基于FPGA的连续变量量子密钥协商技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于量子不可克隆定理和海森堡测不准原理保证了量子密码的无条件安全性和对监听的可检测性,量子密码已经成为最具吸引力的前沿领域。量子密钥分发作为量子密码学的研究重点,各国学者在理论以及实验方面都作出了令人瞩目的成就。经过不断探索,学者们发现由于离散变量量子密钥分发所依赖的单光子产生、检测在技术上存在限制,其通信的速率比较低。而使用相干光技术的连续变量量子密钥分发技术难度较低,并且试验证实可以获得较高的通信速率,因此连续变量量子密钥分发受到越来越多的关注。
     为了提供量子通信过程中的控制功能,人们已经提出并实现了多种电路解决方案。但是这些方案无论在精确度以及功能上都存在各种缺陷,无法满足现有通信方案的要求。而且随着嵌入式技术和可编程技术的发展,人们希望有一种通用的、功能强大的电路设计,可以提供更加精确的电路控制,具备更加强大的软件处理能力,在此基础上希望系统可以脱离PC工作,整个控制系统更加便携,更容易进行资源的重新利用。
     为了实现一种高度集成、资源可重用并且具有强大软件处理功能的电路系统,论文基于Xilinx FPGA开发板,利用SOPC技术进行精确时钟控制的IP模块开发以及控制系统的软硬件协同,完成了连续变量量子密钥分发的电路设计。论文随后完成了基于ML405的嵌入式Linux系统移植,实现了软硬件的无缝协同设计,为后续的通信算法软件实现提供了友好、便捷的开发环境。最终论文在此Linux环境下实现了连续变量量子密钥分发的自适应协商算法编程,根据所完成算法得出的数据验证了自适应区间划分算法的有效性。
Since quantum no-cloning and the Heisenberg uncertainty relation ensure the absolute security and the ability of detecting eavesdropper, quantum cryptography has become the most attractive frontiers in recent years. Quantum Key Distribution (QKD), as the most emphasized research field, has bred remarkable fruition both theatrically and experimentally. After continuous exploitation, scholars found that the technology of photon generation and detection, which the discrete variable quantum key distribution relies on, limited the speed of communication, while at the same time, continuous quantum key distribution which uses coherent light is much easier to realize, and its high speed of communication has been experimentally proved. Therefore, continuous quantum key distribution attracts more and more attention.
     In order to provide control function for quantum communication, some electrical solution has already been proposed and many of them have been experimentally realized. However, these solutions could not satisfy system demands on precision and function in present communication schemes. Besides, with the fast development of embedded technology and programming techniques, people are looking for a more universal and powerful solution, with more precise timing and powerful software processing ability, greater portability and convenience to reuse all the resources, higher integration of software and hardware and also the ability to work without a PC.
     For the purpose of realizing a reusable electrical solution with powerful software processing ability and higher integration intensity, this thesis, based on Xilinx FPGA platform, realizes a synchronous timing IP core with precise clock output for the continuous variable quantum key distribution scheme using SOPC techniques. The ML405 based Linux porting is also accomplished and the seamless integration of software and hardware is realized, providing a user-friendly and convenient development environment for the following realization of reconciliation and other QKD related algorithms. Finally, the thesis finishes the programming of auto-adaptive interval selection algorithm for continuous quantum key distribution under embedded Linux. After analyzing a large amount of data experimentally, the validity of the algorithm is proved.
引文
[1] C.H.Bennett,”Quantum cryptography using two nonorthogonal states,”Phys. Rev.Lett, 1992, vol.68,pp.3121-3124.
    [2] D.Bruss,”Optimal eavesdropping in quantum cryptography with six stats,”Phys. Rev. Lett,. 1998, vol.81, pp3018-3021
    [3] H.Bechmann-Pasquimucci and W.Tittel,”Quantum cryptography using larger alphabets,”Phys .Rev .A, 2000,vol. 61, pp.062308.
    [4] D.Mayers,”Unconditional security in quantum crytography”, J.Assn.Comput.Mac.
    [5] H.K.Lo and H.F.Chau,”Unconditional security of quantum key distribution over arbitrarily long distances,”Science, 1999, vol .283, pp. 2050-2056.
