腔量子电动力学和光机械系统中的量子信息过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从Shor算法的发明以来,量子信息学引起了人们极大的关注和兴趣。本文讨论了如何在光学腔系统中实现量子信息处理过程和制备光学器件。所谓量子信息处理包括量子态传输以及量子逻辑门的实现,以及量子纠缠态的制备。本文所考虑的光学腔系统包括腔QED系统和光学机械振子系统。
     在论文的第一部分,我们讨论了在腔QED系统中实现各种量子信息处理过程的理论方案。我们考虑的系统包括两个空间上远离的光学腔,通过单模光纤连接。(多)原子束缚在腔中,与腔模耦合,而腔模又同时与光纤模共振耦合。如果原子们与局域的腔场共振集体耦合,且原子之间没有直接相互作用,我们发现在相互远离的两团原子间可以实现完美的量子态传输,以及高度可靠的量子交换门,纠缠门和控制Z门。我们发现实现这些量子信息处理完成的速度随着原子数的增加而增大,而原子自发幅射和光子泄露等耗散过程对量子信息处理的影响被极大的压缩了。我们提出如何在这个系统中制备一个可控的有效压缩真空库环境。然后我们表明仅通过绝热的操控库环境参数,可以在两个相互远离的腔中束缚的原子之间实现控制相位门和纠缠门。这个方案把在非消相干子空间中操控库环境和几何相位量子计算综合到一起了,具有如下重要特点:任意相位的控制相位门都可以仅仅通过简单的改变控制光场的强度和相对相位来实现;利用纠缠门可以高效的制备出稳定的两量子比特的最大纠缠态,而不需要通过测量。
     在本文的第二部分,我们讨论了如何在光机械系统中制备非经典光,以及如何冷却它。在光机械系统中,我们提出了一个在两个相位振幅正交的光学模式之间制备连续变量纠缠光的方案。在合适的驱动功率和失谐量下,纠缠度对热库温度和机械振子的品质因子Q都不敏感。在实际可行的实验条件下,我们发现即使是室温下做实验,纠缠度也可以非常的高。此外,如果我们想冷却光机械振子,冷却激光的相位噪声对冷却纳米机械振子到量子区域设置了一个主要的技术难题。基于振子与两个光学模式同时耦合的模型,我们提出了一个冷却方案设置,可以极大的减小相位噪声的影响,消除相位噪声对冷却机械振子到量子区域的限制。经过对各种参数进行优化后,我们由简单的估计表明光机械振子冷却的内禀极限由如下式子确定:Tenv/Q,其中Tenv是环境温度,而Q是机械振子品质因子。我们也讨论了当机械振子冷却到量子区域附近时,如何探测声子数,并确定了完成这个探测所需满足的条件。
Quantum information science has attracted a lot of attentions since the invention of Shor's algorithm. The thesis focuses on realizing the quantum information processes and optical devices in optical cavity system, such as cavity QED systems and opto-mechanical systems. Here the quantum information processes include the quantum state transfer, quantum logic gates and generating quantum entangled states.
     In the first part of the thesis, schemes to realize quantum information processes in cavity QED systems are discussed. We consider the systems containing two remote cavities, which are connected by an optical fiber. (Multi) Atoms are trapped in the cavities and couple with the cavity modes, which resonantly couple with the fiber mode. If the atoms resonantly and collectively interact with the local cavity fields but there is no direct interaction be-tween the atoms, we show that an ideal quantum state transfer and highly reliable quantum swap, entangling, and controlled-Z gates can be deterministically realized between the dis-tant cavities. We find that the operation quantum information processes can be greatly speeded up, and the effects of spontaneous emission of atoms and photon leakage out of cavity can also be greatly diminished as number of the atoms in the cavities increases. We also show that an effective squeezing reservoir can be engineered in the system under appro-priate conditions. Then we show that a two-qubit geometric CPHASE gate and entangling gate between the atoms in the two cavities can be implemented through adiabatically ma-nipulating the engineered reservoir. This scheme that combines engineering environment with decoherence-free space and geometric phase quantum computation together has the remarkable features:a CPHASE gate with arbitrary phase shift is implemented by simply changing the strength and relative phase of the driving fields, and entangling gate can generate stable extremely entangled two-qubit state without measurement.
