一维自旋系统中的量子纠缠
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息与量子计算是量子理论与现代信息科学、计算科学相结合所产生的一门新兴交叉学科,现已成为物理学研究的热点。量子信息与计算科学在基础科学研究和应用方面都有非常重要的意义,它一方面可以增进人们对量子力学的认识;另一方面,基于量子力学的密码技术、通讯技术、计算与存储技术将对国防、商业等领域产生重大的影响。比如,量子不可克隆定理使得量子信息不能像经典信息那样可以被任意复制,这使得人们能够建立起绝对安全的量子密码系统。又如,利用量子态的相干叠加性,人们提出了量子并行算法,用以解决诸如大数因式分解等经典计算无法解决的问题,等等。
     一直以来,科学家都在不断寻找并尝试各种能够实现量子信息处理过程的量子系统,如腔QED、离子阱、量子点、核磁共振等等,取得了很大进展。而实际应用的大规模的量子信息处理任务,需要在一种可扩展和易于集成的系统中实现,量子自旋系统就是其中一种非常有潜力的备选系统。目前,研究人员已经提出了很多基于自旋系统的量子信息处理方案,如量子计算、量子克隆、量子存储以及量子态传输等。而自旋系统中量子纠缠及其演化的研究则为上述应用提供理论支持,这也是我们的工作重点。
     首先,我们研究了一维自旋系统在热态下的量子纠缠。我们知道,由于技术条件和环境的限制,一个实际的物理系统不可能总是处于其基态,而往往是处在某个温度的热平衡态下,所以研究热态下的纠缠对量子信息在实际条件下的应用非常重要。我们以XXZ模型为例,研究了一维自旋链中的两体热纠缠,并且给出了其纠缠临界温度随自旋链的格点数、格点自旋、各向异性参数以及外磁场强度而变化的规律,我们发现,(1)热纠缠的临界温度随着格点数的增加而不断减小,最后会趋于某个固定值:(2)随着格点自旋的增加,临界温度呈近似线性的增长,这表明,在温度较高的情况下,采用具有高格点自旋的系统是比较好的选择;(3)各向异性参数也会对热纠缠造成显著的影响,临界温度会随着各向异性参数的增加而减小,最后在接近于△=1的某点降为零:(4)外磁场同样会影响热纠缠的数值,但是不会影响临界温度的大小。
     为了进一步讨论温度对量子信息处理过程的影响,我们研究了热态自旋链中的量子态传输,(?)条处于热态下的自旋链作为量子信道将一个已知量子态从链的一端传到另一端。计算结果显示,传输中所能得到的最大保真度并不是随着温度增加而单调减小的,而是取决于最大允许的传输时间。我们也比较了热信道和基态信道在传输相同量子态时的保真度,发现基态信道并不总是优于热态信道。这些结论表明,热噪声虽然会对量子态传输造成一定的影响,但是并不是灾难性的,态传输并不是必须要在非常苛刻的低温条件下进行。
     最后,我们研究了自旋信道中量子纠缠的演化,发现在其演化过程中存在纠缠的突然死亡,并且得到了不同自旋链中纠缠死亡的参数区域。我们还讨论了存在外界环境时的纠缠演化,并且和没有环境的情形进行了比较,发现环境的出现将加快退相干的速度,进而使得纠缠死亡的区域面积变大。这些结果将帮助研究人员在量子信息处理过程中避开有害的纠缠死亡,或者对其加以利用。进一步,可以用外场来调控纠缠的演化,改变纠缠死亡的参数区域,这将是我们下一阶段的研究目标。
Quantum information and quantum computation, an interdisciplinary field which involves quantum mechanics, computer science and the theory of information, has attracted more and more interests. It is significant in both foundational science and application. It does not only enhance the understanding of the quantum theory, but also impact the field of national defense and commerce. For example, absolutely secure quantum cryptogram system have been established base on the quantum no-cloning theorem which said that the quantum information can't be copied as classical information. And, parallel quantum algorithm base on the quantum coherence, have been used to solve the hard problems for the classical computer, like the factorization of large numbers.
     Many quantum system have been proposed in the quantum information processing (QIP), like cavity QED, ion trap, quantum dot, and NMR. Applied quantum information processing should been realized in systems that easy to be extended and integrated. Spin system is such a solid system, it has been proposed to been used in quantum information storing and quantum memories, quantum computation, quantum clone, and quantum state transfer and so on. Quantum entanglement is important resource in quantum information science, so the study on the entanglement in the spin system will be helpful to the practical application. It is also the main point of this thesis.
