Mo/HMCM-22催化剂活性中心结构和甲烷活化机理的密度泛函计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MCM-22分子筛具有独特的孔道结构,在甲烷无氧芳构化反应中能使苯的选择性和收率明显提高。MCM-22分子筛的超笼中的酸性位在择形催化中表现出极其重要的作用。
     本论文主要采用密度泛函量子力学计算方法,对担载于MCM-22分子筛的超笼T4位的碳化钼活性中心进行了设计与优化,确定了活性中心的结构,并且对其进行了自然键轨道(NBO)分析。研究了甲烷在活性中心上发生的反应,设计了三条可能的反应路径,并找出反应的过渡态,计算了反应的活化能。通过计算反应前后总能量、吉布斯自由能、焓的变化情况,对于担载在B酸位上的钼的氧化物的形成过程进行了深入细致的研究,主要结论如下:
     1)碳化钼活性中心存在共轭的大π键,且中心Mo原子通过配位键与骨架氧原子结合。最高占据轨道(HOMO)以及最低空轨道(LUMO)都集中在活性中心上。甲烷在活性中心上先发生物理吸附,然后进一步发生活化反应。根据前线分子轨道的分析,甲烷活化反应发生在甲烷分子的HOMO和钼活性中心的LUMO之间,即C–H键的电子流向Mo–C键的π*轨道,这是甲烷C–H键活化的关键。反应机理如下:甲烷的一个碳氢键发生异裂,生成带正电荷的氢离子和带负电荷的甲基离子,然后氢离子结合到活性中心的碳原子上,甲基离子结合到钼原子上,生成比较稳定的中间产物。
     2)MoO_2(OH)_2与B酸位发生的反应产物有两种:分别是MoO_2和Mo_2O_5两种钼的氧化物担载在B酸位上。它们的形成过程为:前者是一个MoO_2(OH)_2中的两个OH基团分别与相临的两个B酸位上的氢原子发生反应,生成两个水分子,MoO_2基团由此担载在分子筛的B酸位上;后者是两个MoO_2(OH)_2中的一个OH基团分别与相临的两个B酸位上的氢原子发生反应,生成两个MoO_2(OH)和两个水分子,然后两个MoO_2(OH)脱去一个水分子结合在一起,从而生成Mo_2O_5担载在分子筛的B酸位上。
     3)从能量的角度来看,MoO_2(OH)_2与B酸的反应是一个在常温常压下就可以自发进行的过程,生成担载在B酸位上的MoO_2(OH)基团。剩下的B酸位更倾向于与另一个MoO_2(OH)_2发生反应而形成新的MoO_2(OH)基团,而不是与MoO_2(OH)基团发生脱水反应形成MoO_2基团。最后分别担载在两个B酸位上的MoO_2(OH)基团之间脱去水分子,从而形成Mo_2O_5基团担载在MCM-22的骨架上。最后这步反应为吸热反应,并且只有在比较高的温度下才能自发进行。综合产物的稳定性、反应发生的趋势和吸放热情况,我们认为,最可能担载于B酸位的是双钼氧化物,具体位置是位于超笼入口十二元环上的T1-T1(3N)位、T1-T4(4N)位。
MCM-22 possesses a unique crystal structure containing two independent pore systems. The Mo loaded MCM-22 catalyst has been shown to be an excellent catalyst for methane dehydroaromatization with higher benzene selectivity. It has been proposed that the acid sites in supercage of HMCM-22 zeolite play an important role for its shape-selective catalysis.
     In the present work, DFT calculations were used to study the structures of molybdenum oxo species and molybdenum carbide at the T4 position in HMCM-22 zeolite. We used the natural bond orbital (NBO) calculations to analyze the bonding characteristics of the active centers. The reactions of methane on the active centers were investigated and two possible reaction pathways were proposed. The transition states and the activation energies of these reactions were obtained. The formation process of molybdenum oxo species were investigated through calculating the thermodynamic properties. The main conclusions are as follows
     1) Conjugatedπorbital system exists in the active center, and Mo is bonded to framework oxygen throughσbond. The highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) are concentrated in the Mo=C bond. In terms of the composition and the energy of the frontier orbital, it was suggested that the activation of methane on Mo carbide active center would happen between the HOMO of methane molecule and the LUMO of Mo carbide. Namely, the electrons preferred to transfer from theσ-orbital of C–H bond to theπ*orbital of Mo–C bond. This is crucial for the C-H bond activation of methane. A reaction mechanism is as follows: After heterogeneous splitting of C–H bond, the H_3C~- group was bonded to Mo and the H+ was bonded to C in Mo carbide species, which led to the relative stable intermediates.