     In the second part of the thesis, non-classical light source and cooling scheme in opto- mechanical systems are discussed. We propose a scheme to produce continuous variable en-tanglement between phase-quadrature amplitudes of two light modes in an opto-mechanical system. For proper driving power and detuning, the entanglement is insensitive with bath temperature and Q of the mechanical oscillator. Under realistic experimental conditions, we find that the entanglement could be very large even at room temperature. The noise from laser phase fluctuation sets a major technical obstacle to cool the nano-mechanical oscillators to the quantum region. We propose a cooling configuration based on the opto-mechanical coupling with two cavity modes to significantly reduce this phase noise. After optimization of the cavity parameters, we show through simple arguments that the intrinsic cooling limit of the opto-mechanical oscillator is set by Tenv/Q, where Tenv is the environ-ment temperature and Q is the mechanical quality factor. We also discuss detection of the phonon number when the mechanical oscillator is cooled near the quantum region and specify the required conditions for this detection.
引文
[1]M. A. Nielsen, I. L. Chuang. Quantum Computation and Quantum Information[M]. Cambridge Uniersity Press, Cambridge, United Kingdom,2000
    [2]Charles H. Bennett, David P. DiVincenzo. Quantum information and computation[J]. Nature (London). March 2000,404
    [3]R. P. Feyman. Simulating physics with computers[J]. Int J Theor Phys.1982,21:467
    [4]P. W. Shor. Algorithms for quantum computation:discrete logarithms and factoring[C]. Procee-ings,35th Annual Symposium on Foundations of Computer Science. IEEE Press, Los Almitos, CA,1994,124-134
    [5]Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack[J]. Phys Rev Lett.1997,79:325
    [6]Immanuel Bloch, Jean Dalibard, Wilhelm Zwerger. Many-body physics with ultracold gases[J]. Rev Mod Phys.2008,80(3):885 (pages 80)
    [7]Bjorn Brezger, Lucia Hackermuller, Stefan Uttenthaler, Julia Petschinka, Markus Arndt, An-ton Zeilinger. Matter-Wave Interferometer for Large Molecules[J]. Phys Rev Lett. Feb 2002, 88(10):100404
    [8]K. C. Schwab, M. L. Roukes. Putting Mechanics into Quantum Mechanics[J]. Physics Today. Jul.2005,58(7):36
    [9]Edward Fredkin, Tommaso Toffoli. Conservative logic[J]. International Journal of Theoretical Physics. April 1982,21(3-4):219-253
    [10]D. Deutsch. Quantum Theory, the Church-Turing Principle and the Universal Quantum Com-puter[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences.1985,400(1818):97-117
    [11]Andrew M. Childs, Wim van Dam. Quantum algorithms for algebraic problems [J]. Dec 2008. arXiv:0812.0380
    [12]Adriano Barenco, David Deutsch, Artur Ekert. Conditional Quantum Dynamics and Logic Gates[J]. Phys Rev Lett.1995,74:4083
    [13]David P. Divincenzo. The Physical Implementation of Quantum Computation [J]. Fortschritte der Physik.2000,48(9-11):771-783
    [14]J. I. Cirac, P. Zoller. Quantum Computations with Cold Trapped Ions[J]. Phys Rev Lett. May 1995,74(20):4091
    [15]C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland. Demonstration of a Fundamental Quantum Logic Gate[J]. Phys Rev Lett.1995,75(25):4714
    [16]G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan. Large-scale quantum computation in an anharmonic linear ion trap[J]. Europhy Lett.2009, 86(6):60004 (5pp). arXiv:0901.0579
    [17]L. M. K. Vandersypen, I. L. Chuang. NMR techniques for quantum control and computation[J]. Rev Mod Phys.2004,76:1037