     Firstly, we discuss the thermal entanglement in spin chain. A physically realizable quantum mechanisms are not always at zero temperature but often in a thermal equilibrium, so the study on the entanglement in thermal state is very important for the quantum information science. We choose the XXZ model to investigate the pairwise thermal entanglement in spin chain. The effects of spin, number of sites, anisotropic parameter, and magnetic field on the threshold temperature are discussed respectively. We find that: (l)The threshold temperature decreases with the increasing of the number of sites and finally trends to be a constant. (2)With the increasing of spin, threshold temperature inereases almost linearly and becomes sufficiently high, imply that the larger spin systems like molecular magnets should be better in the QIP with high temperature. (3)The effect of anisotropic parameter is observable, with the increasing of anisotropic parameter, threshold temperature decreases and vanishes at a point near△= 1. (4) The external magnetic field can also influence the entanglement but not change the threshold temperature.
     For the further study on the thermal effect in the QIP, we discuss the quantum state transfer through a thermal spin chain, the quantum state is transmitted from one end of the chain to the other end. We find that the maximal fidelity does not decrease monotonously with the increasing of the temperature, but depends on the maximal allowed transfer time. We also compare the results of thermal channel with the transfer through ground state channel, and find that the thermal channel is sometimes better than the ground state channel. This results mean that, the thermal noise influences but does not destroy the quantum state transfer vitally, the transfer does not need to be processed in extreme low temperature.
     Finally, We study the dynamic evolution of the entanglement in the spin channel with an XY-type interaction initially in an entangled state. We find that the phenomenon of entanglement sudden death (ESD) appears in the evolution of entanglement for some initial states. We calculate the entanglement and obtain the parameter regions of disentanglement for the chains with several numbers of sites. The influence of environment is also discussed, we find that the present of environment will speedup the decoherence and enlarge the regions of disentanglement. These results are helpful to apply or avoid the ESD in the QIP. Further more, we can use an additional external field to modulate the evolution of the entanglement, change the regions of disentanglement as needed, that is our research topic next stage.
引文
[1] Michael A. Nielsen and Issac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press: Cambridge 2000
    [2] C. H. Bennet, Logical reversibility of computation. IBMJ. Res. Dev. 17, 525 1973.
    [3] P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22,563 1980.
    [4] R. P. Feynman, Simulating physics with computers. Int. J. Theor. Phs. 21, 467 1982.
    [5] D. Deutsch, Quantum Theory, the Church-Turing Principle and Universal Quantum Computer, Pro. R. Soc. A 400, 97 1985.
    [6] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings, 35th Annual Symposium on Foundations of Computer Science, IEEE Press, Los Alamitos, CA,1994.
    [7] L. K. Grover, A Fast Quantum Mechanics Algorithm for Database Search. Proceedings, 28th, ACM Symposium on Theory of Computation 212 1996
    [8] L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 1997.
    [9] B. Schumacher, Quantum coding, Phys. Rev. A 51, 2738 1995.
