述。光子探测事件最终用于确认实验过程的成功与否。在第二部分,我们指出基于完整的纠缠通道,两个远程量子比特的量子逻辑门可以通过纠缠交换和纠缠纯化实现。这个方案可以在各种物理系统中实现。利用囚禁原子作为物质比特,光子作为飞行比特,我们给出了在双模腔QED系统中实现该方案的例子。
     第五章主要研究中性里德伯原子系统中量子逻辑门的实现。中性原子通过里德伯阻塞实现远距离相互作用。结合与经典类似的偶极相互作用和F rster相互作用,我们讨论了实现多比特量子相位门、两比特交换门、两比特几何相位门等几个方案。在这些方案中,原子都不需要单独控制。我们详细讨论了不完美里德伯阻塞、范德瓦尔斯弱相互作用和原子自发辐射对量子逻辑门保真度的影响。最后,我们对基于中性里德伯原子系统量子计算的可扩展性做了简要讨论。
In this thesis, we theoretically study the implementation of quantum informationprocessing in the realm of two-mode cavity QED system and neutral Rydberg atomsystem.
     In quantum optics, the definition of nonclassical light can be given by the Wignerfunction or more generally the Glauber-Sudarshan P function. The typical features ofa nonclassical light, such as squeezing, photon sub-poisson distribution, are describedby physical quantities like Mandel Q factor, second-order correlation function. Bymaking use of them, in the first part of chapter2, we discuss squeezing, photonstatistics, and violation of Cauchy-Schwarz inequality of a two-mode field afterinteracting with a Λ-typed three-level atom. Correlation between the two cavitymodes is also investigated. In the second part of chapter2, we propose a scheme fordirectly measuring the Wigner function of a two-mode field. In this scheme, the twoorthogonal polarized cavity modes dispersively coupling to a strongly drivenmultilevel atom is described by a time-averaged effective Hamiltonian that iscommuted with photon number operator. We show that the probability of detecting theatom in the ground state directly refers to the relevant value of Wigner function in thephase space. It is then generalized for quantum nondemolition measurements ofphotons.
     A setup with an atom passing through multiple cavities can be used for entanglingquantized cavity fields. The quantum computational logic0and1can be encoded inthe left-circularly polarized state and right-circularly polarized state of a single photon,respectively. Using this kind of setup, in chapter3, we firstly present a scheme forpreparing four-mode entangled state through adiabatic passage. The nice feature ofour scheme is the insensitivity of the fluctuation of atomic position and theimprecision of laser pulses. Then, we propose that a one-dimensional cluster state formultiple cavity fields can be prepared in a way that an atom couples to bothorthogonal polarized cavity modes through two independent Raman transitionchannels assisted by an external driving laser. Decoherence due to atomic spontaneousemission can be reduced with the atom-cavity interaction being in the large-detuningregime.
     Chapter4discusses the preparation of cluster state and implementation ofquantum logic gate for atoms in two-mode cavity QED system. Long-lived hyperfineground states of the atoms are used for storing quantum information. To prepareatomic cluster state, we use a cavity QED setup where photons leaking out of thecavity are collected by a photon detector. The dissipative dynamics in this system canbe described by a non-Hermitian Hamiltonian if there is not photon detected duringthe preparation process. The photon click incident can be finally used for confirmingthe successful events in the experiment. We show that the fidelity of prepared state isinsensitive to inefficiency of the photon detector. In the second part, based onwell-established entanglement channels, we show that a remote quantum phase gatecan be implemented between two distant qubits via entanglement swapping andentanglement purification. This protocol can be realized in different kinds of physicalsystems. To be specific, we give a brief example for its realization in two-mode cavityQED system, using trapped atoms as material qubits and photons as flying qubits.
     In chapter5, we focus on implementation of quantum logic gates in neutralRydberg atom system. The long range interaction between distant neutral atoms isinduced by Rydberg blockade mechanism. Combining classical-like dipolarinteraction and F rster interaction we propose three schemes for implementing amulti-qubit quantum phase gate, a two-qubit quantum swap gate, and a two-qubitgeometric phase gate, respectively. Individual atom addressing are not involved in ourproposals. The effect of imperfect Rydberg blockade, perturbation of van der waalsinteraction and atomic spontaneous emission on gate fidelity are discussed in detailed.The scalability of quantum computation based on neutral Rydberg atom system is alsobriefly commented.