     2) The reactions between MoO_2(OH)_2 and B acid sites may produce two kinds of Mo oxo species: MoO_2 and Mo_2O_5. The MoO_2(OH)_2 reacts with the protons on two adjacent B-acid sites, resulting in the grafted MoO_2 by releasing two water molecules. Whereas, if two MoO_2(OH)_2 molecules react with the protons on two adjacent B-acid sites, the anchored two MoO_2(OH) groups will be dehydrated to form Mo_2O_5 species at the B acid sites.
     3) From the point of energy, the loading of the first Mo(OH)_2O_2 molecule on the B acid is a spontaneous process. The adjacent B acid site is preferred to react with another MoO_2(OH)_2 molecule rather than to react with MoO_2(OH) group to form MoO_2 species. The loaded two MoO_2(OH) groups can dehydrate to form Mo_2O_5 species. Through comparing the stability of products and the trend of reactions, we can draw the conclusion that the Mo_2O_5 group is most likely to load on acid sites. The precise locations are T1-T1(3N),T1-T4(4N) sites of the 12-MR in the entrance of supercage.
引文
[1] D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974
    [2] 中 国 科 学 院 大 连 化 学 物 理 研 究 所 分 子 筛 组 ,《 沸 石 分 子 筛 》, 科 学 出 版社 , 第 一 版 ,( 1987)
    [3] R. M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, 1982
    [4] M. A. Asensi, A. Corma, A. Martinez, “Skeletal isomerization of 1-butene on MCM-22 zeolite catalyst”, J. Catal., 1996, 158: 561
    [5] R. Ravishankar, S. Sivasanker, “Hydroisomerization of n-hexane over Pt-H-MCM-22”, Appl. Catal. A-Gen., 1996, 142: 47
    [6] Corma, V. Gonzalezalfaro, A. V. Orchilles, “Catalytic Cracking of Alkanes on MCM-22”, Appl. Catal. A-Gen., 1995, 129: 203
    [7] Corma, J. Martínez-Triguero, “The use of MCM-22 as a cracking zeolitic additive for FCC”, J. Catal., 1997, 165: 102
    [8] Maerz, S. S. Chen, C. R. Venkat, D. N. Mazzone, Hydrocarbon Tech Int’l, 1996, 21
    [9] N. Mazzone, C. R. Venkat, P. J. Lewis, Japan Pet. Inst., 1996, 3
    [10] M. K. Rubin, P. Chu US Pat. 4954325, 1990
    [11] W. F. Holderich, “Zeolites: Catalysts for the Synthesis of organic Compounds”, Stud. Surf. Sci. Catal., 1988, 49A: 69 (Elsevier)
    [12] P. B. Venuto, “Organic Catalysis over Zeolites: A perspective on reaction paths within Micropore”, Microp. Mater. 1994, 2: 297
    [13] M. Iwamoto, “Zeolites in Environmental Catalysis”, Stud. Surf. Sci, Catal., 1994, 84B: 1395 (Elsevier)
    [14] T. Inui, “High Potential of Novel Zeolitic materials as Catalysts for Solving energy and environmental Problems”, Stud. Surf. Sci. Catal., 1997, 105B: 1441 (Elsevier)
    [15] M. K. Rubin, and P. Chu, US, 1990
    [16] T. Kresge, W. J. Roth, K. G. Simmons, J. C. Vartuli, US, 1993
    [17] J. M. Bennett, C. D. Chang, S. L. Lawton, M. E. Leonowicz, D. N. Lissy, M. K. Rubin, US, 1991