    [10] R. Calderbank, P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098 2006; A. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77, 793 2006
    [11] C. H. Bennett, and S. J. Wiesner, Communication via one-particle and 2-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69, 2881 1992
    [12] C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), pl75
    [13] C. H. Bennett, Phys. Rev. Lett. 68, 3121 1992
    [14] A.K. Ekert, Phys. Rev. Lett. 67, 661 1991
    [15] P. D. Townsend, Quantum cryptography using optical fibers, Electron. Lett. 30, 809 1994
    [16] A. Muller, et.al., Appl. Phys. Lett. 70,793 1993
    [17] C. Kurtsiefer, et.al., Nature 419, 450 2002
    [18]X.F.Mo et al.Faraday-Michelson system for quantum cryptography,Opt.Lett.30,26322005
    [19]W.Heisenberg,Z.Physik 49,619 1928
    [20]E.Ising,Z.Physik.31,253 1925
    [21]H.A.bethe,Z.Physik.71,205 1931
    [22]E.H.Lieb and D.C.Mattis,"Mathematical Physics in One Dimension",Academic Press,New York,1966
    [23]J.J.Fritz and H.L.Pinch,J.Am.Chem.Soc.79,3644 1957
    [24]T.Watanabe and T.Haseda,Anomalous Magnetic Behavior in a Single Crystal of Cu(NH3)4SO4·H2O at Liquid Helium Temperatures,J.Chem.Phys.29,1429 1958
    [25]R.B.Griffiths.Evidence for Exchange-Coupled Linear Chains in Cu(NH3)4SO4·H2O,Phys.Rev.135,A659 1964
    [26]J.C.Bonner and M.E.Fisher,Linear Magnetic Chains with Anisotropic Coupling,Phys.Rev.135,A640 1964
    [27]P.Jordan,and E.Wigner,Z.Physik 47,631 1928
    [28]S.Sachdev,quantum phase transition,Cambridge,Cambridge University Press 1999
    [29]M.Henkel,Conformal Invariance and Critical Phenomena,Springer,Berlin 1999
    [30]E.Lieb,T.Schultz,and D.Mattis,Ann.Phys.16,406 1961
    [31]C.N.Yang and C.P.Yang,One-Dimensional Chain of Anisotropic Spin-Spin Interactions.Ⅰ.Proof of Bethe's Hypothesis for Ground State in a Finite System,Phys.Rev.150,3211966
    [32]C.N.Yang and C.P.Yang,One-Dimensional Chain of Anisotropic Spin-Spin Interactions.Ⅱ.Properties of the Ground-State Energy Per Lattice Site for an Infinite System,Phys.Rev.150,327 1966
    [33]C.N.Yang and C.P.Yang,One-Dimensional Chain of Anisotropic Spin-Spin Interactions.Ⅲ.Applications,Phys.Rev.151,258 1966
    [34]S.M.Giampaolo,F.Illuminati and G.Mazzarella,Storing quantum information in XXZ spin rings with periodically time-controlled interactions,J.Opt.B:Quantum Semiclass.Opt.7,S337 2005
    [35]S.M.Giampaolo,F.Illuminati,A.Di Lisi,and S.De Siena,Engineering massive quantum memories by topologically time-modulated spin rings,Laser physics 16,1411 2006
    [36]G.D.Chiara,et.al.,Quantum cloning in spin networks,Phys.Rev.A 70,062308 2004
    [37]X.Zhou,et.al.,Quantum Computation with Untunable Couplings,Phys.Rev.Lett.89,197903 2002
    [38]M.Mohseni,and D.A.Lidar,Fault-Tolerant Quantum Computation via Exchange Interactions,Phys.Rev.Lett.94,040507 2005
    [39]S.Bose,Quantum Communication through an Unmodulated Spin Chain,Phys.Rev.Lett.91,207901 2003
    [40]M.Christandl et al.,Phys.Rev.Lett.92,187902 2004
    [41]M.Avellino,A.J.Fisher,and S.Bose,Phys.Rev.A 74,012321 2006
    [42]K.Maruyama,T.Iitaka,and F.Nori,Phys.Rev.A 75,012325 2007
    [43]A.Wojcik et al.,Phys.Rev.A 75,022330 2007
    [44]A.Kay,Unifying Quantum State Transfer and State Amplification,Phys.Rev.Lett.98,010501 2007
    [45]A.Kay,Phys.Rev.A 73,032306 2006
    [46]T.Shi,Ying Li,Z.Song,and C.P.Sun,Quantum state transfer via the ferromagnetic chain in a.spatially modulated field,Phys.Rev.A 71,032309 2005
    [47]Y.Li,T.Shi,B.Chen,Z.Song,and C.P.Sun,Quantum state transmission via a spin ladder as a robust data bus,Phys.Rev.A 71,022301 2005
    [48]Y.Yeo,Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation,Phys.Rev.A 68,022316 2003
    [49]X.Hao,and S.Q.Zhu,Entanglement teleportation through 1D Heisenberg chain,Phys.Lett.A 338,175 2005