引文
1. Bellac M L. Quantum Physics. Cambridge: Cambridge University Press,2006.
    2. Feynman R P. Simulating Physics with Computers.International Journal ofTheoretical Physics,1982,21(6/7):467-488.
    3. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge:Cambridge University Press,2000.
    4. Preskill J. Lecture notes for physics229: quantum information and computation.Available at http://www.theory.caltech.edu/people/preskill/ph229/.
    5. Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature(London),1982,299(5886):802-803.
    6. Einstein A, Podolsky B, Rosen N. Can Quantum-Mechanical Description of PhysicalReality Be Considered Complete? Physical Review,1935,47(10):777-780.
    7. Reid M D, Drummond P D, Bowen W P, et al.. Colloquium: The Einstein-Podolsky-Rosenparadox: From concepts to applications. Review Modern Physics,2009,81(4):1727-1751.
    8. Horodecki R, Horodecki P, Horodecki M, et al.. Quantum entanglement. Review ModernPhysics,2009,81(2):865-942.
    9. Aspect A, Grangier P, Roger G. Experimental Tests of Realistic Local Theoriesvia Bell's Theorem. Physical Review Letters,1981,47(7):460-463.
    10. Greenberger D M, Horne M A, Zeilinger A. Go Beyond Bell's Theorem. In: KafatosM, eds.. Bell s Theorem, Quantum Theory, and Conceptions of the Universe. Dordrecht:Kluwer,1989,69-72.
    11. Gottesman D, Chuang I L. Demonstrating the viability of universal quantumcomputation using teleportation and single-qubit operations. Nature(London),1999,402(6760):390-393.
    12. Ladd T D, Jelezko F, Laflamme R, et al.. Quantum computers. Nature(London),2010,464(7285):45-53.
    13. Farhi E, Goldstone J, Gutmann S, et al.. Quantum computation by adiabaticevolution. arXiv:quant-ph/0001106.
    14. Raussendorf R, Briegel H J. A One-Way Quantum Computer. Physical Review Letters,2001,86(22):5188-5191.
    15. Mizel A, Lidar D A, Mitchell M. Simple Proof of Equivalence between AdiabaticQuantum Computation and the Circuit Model. Physical Review Letters,2007,99(7):070502.
    16. Knill E. Quantum computing with realistically noisy devices. Nature(London),2005,434(7029):39-44.
    17. Jiang L, Kane C L, Preskill J. Interface between Topological and SuperconductingQubits. Physical Review Letters,2011,106(13):130504.
    18. Bonderson P, Lutchyn R M. Topological Quantum Buses: Coherent QuantumInformation Transfer between Topological and Conventional Qubits. Physical ReviewLetters,2011,106(13):130505.
    19. Haroche S, Raimond J M. Exploring the quantum. Oxford: Oxford University Press,2006.
    20. Gleyzes S, Kuhr S, Guerlin C, et al.. Quantum jumps of light recording the birthand death of a photon in a cavity. Nature(London),2007,446:297-300.
    21. Enk S J, Kimble H J, Mabuchi H. Quantum Information Processing in Cavity-QED.In: Everitt H O. Experimental Aspects of Quantum Computing. US: Springer,2005.
    22. Purcell E M. Spontaneous emission probabilities at radio frequencies. PhysicalReview,1946,69:681-681.
    23. Pellizzari T, Gardiner S A, Cirac J I, et al.. Decoherence, ContinuousObservation, and Quantum Computing: A Cavity QED Model. Physical Review Letters,1995,75(21):3788-3791.
    24. Kimble H J. Strong interactions of single atoms and photons in cavity QED. PhysicaScripta,1998, T76:127-137.
    25. Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiationtheories with application to the beam maser. Procedings of the IEEE,1963,51(1):89-109.
    26. Shore B W, Knight P L. The Jaynes-Cummings Model. Journal of Modern Optics,1993,40:1195-1238.
    27. Barnett S M, Radmore P M. Methods in Theoretical Quantum Optics. Oxford:Clarendon Press,1997.
    28. Tavis M, Cummings F W. Exact solution for an N-molecule-radiation-fieldHamiltonian. Physical Review,1968,170(2):379-384.