    [18] S. Fung, S. L. Lawton, W. J. Roth, US, 1993
    [19] M. A. Camblor, C. Corell, A. Corma, M. J. DiazCabanas, S. Nicolopoulos, J. M. GonzalezCalbet, M. ValletRegi, “A new microporous polymorph of silica isomorphous to zeolite MCM-22”, Chem. Mat., 1996, 8: 2415
    [20] Corma, V. Fornes, S. B. Pergher, T. L. M. Maesen, J. G. Buglass, “Delaminated zeolite precursors as selective acidic catalysts”, Nature, 1998, 396: 353
    [21] M. E. Leonowicz, J. A. Lawton, S. L. Lawton, M. K. Rubin, “MCM-22 - a Molecular-Sieve with 2 Independent Multidimensional Channel Systems”, Science, 1994, 264: 1910
    [22] Corma, C. Corell, A. Martinez, J. Perezpariente, in Zeolites and Related Microporous Materials: State of the Art 1994, Vol. 84, ELSEVIER SCIENCE PUBL B V, Amsterdam, 1994, p. 859
    [23] J. C. Cheng, T. F. Degnan, J. S. Beck, Y. Y. Huang, M. Kalyanaraman, J. A. Kowalski, C. A. Loehr, D. N. Mazzone, in Science and Technology in Catalysis 1998, Vol. 121, ELSEVIER SCIENCE PUBL B V, Amsterdam, 1999, p. 53
    [24] S.A.Shepelev and K.G. lone, React.Kinet.Catal.Lett.,23 (1983):323
    [25] J.R.Anderson and P.Tsai,App.Catal.,19 ( 1985):141
    [26] S.Han,D.T.Martenak,R.E.Palexmo,T.A.Pearson and D.E.Walsh,J. Catal., 136 (1992):578
    [27] E.G. Ismaicov, S.M. Aliev, Sh.Sh. Sivleimanov, B.A. Dadashev and V.D. Sokolovskii,React.Kinet.Catal.Lett.,45(1991):185
    [28] S.J.A basov,F.A.Babaeva and B.A.Dadashev,Kinet.Katal.,32( 1991):202
    [29] J.B.Claridge,M.L.H.Green,S.C.Tsang and A.P.E.York,Appl.Catal.A .89 (1992 ):103
    [30] H.L.Mitchell,III,R .H.Wanyhonre,US Patent 4,239,658(1980)
    [31] M.Belgued,P.Pareja,A.Amarigho and H.Amariglio,Nature,352(1991):789
    [32] T.Koerts,M .T.A.G.Deelen and R.A.V Santon, J.Catal.,138(1992):101
    [33] K.I. Tanaka, I.Yaeqashi and K.Aomnra, J.Chem.Soc.Chem.Commum.,938 (1982 )
    [34] O.V. Bragin, T.V. Vasina, A.V. Preobrazhenskii, Kh.M. Minachev, IZV.Ser.Khim.,3 (1989):750
    [35] Burker U N L. Allinger Molecular Mechanics, American Chemical Society ACS Monograph 177, Washington D.C., 1982
    [36] Corma, C. Richard, A. Catlow, G. Sastre, "Diffusion of linear and branched C7 paraffins in ITQ-1 zeolite. A molecular dynamics study", J. Phys. Chem. B, 1998, 102: 7085
    [37] 周 丹 红 , 杨 明 媚 , 王 妍 , 杨 刚 , 刘 宪 东 , “模 板 剂 与 MCM-22 分 子 筛匹 配 作 用 的 分 子 模 拟 计 算 ”, 无 机 化 学 学 报 , 2004, 20(1): 41
    [38] S. M. Xavier, B. Joan, B. Vicenc, S. Mariona, “Keto-Enol Isomerization of Acetaldehyde in HZSM5. A Theoretical Study Using the ONIOM2 Method”, J. Phys. Chem. B, 2002, 106: 10220
    [39] V. Beest, W. H. Kramer, R. A. Van Santen, Phys.Rev.Lett., 1990, 64:
    [40] Burchart, in Technische Universiteit Delft,, 1992