    [50]C.X.Li,C.Z.Wang,and G.C.Guo,Entanglement and teleportation through thermal equilibrium state of spins in the XXZ model,Opt.Commun.260,741 2006
    [51]E.Schmidt,Zur Theorie der linearen und nichtlinearen Integralgleichungen.Ⅰ.Teil:Entwieklung willkurlicher Funktionen nach Systemen vorgeschriebener,Math.Annalen 63,433 1907
    [52]A.Ekert and P.L.Knight,Entangled quantum systems and Schmidt decomposition,Am.J.Phys.63,415 1995
    [53]张水德,量子测量和量子计算简述,《量子力学新进展》,曾谨言,裴寿镛主编,北京大学出版社2000
    [54]龙桂鲁,李岩松,曾蓓,刘晓曙,肖丽,量子纠缠及其在量子信息中的应用,《量子力学新进展》(第二辑),北京大学出版社2001
    [55]R.F.Werner,Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model,Phys.Rev.A,40,4277 1989
    [56]A.Peres,Separability criterion for density matrices,Phys.Rev.Lett.77,1413 1996
    [57]M.Horodecki,P.Horodeeki,and R.Horodecki,Separability of mixed states:necessary and sufficient conditions,Phys.Lett.A 223,1 1996
    [58]M.Horodecki and P.Horodecki,Reduction criterion of separability and limits for a class of distillation protocols,Phys.Rev.A.59,4206 1999
    [59]N.J.Cerf,C.Adami and R.M.Gingrich,Reduction criterion for separability,Phys.Rev.A.60,898 1999
    [60]Ryszard Horodecki and Michel/Horodecki,Information-theoretic aspects of inseparability of mixed states,Phys.Rev.A.54,1838 1996
    [61]K.Chen,and L.A.Wu,quant-ph/0205017.Quant.Inf.Comput,3,193 2003
    [62]O.Rudolph,Quantum Information Processing,4,219 2005
    [63]K.Chen and L.A.Wu,The generalized partial transposition criterion for separability of multipartite quantum states,Phys.Lett.A,306,14 2002
    [64]S.Albeverio,K.Chert,and S.M.Fei,Generalized reduction criterion for separability of quantum states,Phys.Rev.A,68,062313 2003
    [65]L.M.Duan,G.Giedke,J.I.Cirac,and P.Zoller,Inseparability criterion for continuous variable systems,Phys.Rev.Lett.84,2722 2000
    [66]R.Simon,Peres-Horodecki separability criterion for continuous variable systems,Phys.Rev.Lett.84,2726 2000
    [67]王晓红,王志玺,吴可,费少明,量子纠缠与可分性.《量子力学新进展》(第四辑),清华大学出版社2007
    [68]V.Vedral,M.B.Plenio,M.A.Rippin,and P.L.Knight,Quantifying entanglement,Phys.Rev.Lett.78,2275 I997
    [69]D.Brute,Characterizing entanglement,J.Math.Phys.43,4237 2002
    [70]J.yon Neuman,Mathematical Foundation of Quantum Mechanics,Princeton University Press:Princeton 1955
    [71]G.Lindblad.Completely positive maps and entropy inequalities,Commun.Math.Phys.40,147 1995
    [72]C.H.Bennett,D.P.DiVincenzo,J.A.Smolin,and W.K.Wootters,Mixed-state entanglement and quantum error correction,Phys.Rev.A 54,3824 1996
    [73]S.Hill,and W.K.Wootters,Entanglement of a pair of quantum bits,Phys.Rev.Lett.78,5022 1997
    [74]W.K.Wootters,Entanglement of formation of an arbitrary state of two qubits,Phys.Rev.Lett.80,2245 1998
    [75] V. Vedral and M. B. Plenio, Entanglement measures and purification procedures, Phys Rev A 57 1619 1998
    [76] V. Vedral, The Role of Relative Entropy in Quantum Information Theory, eprint quant-ph/0102094 2001
    [77] H. K. Lo, Concentrating entanglement by local actions: Beyond mean values, Phys. Rev. A 63, 022301 2001
    [78] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Volume of the set of separable states, Phys. Rev. A 58, 883 1998
    [79] K. Zyczkowski, Volume of the set of separable states. II, Phys. Rev. A 60, 3496 1999
    [80] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 2002
    [81] W. Dur, J.I. Cirac, and R. Tarrach, Separability and distillability of multiparticle quantum systems, Phys. Rev. Lett. 83, 3562 1999
    [82] W. Dur, G. Vidal, and J.I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62, 062314 2000
    [83] G. Adesso, A. Serafini, and P. Illuminati, Extremal entanglement and mixedness in continuous variable systems, Phys. Rev. A 70, 022308 2004