    29. Dicke R H. Coherence in Spontaneous Radiation Processes. Physical Review,1954,93(1):99-99.
    30. Rauschenbeutel A, Bertet P, Osnaghi S, et al.. Controlled entanglement of twofield modes in a cavity quantum electrodynamics experiment. Physical Review A,2001,64(5):050301.
    31. Wilk T, Webster S C, Kuhn A, et al.. Single-Atom Single-Photon Quantum Interface.Science,2007,317(5837):488-490.
    32. Weber B, Specht H P, Müller T, et al.. Photon-Photon Entanglement with a SingleTrapped Atom. Physical Review Letters,2009,102(3):030501.
    33. Spillane S M, Kippenberg T J, Vahala K J, et al.. Ultrahigh-Q toroidalmicroresonators for cavity quantum electrodynamics. Physical Review A,2005,71(1):013817.
    34. Jaksch D, Cirac J I, Zoller P, et al.. Fast Quantum Gates for Neutral Atoms.Physical Review Letters,2000,85(10):2208-2211.
    35. Jaksch D, Briegel H J, Cirac J I, et al.. Entanglement of Atoms via Cold ControlledCollisions. Physical Review Letters,1999,82(9):1975-1978.
    36. Zheng Shi-Biao, Guo Guang-Can. Efficient Scheme for Two-Atom Entanglement andQuantum Information Processing in Cavity QED. Physical Review Letters,2000,85(11):2392-2395.
    37. Lukin M D, Fleischhauer M, Cote R, et al.. Dipole Blockade and Quantum InformationProcessing in Mesoscopic Atomic Ensembles. Physical Review Letters,2001,87(3):037901.
    38. Saffman M, Walker T G. Creating single-atom and single-photon sources fromentangled atomic ensembles. Physical Review A,2002,66(6):065403.
    39. Bouchoule I, M lmer K. Spin squeezing of atoms by the dipole interaction invirtually excited Rydberg states. Physical Review A,2002,65(4):041803.
    40. Moeller D, Madsen L B, and M lmer K. Quantum Gates and Multiparticle Entanglementby Rydberg Excitation Blockade and Adiabatic Passage. Physical Review Letters,2008,100(17):170504.
    41. Saffman M, M lmer K. Efficient Multiparticle Entanglement via Asymmetric RydbergBlockade. Physical Review Letters,2009,102(24):240502.
    42. Saffman M, M lmer K. Scaling the neutral-atom Rydberg gate quantum computer bycollective encoding in holmium atoms. Physical Review A,2008,78(1):012336.
    43. Isenhower L, Urban E, Zhang X L, et al.. Demonstration of a Neutral AtomControlled-NOT Quantum Gate. Physical Review Letters,2010,104(1):010503.
    44. Wilk T, Gaetan A, Evellin C, et al.. Entanglement of Two Individual Neutral AtomsUsing Rydberg Blockade. Physical Review Letters,2010,104(1):010502.
    45. Weimer H, Müller M, Lesanovsky I, et al.. A Rydberg quantum simulator. NaturePhysics,2010,6(5):382-388.
    46. Gallagher T F. Rydberg atoms. Cambridg: Cambridge University Press,1994.
    47. Saffman M, Walker T G and M lmer K. Quantum information with Rydberg atoms. ReviewModern Physics.2010,82(3),2313-2363.
    48. Stebbings R F, Dunning F B. Rydberg State of Atoms and Molecules. Cambridge:Cambridge University Press,1983.
    49. Th, F rster. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen derPhysik,1948,437(1-2):55-75.
    50. Walker T G, Saffman M. Zeros of Rydberg-Rydberg F rster interactions. Journalof Physics B,2005,38: S309-S319.
    51. Zou X T, Mandel L. Photon-antibunching and sub-Poissonian photon statistics.Physical Review A,1990,41(1):475-476.
    52. Leonhardt U. Measuring the quantum state of light. Cambridge: CambridgeUniversity Press,1997.
    53. Gerry C, Knight P. Introductory Quantum Optics. Cambridge: Cambridge UniversityPress,2005.
    54. Meystre P, Zubairy M S. Squeezed states in the Jaynes-Cummings model. PhysicsLetters A,1982,89(8):390-392.
    55. Gerry C C, Ghosh H. Squeezing enhancement in the Jaynes-Cummings model viaselective atomic measurements. Physics Letters A,1997,229(1):17-22.