    [18]C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D. G. Cory, R. Laflamme. Benchmarking Quantum Control Methods on a 12-Qubit System[J]. Phys Rev Lett.2006,96(17):170501 (pages 4)
    [19]Shi-Biao Zheng, Guang-Can Guo. Efficient Scheme for Two-Atom Entanglement and Quantum Information Processing in Cavity QED[J]. Phys Rev Lett.2000,85:2392
    [20]Yuan Liang Lim, Sean D. Barrett, Almut Beige, Pieter Kok, Leong Chuan Kwek. Repeat-Until-Success quantum computing using stationary and flying qubits[J]. Phys Rev A.2006, 73:012304
    [21]Alessio Serafini, Stefano Mancini, Sougato Bose. Distributed Quantum Computation via Optical Fibers [J]. Phys Rev Lett.2006,96:010503
    [22]E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics[J]. Nature (London).2001,409:46
    [23]J. Q. You, Franco Nori. Superconducting Circuit and Quantum Information[J]. Phys Today. 2005,11:42
    [24]A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, R. J. Schoelkopf. Circuit Quantum Electrodynamics:Coherent Coupling of a Single Photon to a Cooper Pair Box[J]. Nature (London).2004,431:162
    [25]L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, R. J. Schoelkopf. Demonstration of Two-Qubit Algorithms with a Superconducting Quantum Processor [J]. ArXiv e-prints. Mar.2009.0903.2030
    [26]Daniel Loss, David P. DiVincenzo. Quantum computation with quantum dots[J]. Phys Rev A. 1998,57:120
    [27]Daniel Loss Guido Burkard, David P. DiVincenzo. Coupled quantum dots as quantum gates[J]. Phys Rev B.1998,59:2070
    [28]A. Yu. Kitaev. Fault-tolerant quantum computation by anyons[J]. Annals of Physics.2003, 303(1):2-30
    [29]S. M. Spillane et al. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynam-ics[J]. Phys Rev A.2005,71:013817
    [30]Randall G. Hulet, Eric S. Hilfer, Daniel Kleppner. Inhibited Spontaneous Emission by a Rydberg Atom[J]. Phys Rev Lett. Nov 1985,55(20):2137-2140
    [31]Christine Guerlin, Julien Bernu, Samuel Deleglise, Clement Sayrin, Sebastien Gleyzes, Stefan Kuhr, Michel Brune, Jean-Michel Raimond, Serge Haroche. Progressive field-state collapse and quantum non-demolition photon counting[J]. Nature (London).2007,448:889
    [32]Samuel Deleglise, Igor Dotsenko, Clement Sayrin, Julien Bernu, Michel Brune, Jean-Michel Raimond, Serge Haroche. Reconstruction of non-classical cavity field states with snapshots of their decoherence[J]. Nature (London).2008,455:510
    [33]L. Hilico, et al. Squeezing with x(3) materials[J]. Appl Phys B.1992,55:202
    [34]S. Mancini, P. Tombesi. Quantum noise reduction by radiation pressure[J]. Phys Rev A. May 1994,49(5):4055-4065
    [35]C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, S. Reynaud. Quantum-noise reduction using a cavity with a movable mirror[J]. Phys Rev A. Feb 1994,49(2):1337-1343
    [36]Matthew Tomes, Tal Carmon. Photonic Micro-Electromechanical Systems Vibrating at X-band (11-GHz) Rates[J]. Phys Rev Lett.2009,102(11):113601
    [37]M. D. LaHaye, O. Buu, B. Camarota, K. C. Schwab. Approaching the Quantum Limit of a Nanomechanical Resonator[J]. Science. Apr.2004,304:74-78
    [38]C. H. Metzger, K. Karrai. Cavity cooling of a microlever[J]. Nature (London). Dec.2004, 432:1002-1005
    [39]A. Naik, O. Buu, M. D. Lahaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, K. C. Schwab. Cooling a nanomechanical resonator with quantum back-action[J]. Nature (London). Sep.2006, 443:193-196. arXiv:cond-mat/0609297
    [40]O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann. Radiation-pressure cooling and optomechanical instability of a micromirror[J]. Nature (London). Nov.2006,444:71-74. arXiv:quant-ph/0607205