    [84] R. Rossignoli, and N. Canosa, Global thermal entanglement in n-qubit systems, Phys. Rev. A 72, 012335 2005
    [85] X. Hao, and S. Q. Zhu, Entanglement in a spin-s antiferromagnetic Heisenberg chain, Phys. Rev. A 72, 042306 2005
    [86] A. Peres, Higher order schmidt decomposition. Phys. Lett. A 202, 16 1995,
    [87] C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal, Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A, 63, 012307 2001
    [88] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell's theorem, in Bell's Theorem, Quantum Theory, and Conception of the Universe, Klumwer Academic, Dordredit 1989
    [89] D. M. Greenberger, M. A. Horne, A. Shinony, and A. Zeilinger, Bell's theorem without inequalities, Am. J. Phys. 58, 1131 1990
    [90] S. J. Wu, and Y. D. Zhang, Multipartite pure-state entanglement and the generalized Greenberger-Horne-Zeilinger states, Phys. Rev. A 63, 012308 2001
    [91] W. Dur, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62, 062314 2000
    [92]W.Dur,Multipartite entanglement that is robust against disposal of particles,Phys.Rev.A 63 020303 2001
    [93]陈增兵,逯怀新,吴盛俊,张永德,量子纠缠与空间非定域性,《量子力学新进展》(第二辑),北京大学出版社2001
    [94]W.H.Zurek,Pointer basis of quantum apparatus:Into what mixture does the wave packed collapse? Phys.Rev.D 24,1516 1982
    [95]W.H.Zurek,Environment-induced superselection rules,Phys.Rev.D 26,1862 1982
    [96]张礼,葛墨林,《量子力学前沿问题》,清华大学出版社北京2000
    [97]J.Von Neumann,Mathematical Foundations of Quantum Mechanics Princeton:Princeton University Press,1955
    [98]何祚庥,谈谈量子测量问题物理22,419 1992
    [99]M.J.Collet,Exact density-matrix calculations for simple open systems,Phys.Rev.A 38,2233 1988
    [100]W.Pauli,Probleme der Modernen Physik.Arnold Sommerfeld zum 60,Geburtsage Gewidmet von Seinen Schulern,volume 1,1928.Hirzel Verlag
    [101]R.Zwanzig,Statistical Mechanics of Irreversibility,3,New York:Interscience,1961
    [102]I.Prigogine,Non-equilibrium Statistical Mechanics,New York:Interscience,1962
    [103]G.S.Agarwal,Progress in Optics,11,Amsterdam:North-Holland,1973
    [104]W.H.Louisell,Quantum Statistical Properties of Radiation,陈水,于熙令译,科学出版社,1982
    [105]张永德,《量子信息物理原理》,科学出版社,2006
    [106]J.Preskill,Lecture Notes for Physics 229:Quantum Information and Computation,CIT,1998
    [107]M.Lax,Quantum Noise.X.Density-Matrix Treatment of Field and PopulationDifference Fluctuations,Phys.Rev.157,213 1967
    [108]L.Mandel,and E.Wolf,Optical Coherence and Quantum Optics,Cambridge Univ.Press,Cambridge,1995
    [109]D.F.Walls,and G.J.Milburn,Quantum Optics,Springer-Verlag,Berlin/Heidelberg,1994
    [110]P.Zanardi,Dissipation and decoherence in a quantum register,Phys.Rev.A 57,32761998
    [111]D.Bacon,D.A.Lidar,and K.B.Whalev,Phys.Rev.A 60,1944 1999
    [112]T.Yu,and J.H.Eberly,Phonon decoherence of quantum entanglement:Robust and fragile states,Phys.Rev.B.66,193306 2002
    [113]W.G.Unrhu,and W.H.Zurek,Reduction of a wave packet in quantum Brownian motion,Phys.Rev.D 40,1071 1989
    [114]B.L.Hu,J.P.Paz,and Y.Zhang,Quantum Brownian motion in a general environment:Exact master equation with nonlocal dissipation and colored noise,Phys.Rev.D 45,28431992
    [1]Y.Li et.al.,Quantum-state transmission via a spin ladder as a robust data bus,Phys.Rev.A 71,022301 2005
    [2]X.Zhou et.al.,Quantum Computation with Untunable Couplings,Phys.Rev.Lett.89,197903 2002
    [3]M.Mohseni,and Daniel A.Lidar,Fault-Tolerant Quantum Computation via Exchange Interactions,Phys.Rev.Lett.94,040507 2005
    [4]G.D.Chiara et.al.,Quantum cloning in spin networks,Phys.Rev.A 70,062308 2004
    [5]Y.Yeo,Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation,Phys.Rev.A 68,022316 2003
    [6]S.Bose,Quantum Communication through an Unmodulated Spin Chain,Phys.Rev.Lett.91,207901 2003
    [7]M.A.Nielsen,quant-ph/0011036.