    56. Agarwal G S. Nonclassical statistics of fields in pair coherent states. J. Opt.Soc. Am. B,1988,5(9):1940-1947.
    57. Zheng S B, Guo G C. Generation of Schr dinger cat states via the Jaynes-Cummingsmodel with large detuning. Physics Letters A,1996,223(5):332-336.
    58. Wu H Z, Yang Z B, Zheng S B. Scheme for direct measurement of Wigner functionin two-mode cavity QED driven by classical fields. Chinese Physics B,2010,19(12):124203.
    59. James D F V. Quantum Computation with Hot and Cold Ions: An Assessment of ProposedSchemes. Fortschritte der Physik,2000,48(9-11):823-837.
    60. Vahala K J. Optical microcavities. Nature (London),2003,424,839-846.
    61. Zheng S B. Scheme for directly measuring the Wigner characteristic function viathe driven Jaynes–Cummings model. Chinese Physics,2004,13(2):187-189.
    62. Solano E de Matos Filho R L, Zagury N. Deterministic Bell states and measurementof the motional state of two trapped ions. Physical Review A,1999,59(4):R2539-R2543.
    63. Peil S, Gabrielse G. Observing the Quantum Limit of an Electron Cyclotron: QNDMeasurements of Quantum Jumps between Fock States. Physical Review Letters,1999,83(7):1287-1290.
    64. Kuzmich A, Mandel L, Janis J, et al.. Quantum nondemolition measurements ofcollective atomic spin. Physical Review A,1999,60(3):2346-2350.
    65. Guerlin C, Bernu J, Deleglise S, et al.. Progressive field-state collapse andquantum non-demolition photon counting. Nature(London),2007,448:889-893.
    66. Brune M, Bernu J, Guerlin C, et al.. Process Tomography of Field Damping andMeasurement of Fock State Lifetimes by Quantum Nondemolition Photon Counting in aCavity. Physical Review Letters,2008,101(24):240402.
    67. Wang H, Hofheinz M, Ansmann M, et al.. Measurement of the Decay of Fock Statesin a Superconducting Quantum Circuit. Physical Review Letters,2008,101(24):240401.
    68. Zou X, Dong Y, Guo G C. Schemes for realizing frequency up-and down-conversionsin two-mode cavity QED. Physical Review A,2006,73(2):025802.
    69. Serra R M, Villas-B as C J, de Almeida N G, et al.. Frequency up-anddown-conversions in two-mode cavity quantum electrodynamics. Physical Review A,2005,71(4):045802.
    70. Zheng S B. Generation of nonclassical states with a driven dispersive interaction.Physical Review A,2006,74(4):043803.
    71. Zheng S B, Guo G C. Generation of superpositions of displaced Fock states viathe driven Jaynes-Cummings model. Quantum and Semiclassical Optics,1996,8(4):951-957.
    72. Prado F O, de Almeida N G, Moussa M H Y, et al.. Bilinear and quadraticHamiltonians in two-mode cavity quantum electrodynamics. Physical Review A,2006,73(4):043803.
    73. Zhou D L, Sun B, Sun C P, et al.. Generating entangled photon pairs from acavity-QED system. Physical Review A,2005,72(4):040302.
    74. Shu J, Zou X B, Xiao Y F, Guo G C. Generating four-mode multiphoton entangledstates in cavity QED. Physical Review A,2006,74(4):044301.
    75. Zou X B, Mathis W. Generating a four-photon polarization-entangled cluster state.Physical Review A,2005,71(3):032308.
    76. Shu J, Zou X B, Xiao Y F, et al.. Quantum phase gate of photonic qubits in acavity QED system. Physical Review A,2007,75(4):044302.
    77. Zubairy M S, Kim M, Scully M O. Cavity-QED-based quantum phase gate. PhysicalReview A,2003,68(3):033820.
    78. Rebi S, Vitali D, Ottaviani C, et al.. Polarization phase gate with a tripodatomic system. Physical Review A,2004,70(3):032317.