    [41]A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T. J. Kippenberg. Resolved-sideband cooling of a micromechanical oscillator [J]. Nature Physics. May 2008,4:415-419. arXiv: 0709.4036
    [42]Simon Groblacher, Jared B. Hertzberg, Michael R. Vanner, Sylvain Gigan, Keith C. Schwab, Markus Aspelmeyer. Demonstration of an ultracold micro-optomechanical oscillator in a cryo-genic cavity [J]. Nature Physics. June 2009,5:485
    [43]A. Schliesser, O. Arcizet, R. Riviere, T. J. Kippenberg. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit [J]. Nature Physics.2009,5:509
    [44]Young-Shin Park, Hailin Wang. Resolved-sideband and cryogenic cooling of an optomechanical resonator [J]. Nature Physics.2009,5
    [45]J. I. Cirac, P. Zoller. A scalable quantum computer with ions in an array of microtraps[J]. Nature (London).2000,202:579
    [46]J. I. Cirac, A. K. Ekert, S. F. Huelga, C. Macchiavello. Distributed quantum computation over noisy channels [J]. Phys Rev A.1999,59:4249
    [47]M. Paternostro, M. S. Kim, G. M. Palma. Non-Local Quantum Gates:a Cavity-Quantum-Electro-Dynamics implementation[J]. J Mod Opt.2003,50:2075
    [48]D. P. DiVincenzo. Two-bit gates are universal for quantum computation[J]. Phys Rev A.1995, 51:1015
    [49]Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, Harald Weinfurter. Elementary gates for quantum computation[J]. Phys Rev A.1995,52(5):3457
    [50]L.M. Duan, H.J. Kimble. Scalable Photonic Quantum Computation through Cavity-Assisted Interactions[J]. Phys Rev Lett.2004,92:127902
    [51]Yuan Liang Lim, Almut Beige, Leong Chuan Kwek. Repeat-Until-Success Linear Optics Dis-tributed Quantum Computing[J]. Phys Rev Lett.2005,95:030505
    [52]Sean D. Barrett, Pieter Kok. Efficient high-fidelity quantum computation using matter qubits and linear optics[J]. Phys Rev A.2005,71:060310(R)
    [53]Jaeyoon Cho, Hai Woong Lee. Generation of Atomic Cluster States through the Cavity Input-Output Process[J]. Phys Rev Lett.2005,95:160501
    [54]Yun-Feng Xiao, Xiu-Min Lin, Jie-Gao, Yong Yang, Zheng-Fu Han, Guang-Can Guo. Realizing quantum controlled phase flip through cavity QED[J]. Phys Rev A.2004,70:042314
    [55]J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network[J]. Phys Rev Lett.1997,78(16):3221
    [56]T. Pellizzari. Quantum Networking with Optical Fibres[J]. Phys Rev Lett. Dec 1997, 79(26):5242
    [57]S. J. van Enk and et al. Quantum communication with dark photons[J]. Phys Rev A. Apr 1999, 59(4):2659
    [58]Stephen Clark, Amy Peng, Mile Gu, Scott Parkins. Unconditional Preparation of Entanglement between Atoms in Cascaded Optical Cavities[J]. Phys Rev Lett.2003,91:177901
    [59]Daniel E. Browne, Martin B. Plenio, Susana F. Huelga. Robust Creation of Entanglement between Ions in Spatially Separate Cavities[J]. Phys Rev Lett.2003,91:067901
    [60]L. M. Duan, H. J. Kimble. Efficient Engineering of Multiatom Entanglement through Single-Photon Detections[J]. Phys Rev Lett.2003,90:253601
    [61]Stefano Mancini, Sougato Bose. Engineering an interaction and entanglement between distant atoms[J]. Phys Rev A.2005,70:022307
    [62]Fu-Li Li, Xiao-Shen Li, D. L. Lin, Thomas F. George. Squeezing of many-body radiation in an optical cavity[J]. Phys Rev A.1990,41(5):41
    [63]M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, P. Zoller. Dipole Blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles [J]. Phys Rev Lett.2001,87:037901
    [64]D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Cote, E. E. Eyler, P. L. Gould. Local Blockade of Rydberg Excitation in an Ultracold Gas[J]. Phys Rev Lett.2004, 93:063001