    [8]M.C.Arnesen,S.Bose,and V.Vedral,Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model,Phys.Rev.Lett.87,017901 2001
    [9]X.C.Wang,Effects of anisotrop.y on thermal cntanglement,Phys.Lett.A 281,101 2001
    [10]X.G.Wang,Entanglement in the quantum Heisenberg XY model,Phys.Rev.A 64,012313 2001
    [11]X.G.Wang,H.C.Fu,and A.Solomon,Thermal entanglement in three-qubit Heisenberg models,J.Phys.A:Math.Gen.34,11307 2001
    [12]X.G.Wang,and P.Zanardi,Quantum entanglement and Bell inequalities in Heisenberg spin chains,Phys.Lett.A 301,1 2002
    [13] X. G. Wang, Quantum entanglement and Bell inequalities in Heisenberg spin chains, Phys. Rev. A 66. 034302 2002
    [14] X. G. Wang, Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model, Phys. Rev. A 66, 044305 2002
    [15] X. G. Wang, Entanglement and spin squeezing in the three-qubit transverse Ising model, Phys. Lett. A 331, 164 2004
    [16] G. L. Kamta, and A. F. Starace, Anisotropy and Magnetic Field Effects on the Entanglement of a Two Qubit Heisenberg XY Chain, Phys. Rev. Lett. 88, 107901 2002
    [17] Y. Sun, Y. G. Chen, and H. Chen, Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field, Phys. Rev. A 68, 044301 2003
    [18] M. Asoudeh, and V. Karimipour, Thermal entanglement of spins in an inhomogeneous magnetic field, Phys. Rev. A 71, 022308 2005
    [19] G. F. Zhang, and S. S. Li, Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field, Phys. Rev. A 72, 034302
    [20] Z. Sun, X. G. Wang, and Y. Q. Li, Entanglement in dimerized and frustrated spin-one Heisenberg chains, New J. Phys. 7, 83 2005
    [21] G. F. Zhang, S. S. Li, and H. Q. Liang, Thermal entanglement in spin-1 biparticle system, Opt. Commun. 245, 457 2005
    [22] X. G. Wang, H. B. Li, and Z. Sun, and Y. Q. Li, Entanglement in spin-1 Heisenberg chains, J. Phys. A: Math. Gen. 38, 8703 2005
    [23] G. F. Zhang, and S. S. Li, Entanglement in a spin-one spin chain, Solid State Commun. 138, 17 2006
    [24] X. Hao, and S. Q. Zhu, Entanglement in a spin-s antiferromagnetic Heisenberg chain, Phys. Rev. A 72, 042306 2005
    [25] X. G. Wang, and Z. D. Wang, Thermal entanglement in ferrimagnetic chains, Phys. Rev. A 73, 064302 2006
    [26] M. N. Leuenberger, and D. Loss, Quantum computing in molecular magnets, Nature (London) 410, 789 2001
    [27] S. Hill, et al., Quantum Coherence in an Exchange-Coupled Dimer of Single-Molecule Magnets, Science 302, 1015 2003
    [28] A. Zheludev, et al., Spin density distribution in a partially magnetized organic quantum magnet, Phys. Rev. B 75, 104427 2007
    [29] M. Cao, and S. Q. Zhu, Effects of Anisotropy on Pair-wise Entanglement of a Four-Qubit Heisenberg XXZ Chain, Chin. Phys. Lett. 23, 2888 2006
    [30]M.Cao,and S Q Zhu,Thermal entanglement between alternate qubits of a four-qubit IIeisenberg XX chain in a magnetic field,Phys.Rev A 71.034311 2005
    [1]C.H.Bennett and G.Brassard,Quantum cryptography:public key distribution and coin tossing,presented at Proceedings of IEEE International Conference on Computers Systems and Signal Processing,Bangalore,India,175 1984
    [2]A.K.Ekert,Quantum cryptography based on Bell' s theorem,Phys.Rev.Lett.67,6611991
    [3]D.Deutsch and R.Jozsa,Proc.R.Soc.A 439,553 1992.