    [41] S. L. Mayo, B. D. Olafson, W. A. Goddard, “Dreiding - a Generic Force-Field for Molecular Simulations”, J. Phys. Chem., 1990, 94: 8897
    [42] K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, W. M. Skiff, “Uff, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations”, J. Am. Chem. Soc., 1992, 114: 10024
    [43] S. Yashonath, J. M. Thomas, A. K. Nowad, A. K. Cheetham, “The Siting, Energetics and Mobility of Saturated Hydrocarbons Inside Zeolitic Cages: Methane in Zeolite-Y”, Nature, 1988, 331: 601
    [44] P. Demontis, S. Yashonath, M. L. Klein, “Localization and Mobility of Benzene in Sodium-Y Zeolite by Molecular Dynamics Calculations”, J. Phys. Chem., 1989, 93: 5016
    [45] S. D. Pickett, A. K. Nowad, J. M. Thomas, B. K. Peterson, J. F. P. Swift, A. K. Cheetham, J. J. Denouden, B. Smit, M. F. M. Post, “Mobolity of Adsorbed Species in Zeolites: a Molecular Dynamics Simulation of Xenon in Silicalite”, J. Phys. Chem., 1990, 94: 1233
    [46] K. Watanabe, N. Austin, M. R. Stapleton, “Investigation of the AirSeparation Properties of Zeolites Type-a, Type-X and Type-Y by Monte-Carlo Simulations”, Mol. Simul., 1995, 15: 197
    [47] 廖 木 真 , 吴 国 是 , 刘 洪 霖 , 《 量 子 化 学 从 头 计 算 方 法 》 , 清 华 大 学 出版 社 , 1984
    [48] W. Kohn, L. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., 1965, 140: A1133
    [48] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev., 1964, 136: B864
    [50] J. A. Pole, M. S. Gorden, “Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments”, J. Amer. Chem. Soc., 1967, 89: 4253
    [51] W. A. Goddard, L. B. Harding, “The Description of Chemical Bonding from Ab Initio Calculations”, Ann. Rev. Phys. Chem., 1978: 363
    [52] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, J. Phys. Rev. B., 1964, 136: 864
    [53] K. Morokuma, R. D. Froese, S. Dapprich, I. Komaromi, D. Khoroshun, S. Byun, D. G. Musaev, C. L. Emerson, “The ONIOM (our own integrated N-layered molecular orbital and molecular mechanics) method, and its applications to calculations of large molecular systems”, Abstr. Pap. Am. Chem. Soc., 1998, 215: U218
    [54] Monard, K. M. Merz, “Combined quantum mechanical/molecular mechanical methodologies applied to biomolecular systems”, Accounts Chem. Res., 1999, 32: 904
    [55] J.L.Gao, M. Freindorf, “Hybrid ab initio QM/MM simulation of N-methylacetamide in aqueous solution”, J. Phys. Chem. A, 1997, 101: 3182
    [56] 杨 明 媚 , “基 于 模 板 效 应 对 MCM-22 分 子 筛 酸 性 的 理 论 计 算 研 究 ”,2004 年 辽 宁 师 范 大 学 硕 士 研 究 生 毕 业 论 文
    [57] 鲍 莹 , “分 子 筛 Br?nsted 酸 性 的 理 论 计 算 表 征 ”, 2005 年 辽 宁 师 范 大 学 硕 士 研 究 生 毕 业 论 文
    [58] 贺 宁 , “分 子 筛 MCM-22 超 笼 入 口 处 相 邻 酸 性 位 的 理 论 计 算 研 究 ”,2006 年 辽 宁 师 范 大 学 硕 士 研 究 生 毕 业 论 文
    [59] 马 丁 ,“ 甲 烷 芳 构 化 催 化 剂 的 构 效 关 系 ”,中 国 科 学 院 大 连 化 学 物 理 研究 所 98 级 博 士 论 文