    79. Pires G, Avelar A T, Baseia B, et al.. Teleporting a state inside a single bimodalhigh-Q cavity. Physical Review A,2005,71(6):060301.
    80. de Queirós I P, Souza S, Cardoso W B, et al.. Accuracy of a teleported trappedfield state inside a single bimodal cavity. Physical Review A,2007,76(3):034101.
    81. Lettner M, Mücke M, Riedl S, et al.. Remote Entanglement between a Single Atomand a Bose-Einstein Condensate. arXiv:1102.4285.
    82. Wu H Z, Yang Z B, Zheng S B. Robust Generation of Four-Mode Entangled Statesthrough Adiabatic Passages. Chinese Physics Letters.2007,24(7):1795.
    83. Liang L M, Yuan J, Li C Z. Generation of Bell states of two cavities based oninteractions with a single atom. Journal of Physics B: Atomic, Molecular and OpticalPhysics,2006,39:4539-4545.
    84. Zheng S B. Nongeometric Conditional Phase Shift via Adiabatic Evolution of DarkEigenstates: A New Approach to Quantum Computation. Physical Review Letters,2005,95(8):080502.
    85. Duan L M, Kuzmich A, Kimble H J. Cavity QED and quantum-information processingwith hot trapped atoms. Physical Review A,2003,67(3):032305.
    86. Duan L M, Kimble H J. Efficient Engineering of Multiatom Entanglement throughSingle-Photon Detections. Physical Review Letters,2003,90(25):253601.
    87. Berry M V. Quantum phase factors accompanying adiabatic changes. Proc. R. Soc.Lond. A,1984,392:45-57.
    88. Volz J, Weber M, Schlenk D, et al.. Observation of Entanglement of a Single Photonwith a Trapped Atom. Physical Review Letters,2006,96(3):030404.
    89. Parkins A S, Marte P, Zoller P, et al.. Quantum-state mapping between multilevelatoms and cavity light fields. Physical Review A,1995,51(2):1578-1596.
    90. Maunz P, Puppe T, Schuster I, et al.. Cavity cooling of a single atom. Nature(London),2004,528(6978):50-52.
    91. Briegel H J, Raussendorf R. Persistent Entanglement in Arrays of InteractingParticles. Physical Review Letters,2001,86(5):910-913.
    92. Wu H Z, Yang Z B, Zheng S B,. Effective Scheme for Generating Cluster Statesin Cavity QED. Chinese Physics Letters,2007,24(11):3055.
    93. Zou X B, Mathis W. Schemes for generating the cluster states in microwave cavityQED. Physical Review A,2005,72(1):013809.
    94. Gerry C C. Population dynamics of a two-channel, three-level system interactingwith three classical fields. Journal of Physics B: Atomic, Molecular and OpticalPhysics,1993,26(3):547-558.
    95. Wu Y. Effective Raman theory for a three-level atom in the Λ configuration.Physical Review A,1996,54(2):1586-1592.
    96. Wu Y, Yang X. Effective two-level model for a three-level atom in the three-levelladder configuration. Physical Review A,1997,56(3):2443-2446.
    97. Boozer A D, Boca A, Miller R, et al.. Cooling to the Ground State of Axial Motionfor One Atom Strongly Coupled to an Optical Cavity. Physical Review Letters,2006,97(8):083602.
    98. Chimczak G, Tanas R. The effect of a non-zero spontaneous decay rate onteleportation. Journal of Optics B: Quantum and Semiclassical Optics,2002,4(6):430-437.
    99. Monroe C, Meekhof D M, King B E, et al.. A Schroedinger Cat Superposition Stateof an Atom. Science,1996,272(5265):1131-1136.
    100. Kiffner M, Evers J, Keitel C H. Quantum Interference Enforced by Time-EnergyComplementarity. Physical Review Letters,2006,96(10):100403.
    101. Lukin M D, Yelin S F, Fleischhauer M. Entanglement of Atomic Ensembles byTrapping Correlated Photon States. Physical Review Letters,2000,84(18):4232-4235.
    102. Cho J, Lee H W. Generation of Atomic Cluster States through the CavityInput-Output Process. Physical Review Letters,2005,95(16):160501.