    [4]P.W.Shot,Algorithms for quantum cornputation:discrete logarithms and factoring.In Proceedings,35th Annual Syrnposium on Foundations of Computer Science,IEEE Press,Los Alamitos,CA,1994.
    [5]L.K.Grover,Quantum mechanics helps in searching for a needle in a haystack.Phys.Rev.Lett.79,325 1997.
    [6]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press:Cambridge 2000
    [7]R.P.Feynman,Simulating physics with computers.Int.J.Theor.Phs.21,467 1982.
    [8]J.I.Cirac and P.Zoller,Quantum Computations with Cold Trapped Ions,Phys.Rev.Lett.74,4091 1995.
    [9]A.Imamoglu,D.D.Awschalom,G.Burkard,Quantum Information Processing Using Quantum Dot Spins and Cavity QED,et al.,Phys.Rev.Lett.83,4204 1999.
    [10]M.R.Celler a.nd A.N.Cleland,Superconducting qubits coupled to nanoelectromechanical resonators:An architecture for solid-state quantum-information processing,Phys.Rev.A 71,032311 2005.
    [11]D.Loss and D.P.DiVincenzo,Quantum computation with quantum dots,Phys.Rev.A 57,120 1998.
    [12]B.E.Kane,A silicon-based nuclear spin quantum computer,Nature 393,133 1998.
    [13]C.H.W.Barnes,J.M.Shilton and A.M.Robinson,Quantum computation using electrons trapped by-surface acoustic waves,Phys.Rev.B 62,8410 2000.
    [14]D.Kielpinski,C.Monroe and D.J.Wineland,Architecture for a large-scale ion-trap quantum computer,Nature 417,709 2002.
    [15]A.J.Skinner,M.E.Davenport and B.E.Kane,Hydrogenic Spin Quantum Computing in Silicon:A Digital Approach,Phys.Rev.Lett.90,087901 2003.
    [16]M.Oskin,F.T.Chong,I.L.Chuang,et al.,Proceedings of the 30th International Symposium on Computer Architecture,ISCA,San Diego,9-11 June 2003.
    [17]S.Bose,Quantum Communication through an Unmodulated Spin Chain,Phys.Rev.Lett 91,207901 2003
    [18]S.Bose,Quantum communication through spin chain dynamics:an introductory overview,Contemporary Physics,48,13 2007
    [19]M.A.Nielsen,PhD thesis,University of Mexico,(unpublished)1998
    [20]M.C.Arnesen,S.Bose and V.Vedral,Natural Thermal and Magnetic Entanglement in the 1D Heisenberg Model,Phys.Rev.Lett.87,017901 2001
    [21]R.Jozsa,Fidelity for mixed quantum states,J.Mod.Opt.41,2315 1994
    [22]A.Bayat,and V.Karimipour,Thermal effects on quantum communication through spin chains,Phys.Rev.A 71,042330 2005
    [23]T.J.Osborne,and M.A.Nielsen,Asymptotic relative entropy of entanglement for orthogonally invariant states,Phys.Rev.A 66,032110 2002
    [1]T.Yu,and J.H.Eberly,Finite-Time Disentanglement Via Spontaneous Emission,Phys.Rev.Lett.93,140404 2004
    [2]T.Yu,and J.H.Eberly,Sudden death of entanglement:Classical noise effects,Opt.Commun.264,393 2006
    [3]J.H.Eberly,and T.Yu,The End of an Entanglement,Science 316,555 2007
    [4]L.Jakobczyk,and A.Jamroz,Phys.Lett.A 333,35 2004
    [5]Z.Ficek,and R.Tanas,Dark periods and revivals of entanglement in a two-qubit system,Phys.Rev.A 74,024304 2006
    [6]T.Yu,and J.H.Eberly,Qubit disentanglement and decoherence via dephasing,Phys.Rev.B 68,165322 2003
    [7]M.Yonac,T.Yu,and J.H.Eberly,Sudden death of entanglement of two Jaynes-Cummings atoms,J.Phys.B:At.Mol.Opt.Phys.39,S621 2006
    [8] M. Yonac, T. Yu, and J. H. Eberly, Pairwise concurrence dynamics: a four-qubit model, J. Phys. B(?). At. Mol Opt. Phys. 40. S45 2007
    [9] T. Yu, and J. H. Eberly, Phonon decoherence of quantum entanglement: Robust and fragile states, Phys. Rev. B 66, 193306 2002