    [65]Kilian Singer, Markus Reetz-Lamour, Thomas Amthor, Luis Gustavo Marcassa, Matthias Wei-demuller. Suppression of Excitation and Spectral Broadening Induced by Interactions in a Cold Gas of Rydberg Atoms[J]. Phys Rev Lett.2004,93:163001
    [66]T. Cubel Liebisch, A. Reinhard, P. R. Berman, G. Raithel. Atom Counting Statistics in En-sembles of Interacting Rydberg Atoms[J]. Phys Rev Lett.2005,95:253002
    [67]A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, H. J. Kimble. Observation of the Vacuum Rabi Spectrum for One Trapped Atom[J]. Phys Rev Lett.2004,93:233603
    [68]M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, M. Kraft. Mi-crofabricated high-finesse optical cavity with open access and small volume[J]. Applied Physics Letters.2005,87(21)
    [69]S. M. Spillane et al. Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics [J]. Phys Rev Lett.2003,91:043902
    [70]P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, G. Rempe. Normal-Mode Spectroscopy of a Single-Bound-Atom-Cavity System[J]. Phys Rev Lett.2005,94:033002
    [71]T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, P. Pillet. Dipole Blockade at Forster Resonances in High Resolution Laser Excitation of Rydberg States of Cesium Atoms[J]. Phys Rev Lett. Aug.2006,97(8):083003
    [72]C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, H. J. Kimble. The Atom-Cavity Microscope:Single Atoms Bound in Orbit by Single Photons[J]. Science. Feb.2000,287:1447-1453
    [73]L. M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature (London).2001,414:413
    [74]Z Ficek, R Tanas. Entangled states and collective nonclassical effects in two-atom systems[J]. Physics Reports. December 2002,372(5):369
    [75]Stefan Nu/3mann and et al. Vacuum-stimulated cooling of single atoms in three dimensions [J]. Nature Physics.2005,1:122
    [76]Lu-Ming Duan, Guang-Can Guo. Preserving Coherence in Quantum Computation by Pairing Quantum Bits[J]. Phys Rev Lett. Sep 1997,79(10):1953
    [77]P. Zanardi, M. Rasetti. Noiseless Quantum Codes[J]. Phys Rev Lett. Oct 1997,79(17):3306
    [78]D. A. Lidar and et al. Decoherence-Free Subspaces for Quantum Computation[J]. Phys Rev Lett. Sep 1998,81(12):2594
    [79]M. V. Berry. Quantal phase factors accompanying adiabatic changes[J]. Proc R Soc A.1984, 392:45
    [80]Paolo Zanardi, Mario Rasetti. Holonomic Quantum Computation[J]. Phys Lett A.1999,264:94
    [81]L.-M. Duan and et al. Geometric Manipulation of Trapped Ions for Quantum Computation [J]. Science.2001,292:1695
    [82]Shi-Liang Zhu, Paolo Zanardi. Geometric quantum gates that are robust against stochastic control errors [J]. Phys Rev A.2005,72:020301
    [83]L.-A. Wu and et al. Holonomic Quantum Computation in Decoherence-Free Subspaces [J]. Phys Rev Lett.2005,95:130501
    [84]Angelo Carollo et al. Geometric Phase Induced by a Cyclically Evolving Squeezed Vacuum Reservoir[J]. Phys Rev Lett.2006,96:150403
    [85]Angelo Carollo et al. Coherent Quantum Evolution via Reservoir Driven Holonomies[J]. Phys Rev Lett.2006,96:020403
    [86]J. I. Cirac. Interaction of a two-level atom with a cavity mode in the bad-cavity limit [J]. Phys Rev A.1992,46:4354
    [87]C. J. Myatt and et al. Decoherence of quantum superpositions through coupling to engineered reservoirs [J]. Nature (London).2000,403:269
    [88]S. G. Clark, A. S. Parkins. Entanglement and Entropy Engineering of Atomic Two-Qubit States[J]. Phys Rev Lett.2003,90:047905
    [89]Seth Lloyd. Almost Any Quantum Logic Gate is Universal [J]. Phys Rev Lett. Jul 1995, 75(2):346
    [90]Zhang-qi Yin and Fu-li Li. Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber[J]. Phys Rev A.2007, 75:012324