    [60] 王 华 , 刘 中 民 .化 学 进 展 (Wang H ,Liu Zh M.Progr Chem ),“ 甲 烷 直 接转 化 研 究 进 展 ” 2004,16(4):593
    [61] Wang L Sh,Tao L X,Xie M S,Xu G F,Hunag J Sh,Xu Y D.Catal Lett,1993,21(1/2):35
    [62] Shu Y Y, Ma D , Xu L Y , Xu Y D, Bao X H.“ Methane dehydro-aromatization over Mo/MCM-22 catalysts:“ a highly selective catalyst for the formation of benzene” Catal lett 2000,70(1/2):67
    [63] Shu Y Y, Ma D, Su L L, Xu L Y, Xu Y D, Bao X H.“ Mo/MCM-22: A selective catalyst for the formation of benzene by methane dehydro-aromatization” Stud Surf Sci Catal,2001,137:27
    [64] Shu Y Y, Ohnishi R , Ichikawa M. Chem Lett,2002,(3):418
    [65] Shu Y Y, Ichikawa M. Catal Today,2001,71(1/2):55
    [66] Wang D J, Lunsford J H , Rosynek M P. Top Catal,1996,3(3/4):289
    [67] Wang D , Lunsford J H , Rosynek M P. J Catal,1997,169(1):347
    [68] Li W, Meitzner G D, Borry R W III, Iglesia E. J Catal ,2000,191(2):373
    [69] Borry R W III , Kim Y H , Huffsmith A, Reimer JA, Iglesia E. “ Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM5 Catalysts for Nonoxidative Methane Conversion”J Phys Chem B, 1999,103(28):5787
    [70] Ding W P, Meitzner G D, Iglesia E. J Catal ,2002,206(1):14
    [71] Wong S T, Xu Y Y, Wang L Sh, Liu Sh T, Li G J, Xie M S, Guo X X. Catal Lett,1996,38(1/2):39
    [72] Shu Y Y, Xu Y D, Wong S T, Wang L Sh, Guo X X. J Catal,1997,170(1):11
    [73] Ma D , Shu Y Y, Cheng M J, Xu Y D, Bao X H. “ On the induction period of methane aromatization over Mo-based catalysts” J Catal,2000,194(1):105
    [74] Ma D , Shu Y Y, Bao X H, Xu Y D. “ Methane Dehydro-aromatizationunder Nonoxidative Conditions over Mo/HZSM-5 Catalysis:EPR Study of the Mo on/in the HZSM-5 Zeolit” J Catal,2000,189(2):314
    [75] Zhou D H, Ma D , Liu X Ch, Bao X H. “ A simulation study on the absorption of Molybdenum species in the channels of HZSM-5 zeolite J Mol catal.A, 2001,168(1/2):225
    [76] Ma D , Shu Y Y, Han X W, Liu X M, Xu Y D, Bao X H.“ Mo/HMCM-22 Catalysts for Methane Dehydroaromatization: A Multinuclear MAS NMR Study” J Phys Chem B,2001,105 (9):1786
    [77] 田 丙 伦 , 刘 红 梅 , 苏 玲 玲 , 舒 玉 瑛 , 徐 奕 德 .“ Co 改 性 Mo/MCM-22催 化 剂 上 甲 烷 无 氧 芳 构 化 及 积 碳 研 究 ” 催 化 学 报 ( Tian B L,Liu H M,Su L L,Shu Y Y,Xu Y D. Chin J Catal) ,2001,22(2):124
    [78] Yang J , Ma D , Deng F , Luo Q , Zhang M J, Bao X H, Ye Ch H .Chem Commun , 2002 , (24):3046
    [79] 刘 红 梅 , 申 文 杰 , 刘 秀 梅 , 包 信 和 , 徐 奕 德 .“ 分 子 筛 的 酸 处 理 对Mo/HZSM-5 催 化 甲 烷 无 氧 芳 构 化 反 应 性 能 的 影 响 ”催 化 学 报( Liu H M,Shen W J,Liu X M,Bao X H,Xu Y D.Chin J Catal) ,2004,25(9):688
    [80] 李 永 刚 ,黄 秀 敏 ,柳 林 ,刘 秀 梅 ,申 文 杰 ,包 信 和 ,徐 奕 德 .“ NH4F改 性 Mo/HZSM-5 催 化 剂 上 的 甲 烷 无 氧 芳 构 化 反 应 :预 处 理 温 度 影 响的 进 一 步 研 究 ”催 化 学 报( Li Y G,Hang X M, Liu L,Liu X M,Shen W J, Bao X H,Xu Y D. Chin J Catal) , 2006,27(2):166