    [10] S. Bandyopadhyay, and D. A. Lidar, Entangling capacities of noisy two-qubit Hamiltonians, Phys. Rev. A 70, 010301 2004
    [11] D. Tolkunov, V. Privman, and P. K. Aravind, Phys. Rev. A 71, 060308 2005
    [12] T. Yu, and J. H. Eberly, Quantum Open System Theory: Bipartite Aspects, Phys. Rev. Lett. 97, 14040 2006
    [13] T. Yu, Entanglement decay versus energy change: A model, Phys. Lett. A 361, 287 2007
    [14] D. Solenov, D. Tolkunov, and V. Privman, Coherent interaction of spins induced by thermal bosonic environment, Phys. Lett. A 359, 81 2006
    [15] K. Zyczkowski, P. Horodecki, M. Horodecki, and R. Horodecki, Dynamics of quantum entanglement, Phys. Rev. A 65, 012101 2002
    [16] L. Diosi, Irreversible Quantum Dynamics ed F Benatti and R Floreanini (New York: Springer) pp 157 - 63 2003
    [17] J. Q. Li, Z. J. Li, G. Chen, and J. Q. Liang, Time-evolving disentanglement in a spin - boson model, Phys. Lett. A 359, 275 2006
    [18] H. T. Cui , K. Li, and X. X. Yi, A study on the sudden death of entanglement, Phys. Lett. A 365, 44 2007
    [19] P. J. Dodd, and J. J. Halliwell, Disentanglement and decoherence by open system dynamics, Phys. Rev. A 69, 052105 2004
    [20] M. Ban, Decoherence of continuous variable quantum information in non-Markovian channels, J. Phys. A: Math. Gen. 39, 1927 2006
    [21] A. R. R. Carvalho, F. Mintert, and A. Buchleitner, Decoherence and Multipartite Entanglement, Phys. Rev. Lett. 93, 230501 2004
    [22] A. R. R. Carvalho, F. Mintert, S. Palzer, and A. Buchleitner, Entanglement dynamics under decoherence: from qubits to qudits, Eur. Phys. J. D 41, 425 2007
    [23] F. Mintert, A. R. R. Carvalho, M. Kus, and A. Buchleitner, Measures and dynamics of entangled states, Phys. Rep. 415, 207 2005
    [24] L. Derkacz, and L. Jakobczyk, Quantum interference and evolution of entanglement in a system of three-level atoms, Phys. Rev. A 74, 032313 2006
    [25] G. Gordon, G. Kurizki, and A. G. Kofman, Universal dynamical control of decay and decoherence in multilevel systems, J. Opt. B: Quantum Semiclass. Opt. 7, S283 2005
    [26]G.Gordon,and G.Kurizki,Preventing Multipartite Disentanglement by Local Modnlations,Phys.Rev.Lett.97,110503 2006
    [27]G.Gordon,N.Erez,and G.Kurizki,Universal dynamical decoherence control of noisy single- and multi-qubit systems,J.Phys.B:At.Mol.Opt.Phys.40,S75 2007
    [28]L.Viola,E.Knill,and S.Lloyd,Dynamical Generation of Noiseless Quantum Subsystems,Phys.Rev.Lett.85,3520 2000
    [29]L.A.Wu,and D.A.Lidar,Creating Decoherence-Free Subspaces Using Strong and Fast Pulses,Phys.Rev.Lett.88,207902 2002
    [30]P.Zanardi,and S.Lloyd,Topological Protection and Quantum Noiseless Subsystems,Phys.Rev.Lett.90,067902 2003
    [31]Z.Sun,X.Wang,Y.B.Gao,and C.P.Sun,Decoherence in time evolution of bound entanglement,Preprint quant-ph/0701093 2007
    [32]M.P.Ahneida,et.al.,Environment-Induced Sudden Death of Entanglement,Science 316,579 2007
    [33]W.K.Wootters,Entanglement of Formation of an Arbitrary State of Two Qubits,Phys.Rev.Lett.80,2245 1998
    [34]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press:Cambridge 2000
    [35]J.M.Cai,Z.W.Zhou,and G.C.Guo Decoherence effects on the quantum spin channels,Phys.Rev.A 74,022328 2006
    [36]F.M.Cucchietti,J.P.Paz,and W.H.Zurek,Deeoherence from spin environments,Phys.Rev.A 72,052113 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700