    [91]Robert Raussendorf, Hans J. Briegel. A One-Way Quantum Computer[J]. Phys Rev Lett.2001, 86:5188
    [92]Almut Beige, Daniel Braun, Ben Tregenna, Peter L. Knight. Quantum Computing Using Dis-sipation to Remain in a Decoherence-Free Subspace[J]. Phys Rev Lett.2000,85:1762
    [93]J. M. Raimond, M. Brune, S. Haroche. Colloquium:Manipulating quantum entanglement with atoms and photons in a cavity[J]. Rev Mod Phys.2001,73:565
    [94]Charles H. Bennett, Gilles Brassard, Claude Crepeau, Richard Jozsa, Asher Peres, William K. Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Phys Rev Lett.1993,70:1895
    [95]Peng Peng, Fu li Li. Entangling two atoms in spatially separated cavities through both photon emission and absorption processes[J]. Phys Rev A.2007,75(6):062320
    [96]L.-B. Chen, M.-Y. Ye, G.-W. Lin, Q.-H. Du, X.-M. Lin. Generation of entanglement via adia-batic passage [J]. Phys Rev A. Dec.2007,76(6):062304
    [97]J. Song, Y. Xia, H.-S. Song, J.-L. Guo, J. Nie. Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities[J]. Europhys Lett. Dec.2007, 80:60001
    [98]X.-Y. Lu, L.-G. Si, M. Wang, S.-Z. Zhang, X. Yang. Generation of entanglement between two spatially separated atoms via dispersive atom field interact ion[J]. J Phys B:At Mol Opt Phys. Dec.2008,41(23):235502
    [99]S.-Y. Ye, Z.-R. Zhong, S.-B. Zheng. Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities[J]. Phys Rev A. Jan.2008,77(1):014303
    [100]L.-M. Duan, M. J. Madsen, D. L. Moehring, P. Maunz, R. N. Kohn, Jr., C. Monroe. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits[J]. Phys Rev A. Jun.2006,73(6):062324. arXiv:quant-ph/0603285
    [101]D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, C. Monroe. Entanglement of single-atom quantum bits at a distance[J]. Nature. Sep.2007, 449:68-71
    [102]B. Kraus, J. I. Cirac. Discrete Entanglement Distribution with Squeezed Light[J]. Phys Rev Lett.2004,92:013602
    [103]Fu-li Li, Peng Peng, Zhang-qi Yin. Preparing entangled states of two atoms through the intensity-dependent interaction with the two-mode squeezed vacuum[J]. Journal of Modern Optics. Sep 2006,53(14):2055
    [104]Zhang-qi Yin, Fu-li Li, Peng Peng. Implementation of holonomic quantum computation through engineering and manipulating environment[J]. Phys Rev A. Nov 2007,76:062311
    [105]S. L. Braunstein, P. Van Loock. Quantum information with continuous variables[J]. Rev Mod Phys.2005,77:513
    [106]Z. Y. Ou, S. F. Pereira, H. J. Kimble, K. C. Peng. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables [J]. Phys Rev Lett. Jun 1992,68(25):3663-3666
    [107]Ch. Silberhorn, P. K. Lam, O. Weiβ, F. Konig, N. Korolkova, G. Leuchs. Generation of Contin-uous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber[J]. Phys Rev Lett. May 2001,86(19):4267-4270
    [108]V. Giovannetti, S. Mancini, P. Tombesi. Radiation pressure induced Einstein-Podolsky-Rosen paradox[J]. Europhys Lett.2001,54:559-565
    [109]S. Mancini, A. Gatti. Entanglement of transverse modes in a pendular cavity[J]. J Opt B: Quantum Semiclass Opt.2001,3:S66-S71
    [110]S. Pirandola, s. Mancini, D. Vitali, P. Tombesi. Continuous variable entanglement by radiation pressure [J]. J Opt B:Quantum Semiclass Opt.2003,5:S523-S529
    [111]C. Genes, A. Mari, P. Tombesi, D. Vitali. Robust entanglement of a micromechanical resonator with output optical fields[J]. Phys Rev A.2008,78:032316
    [112]Christopher Wipf, Thomas Corbitt, Yanbei Chen, Nergis Mavalvala. Route to ponderomotive entanglement of light via optically trapped mirrors[J]. New J Phys.2008,10:095017