    103. Barrett S D, Kok P. Efficient high-fidelity quantum computation using matterqubits and linear optics. Physical Review A,2005,71(6):060310.
    104. Wu H Z, Yang Z B, Zheng S B. Effective scheme for generating cluster statesin optical cavity QED. Physics Letters A,2008,372(8):1185-1189.
    105. Duan L M, Kimble H J. Scalable Photonic Quantum Computation throughCavity-Assisted Interactions. Physical Review Letters,2004,92(12):127902.
    106. Duan L M, Lukin M D, Cirac J I, et al.. Long-distance quantum communicationwith atomic ensembles and linear optics. Nature(London),2001,414(6862):413-418.
    107. Feng X L, Zhang Z M, Li X D, et al.. Entangling Distant Atoms by Interferenceof Polarized Photons. Physical Review Letters,2003,90(21):217902.
    108. Cirac J I, Zoller P, Kimble H J, et al.. Quantum State Transfer and EntanglementDistribution among Distant Nodes in a Quantum Network. Physical Review Letters,1997,78(16):3221-3224.
    109. Yang Z B, Wu H Z, Su W J, et al.. Quantum phase gates for two atoms trappedin separate cavities within the null-and single-excitation subspaces. PhysicalReview A,2009,80(1):012305.
    110. Zheng S B, Yang C P, Nori F. Arbitrary control of coherent dynamics for distantqubits in a quantum network. Physical Review A,2010,82(4):042327.
    111. Peng P, Li F L. Entangling two atoms in spatially separated cavities throughboth photon emission and absorption processes. Physical Review A,2007,75(6):062320.
    112. Deng Z J, Feng M, Gao K L. Preparation of entangled states of four remote atomicqubits in decoherence-free subspace. Physical Review A,2007,75(2):024302.
    113. Zhang X L, Gao K L, Feng M. Efficient and high-fidelity generation of atomiccluster states with Cavity QED and linear optics. Physical Review A,2007,75(3):034308.
    114. Wu H Z, Yang Z B, Zheng S B. Entanglement-assisted quantum logic gates for tworemote qubits. Physics Letters A,2008,372:2802-2805.
    115. Barchielli A, Belavkin V P. Measurements continuous in time and a posterioristates in quantum mechanics. Journal of Physics A: Mathematical and General,1991,24(7):1495-1514.
    116. Briegel H J, Dür W, Cirac J I, et al.. Quantum Repeaters: The Role of ImperfectLocal Operations in Quantum Communication. Physical Review Letters,1998,81(26):5932-5935.
    117. Düe W, Briegel H J, Cirac J I, et al.. Quantum repeaters based on entanglementpurification. Physical Review A,1999,59(1):169-181.
    118. Childress L, Taylor J M, S rensen A S, et al.. Fault-Tolerant QuantumCommunication Based on Solid-State Photon Emitters. Physical Review Letters,2006,96(7):070504.
    119. Osnaghi S, Bertet P, Auffeves A, et al.. Coherent Control of an Atomic Collisionin a Cavity. Phyical Review Letters.2001,87(3):037902.
    120. Raimond J M, Brune M, and Haroche S. Manipulating quantum entanglement withatoms and photons in a cavity. Review Modern Physics,2001,73(3):565-582.
    121. Rauschenbeutel A, Nogues G, Osnaghi S, et al.. Step-by-Step EngineeredMultiparticle Entanglement. Science,2000,288(5473):2024-2028.
    122. Bonato C, Haupt F, Oemrawsngh S S R, et al.. CNOT and Bell-state analysis inthe weak-coupling cavity QED regime. Physical Review Letters,2010,104(16):160503.
    123. Boozer A D, Boca A, Miller R, et al.. Reversible State Transfer between Lightand a Single Trapped Atom. Physical Review Letters,2007,98(19):193601.
    124. Rauschenbeutel A, Nogues G, Osnaghi S, et al.. Coherent Operation of a TunableQuantum Phase Gate in Cavity QED. Physical Review Letters,1999,83(24):5166-5169.
    125. Brennen G K, Caves C M, Jessen P S, et al.. Quantum Logic Gates in OpticalLattices. Physical Review Letters,1999,82(5),1060-1063.