    [81] Stave M S , Nicholas J B.“ Density Functional Studies of Zeolites. 2. Structure and Acidity of [T]-ZSM-5 Models (T = B, Al, Ga, and Fe)” J Phys Chem,1995,99(41):15046
    [82] Redondo A , Hay P J.“ Quantum chemical studies of acid sites in zeolite ZSM-5” J Phy chem. 1993,97(5):11754
    [83] Alvarado-Swaisgood A E, Barr M K, Hay P J , Redondo A.“ Ab initio quantum chemical calculations of aluminum substitution in zeolite ZSM-5” J Phys Chem, 1991,95(24):10031
    [84] O’Malley P J and Dwyer J“. An ab initio quantum chemical investigation on the effect of the magnitude of the T-O-T angle on the Broensted acid characteristics of zeolites” J Phys Chem, 1988,92(10):3005
    [85] Zhou T J , Liu A M , Mo Y R, Zhang H B.“ Sequential Mechanism of Methane Dehydrogenation over Metal (Mo or W) Oxide and Carbide Catalysts” J Phys Chem A, 2000,104(19):4505
    [86] Leonowicz M E, Lawton J A,Lawton S L,Rubin M K. Science, 1994, 264(5167):1910
    [87] Yang G, Wang Y,Zhou D H, Liu X Ch, Han X W,Bao X H.J Mol Catal A: Chem,2005 ,237(1/2):36
    [88] Zhou D H,He N,Wang Y Q,Yang G,Liu X Ch,Bao X H.J Mol Struct:THEOCHE M,2005,756:39
    [89] 鲍 莹 , 周 丹 红 , 杨 明 媚 , 辛 长 波 , 武 跃 .无 机 化 学 学 报 (Bao Y,Zhou D H,Yang M M,Xin Ch B,Wu Y.Chin J Inorg Chem),“ MCM-22 分 子 筛 酸性 的 DFT 理 论 计 算 研 究 ” 2005,( 7) 21: 971
    [90] Wang Y, Zhou D H, Yang G, Liu X Ch, Ma D, Liang D B, Bao X H. Chem Phys Lett, 2004,388:363
    [91] Gaussain03, Revision C.02, NBO Version 3.1, Gaussian, Inc 2005
    [92] Becke,A D.Phys Rev A,1988, 38(6):3098; J Chem Phys, 1993,98:5648
    [93] van Duijneveldt F B, van Duijneveldt-van de Rijdt J G C M,van Lenthe J H.“ State of the Art in Counterpoise Theory” Chem Rev, 1994,94(7):1873
    [94] Handzlik J , Ogonowski J, Tokarz-Sobieraj R. Catal Today,2005,101(2):163
    [95] Peng Ch Y,Ayala P ,Schlegel H B,Frisch M J.J Comput Chem,1996,17(1):49
    [96] 赵 玉 谦 ,方 世 杰 ,赵 宇 光 ,丛 郁 ,涂 明 金 ,姜 启 川 ,“ (Ti,Fe)-Al-C体 系 钢 铁 基 复 合 材 料 的 热 力 学 计 算 与 分 析 ” 吉 林 大 学 学 报 ( 工 学 版 )(Zhao Y Q,Fang Sh J,Zhao Y G,Cong Y,Tu M J,Jiang Q Ch. J of Jilin University(Engineering and Technology Edition) 2005 ,35 (4): 343-347
    [97] 陈 志 刚 , 原 晨 光 , 王 利 , 张 凝 芳 , 潘 颐 ,“TiC 在 Ni-Al 基 体 中 热 力 学稳 定 性 预 测 ” 材 料 科 学 与 工 程 学 报 ( Chen Zh G,Yuan Ch G,Wang L,Zhang N F,Pan Y, J of M Science&Engineeri) 2003, 21 (6): 837-841
    [98] 邓 军 , 侯 爽 , 李 会 荣 , 张 海 珩 , 文 振 翼 “ 煤 分 子 中 -CH2O-活 性 基 团初 期 氧 化 反 应 机 理 研 究 ” 长 春 理 工 大 学 学 报 ( Deng J,Hou Sh,Li H R,Zhang H H,Wen Zh Y. J of Changchun University of Science and Technology ) 2006, 29 (2 ): 84-87
    [99] W. L?wenstein, Am. Mineral. 1954, 39: 92
    [100] L. A. Pine, P. J. Maher, W. A. Wachter, J. Catal., 1984, 85: 466

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700