    [113]C. A. Regall, J. D. Teufel, K. W. Lehnert. Measuring nanomechanical motion with a microwave cavity interferometer [J]. Nature Physics.2008,4:555-560
    [114]A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, T. J. Kippenberg. Resolved-sideband cooling of a micromechanical oscillator [J]. Nature Physics. May 2008,4:415-419
    [115]A. Schliesser, G. Anetsberger, R. Riviere, O. Arcizet, T. J. Kippenberg. High-sensitivity mon-itoring of micromechanical vibration using optical whispering gallery mode resonators [J]. New J Phys.2008,10:095015
    [116]G. Giedke, M. M. Wolf, O. Kriiger, R. F. Werner, J. I. Cirac. Entanglement of Formation for Symmetric Gaussian States[J]. Phys Rev Lett. Sep 2003,91(10):107901
    [117]S. M. Spillane, T. J. Kippenberg, O. J. Painter, K. J. Vahala. Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics[J]. Phys Rev Lett. Jul 2003,91(4):043902
    [118]I. Wilson-Rae, N. Nooshi, W. Zwerger, T. J. Kippenberg. Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction[J]. Phys Rev Lett. Aug.2007,99(9):093901
    [119]F. Marquardt, J. P. Chen, A. A. Clerk, S. M. Girvin. Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion [J]. Phys Rev Lett. Aug.2007,99(9):093902
    [120]B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, H. J. Kimble. A Photon Turnstile Dynamically Regulated by One Atom[J]. Science. Feb.2008,319:1062-
    [121]K. Srinivasan, O. Painter. Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity[J]. Phys Rev A.2007,75:023814
    [122]T. J. Kippenberg, K. J. Vahala. Cavity Opto-Mechanics[J]. Optics Express.2007,15:17172
    [123]D. F. Walls, G. J. Milburn. Quantum Optics[M]. Springer-Verlag, Berlin,1994
    [124]G. Adesso, F. Illuminati. Entanglement in continuous-variable systems:recent advances and current perspectives[J]. Journal of Physics A Mathematical General. Jul.2007,40:7821-7880. arXiv:quant-ph/0701221
    [125]T. J. Kippenberg, K. J. Vahala. Cavity Optomechanics:Back-Action at the Mesoscale[J]. Science. August 2008,321(5893):1172
    [126]Stefano Mancini, Vittorio Giovannetti, David Vitali, Paolo Tombesi. Entangling Macroscopic Oscillators Exploiting Radiation Pressure[J]. Phys Rev Lett. Mar 2002,88(12):120401
    [127]D. Vitali, S. Gigan, A. Ferreira, H. R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer. Optomechanical Entanglement between a Movable Mirror and a Cavity Field[J]. Phys Rev Lett.2007,98(3):030405
    [128]I. Wilson-Rae, N. Nooshi, J. Dobrindt, T. J. Kippenberg, W. Zwerger. Cavity-assisted backac-tion cooling of mechanical resonators [J]. New J Phys. September 2008,10(9):095007
    [129]L. Diosi. Laser linewidth hazard in optomechanical cooling[J]. Phys Rev A. Aug.2008, 78(2):021801. arXiv:0803.3760
    [130]P. Rabl, C. Genes, K. Hammerer, M. Aspelmeyer. Phase-noise induced limitations in resolved-sideband cavity cooling of mechanical resonators [J]. Mar 2009. arXiv:0903.1637
    [131]Zhang-qi Yin, Y.-J. Han. Generating EPR beams in a cavity optomechanical system[J]. Phys Rev A.2009,79:024301
    [132]C. Zhao, L. Ju, H. Miao, S. Gras, Y. Fan, D. G. Blair. Direct Amplification of Sound by Light[J]. 2009. arXiv:0710.2383v3
    [133]H. Miao, C. Zhao, L. Ju, S. Gras, P. Barriga, Z. Zhang, D. G. Blair. Three-mode optoacoustic parametric interactions with a coupled cavity[J]. Phys Rev A. Dec.2008,78(6):063809
    [134]H. Miao, C. Zhao, L. Ju, D. G. Blair. Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions[J]. Phys Rev A.2009,79(6):063801
    [135]J. M. Dobrindt, T. J. Kippenberg. Theory of quantum backaction enhancement and displace-ment measurement using a multiple cavity mode transducer[J]. Mar 2009. arXiv:0903.1013