    126. You L, Chapman M S. Quantum entanglement using trapped atomic spins. PhysicalReview A,2000,62(5):052302.
    127. Zhang X L, Isenhower L, Gill A T, et al.. Deterministic entanglement of twoneutral atoms via Rydberg blockade. Physical Review A,2010,82(3):030306.
    128. Johnson T A, Urban E, Henage T, et al.. Rabi Oscillations between Ground andRydberg States with Dipole-Dipole Atomic Interactions. Physical Review Letters,2008,100(11):113003.
    129. Urban E, Johnson T A, Henage T, et al.. Observation of Rydberg blockade betweentwo atoms. Nature Physics.2009,5(2):110-114.
    130. Reinhard A, Liebisch T C, Knuffman B, et al.. Level shifts of rubidium Rydbergstates due to binary interactions. Physical Review A,2007,75(3):032712.
    131. Gaetan A, Miroshnychenko Y, Wilk T, et al.. Observation of collective excitationof two individual atoms in the Rydberg blockade regime. Nature Physics,2009,5(2):115-118.
    132. Müller M, Lesanovsky I, Weimer H, et al.. Mesoscopic Rydberg Gate Based onElectromagnetically Induced Transparency. Physical Review Letters,2009,102(17):170502.
    133. Zhao B, Müller M, Hammerer K, et al.. Efficient quantum repeater based ondeterministic Rydberg gates. Physical Review A,2010,81(5):052329.
    134. Wu H Z, Yang Z B, and Zheng S B. Implementation of a multiqubit quantum phasegate in a neutral atomic ensemble via the asymmetric Rydberg blockade. PhysicalReview A,2010,82(3):034307.
    135. Walker T G, Saffman M. Consequences of Zeeman degeneracy for the van der Waalsblockade between Rydberg atoms. Physical Review A,2008,77(3):032723.
    136. Brion E, Mouritzen A S, and M lmer K. Conditional dynamics induced by newconfigurations for Rydberg dipole-dipole interactions. Physical Review A,2007,76(2):022334.
    137. Cozzini M, Calarco T, Recati A, et al.. Fast Rydberg gates without dipoleblockade via quantum control. Optics Communications,2006,264(2):375-384.
    138. Wu H Z, Zheng S B. Quantum state swap for two trapped Rydberg atoms. Submitted.
    139. Wu H Z, Yang Z B, and Zheng S B. Implementation of Controlled Geometric PhaseGate for Two Trapped Neutral Atoms. Communications in Theoretical physics,2010,54(5):835-839.
    140. Bergmann K, Theuer H, and Shore B W. Coherent population transfer among quantumstates of atoms and molecules. Review Modern Physics,1998,70(3):1003-1025.
    141. Divincenzo P D. The physical implementation of quantum computation.Fortschritte der Physics,2000,48(9-11):771-783.
    142. Beals T R, Vala J, Whaley K B. Scalability of quantum computation withaddressable optical lattices. Physical Review A,2008,77(5):052309.
    143. Kimble H J. The quantum internet. Nature(London),2008,453(7198):1023-1030.
    144. Saffman M, Walker T G. Entangling single-and N-atom qubits for fast quantumstate detection and transmission. Physical Review A,2005,72(4):042302.
    145. Brion E, M lmer K, Saffman M. Quantum Computing with Collective Ensembles ofMultilevel Systems. Physical Review Letters,2007,99(26):260501.
    146. Brion E, Pedersen L H, Saffman M, et al.. Error Correction in Ensemble Registersfor Quantum Repeaters and Quantum Computers. Physical Review Letters,2008,100(11):110506.
    147. Pupillo G, Micheli A, Boninsegni M, et al.. Strongly Correlated Gases ofRydberg-Dressed Atoms: Quantum and Classical Dynamics. Physical Review Letters,2010,104(22):223002.
    148. Honer J, Weimer H, Pfau T, et al.. Collective Many-Body Interaction in RydbergDressed Atoms. Physical Review Letters,2010,105(16):160404.
    149. Petrosyan D, Fleischhauer M. Quantum Information Processing with Single Photonsand Atomic Ensembles in Microwave Coplanar Waveguide Resonators. Physical ReviewLetters,2008,100(17):170501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700