    [136]F. Diedrich, J. C. Bergquist, Wayne M. Itano, D. J. Wineland. Laser Cooling to the Zero-Point Energy of Motion[J]. Phys Rev Lett. Jan 1989,62(4):403-406
    [137]Q. A. Turchette, C. J. Myatt, B. E. King, C. A. Sackett, D. Kielpinski, W. M. Itano, C. Monroe, D. J. Wineland. Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs [J]. Phys Rev A. Oct 2000,62(5):053807
    [138]O. Arcizet, R. Riviere, A. Schliesser, T. J. Kippenberg. Cryogenic properties of optomechanical silica microcavities[J]. Jan 2009. arXiv:0901.1292
    [139]C. Genes, A. Mari, P. Tombesi, D. Vitali. Robust entanglement of a micromechanical resonator with output optical fields[J]. Phys Rev A. Sep.2008,78(3):032316. arXiv:0806.2045
    [140]Chunnong Zhao, Li Ju, Haixing Miao, Slawomir Gras, Yaohui Fan, David G. Blair. Three-Mode Optoacoustic Parametric Amplifier:A Tool for Macroscopic Quantum Experiments [J]. Phys Rev Lett.2009,102(24):243902
    [141]Michael J. Hartmann, Fernando G. S. L. Brandao, Martin B. Plenio. Strongly Interacting Polaritons in Coupled Arrays of Cavities [J]. Nature Physics.2006,2:849. URL doi:10.1038/ nphys462
    [142]A. D. Greentree, C. Tahan, J. H. Cole, L. C. L. Hollenberg. Quantum phase transitions of light [J]. Nature Physics. Dec.2006,2:856-861. arXiv:cond-mat/0609050
    [143]F. O. Prado, E. I. Duzzioni, M. H. Y. Moussa, N. G. de Almeida, C. J. Villas-Boas. Nonadiabatic Coherent Evolution of Two-Level Systems under Spontaneous Decay[J]. Phys Rev Lett. Feb. 2009,102(7):073008
    [144]F. Verstraete, M. M. Wolf, J. I. Cirac. Quantum computation and quantum-state engineering driven by dissipation [J]. Nat Phys.2009,5:633
    [145]B. Kraus, H. P. Biichler, S. Diehl, A. Kantian, A. Micheli, P. Zoller. Preparation of entangled states by quantum Markov processes [J]. Phys Rev A.2008,78(4):042307 (pages 9)
    [146]S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Buchler, P. Zoller. Quantum States and Phases in Driven Open Quantum Systems with Cold Atoms[J]. Nature Physics.2008,4:878
    [147]Y.. Han, Y.. Chan, W. Yi, A. J. Daley, S. Diehl, P. Zoller, L.. Duan. Stabilization of the p-wave superfluid state in an optical lattice[J]. ArXiv e-prints. May 2009.0905.2600
    [148]Michelle Povinelli, Steven Johnson, Marko Lonear, Mihai Ibanescu, Elizabeth Smythe, Fed-erico Capasso, J. Joannopoulos. High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators [J]. Opt Express.2005,13(20):8286-8295
    [149]J. M. Ward, Y. Wu, V. G. Minogin, S. Nic Chormaic. Trapping of a microsphere pendulum resonator in an optical potential[J]. Physical Review A.2009,79(5):053839 (pages 6)
    [150]P. T. Rakich, M. A. Popovic, M. Soljacic, E. P. Ippen. Trapping, corralling and spectral bonding of optical resonances through optically induced potentials[J]. Nature Photonics. Nov. 2007,1:658-665
    [151]D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, P. Zoller. Cavity optomechanics using an optically levitated nanosphere[J]. ArXiv e-prints. Sep 2009. 0909.1548
    [152]Oriol Romero-Isart, Mathieu L. Juan, Romain Quidant, J. Ignacio Cirac. Towards Quantum Superposition of Living Organisms [J]. ArXiv e-prints. Sep 2009.0909.1469
    [153]R. Penrose. On Gravity's role in Quantum State Reduction[J]. General Relativity and Gravi-tation. May 1996,28:581-600
    [154]Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, Daniel S. Fisher. Boson localization and the superfluid-insulator transition[J]. Phys Rev B. Jul 1989,40(1):546-570

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700