    [6] P.D.Townsend, J.G.Raritu, and P.R.Tapster,”Signle photon interference in a 10km optical fiber interferometer,”Electon, Lett, 1993, vol.29,pp.634-639.
    [7] T.C.Ralph,”Continuous variable quantum cryptography,”Phys. Rev. A, 1999, vol.61, pp . 010303 (R).
    [8] T.C.Ralph,”Security of continuous-variable quantum cryptography,”Phys.Rev.A, 2000, vol.62, pp.062306.
    [9] M.Hillery,”Quantum cryptography with squeezed states,”Phys.Rev.A, 2000, vol.61, pp.022309.
    [10] N.J.Cerf, M.Levy, and G.VanAssche,”Quantum distribution of Gaussian keys using squeezed states,”Phys.Rev.A, 2001, vol.63,pp.052311.
    [11] J.Lodewyck, T.Debuisschert, R.Tualle-Brouri, and Philippe Grangier,”Controlling excess noise in fiber-optics continuous-variable quantum key distribution,”Phys.Rev.A, 2005, vol.72, pp.050303. [12 L.F.M.Borelli and A.Vidiella-Barranco,”Quantum key distribution using gright polarized coherent states,”arXiv: quant-ph/0403076
    [13] S.Wiesner, SIGACT News, 1983, 15, 78.
    [14] A.K.Ekert,”Quantum cryptography based on Bell’s Theorem”, Phys. Rev. Lett., vol.67, pp.661-663
    [15] C.H.Bennett,”Quantum cryptography using two nonorthogonal states,”Phys. Rev. Lett., 1992,VOL.68,PP.3121-3124
    [16] D.Bruss,”Optimal eavesdropping in quantum cryptography with six states,”Phys.Rev.Lett., 1998,vol.81,pp.3018-3021.
    [17] H.Bechmann-Pasquinucci and W.Tittel,”Quantum cryptography using larger alphabets,”Phys.Rev.A, 2000, vol.61,pp.062308.
    [18] D.Mayers,”Unconditional security in quantum crytography”, J.Assn.Comput.Mac.
    [19] H.K.Lo and H.F.Chau,”Unconditional security of quantum key distribution over arbitrarily long distances,”Science, 1999, vol.283,pp.2050-2056.
    [20] P.W.Shor and J.Preskill,”Simple proof os security of the BB84 quantum key distrivution protocol,”Phys.Rev.Lett, 2000, vol.85,pp.441-444.
    [21] H.Inamori, L.Rallan,and V.Vedral,”Security of EPR-based quantum cryptography against incoherent symmetric attacks,”preprint quant-ph/0103058.
    [22] E.Biham, M.Boyer, P.O.Boykin, T.Mor,and V.Roychowdhury,”A proof of the security ofquantum key distribution,”prepring quant-ph/9912053.
    [23] J.Breguet, A.muller, and N.Gisin,”Quantum cryptography with polarized photons in optical fibers: experimental and practical limits,”J. Mod. Opt., 1994, vol.41,pp.2405-2412.
    [24] C.Marang and P.D.Townsend,”Quantum key distribution over distance as long as 30km,”Optics Letters, 1995, vol.20,pp.1695-1697.
    [25] A.Muller, T.Heraog, B.Huttner, W.Tittel, H.Zbinden, and N.Gisin,”Plug and Play’system for quantum cryptography,”Applied Phys.Lett., 1997, vol.70,pp.793-795.
    [26] D.Stucki, N.Gisin, O.Guinnard, G.Ribordy, and H.Zbinden,”Quantum key distribution over 67km with a plug&play system,”New Journal of Physics, 2002,pp.4:41.1-41-.8.
    [27] C.Gobby, Z.L.Yuan, and A.J.Shields,”Quantum key distribution over 122km of standard telecom fiber,”Applied Phys.Lett, 2004, vol.84,pp.3762-3764.
    [28] T.Kimura etal.,”Single-photon interference over 150km transmission using silica-based integrated-optic interferometers for quantum cryptograph,”Jpn. J. Appl. Phys., 2004, vol.43, pp.L1217.
    [29] H.K.Lo, Xiongfeng Ma, and Kai Chen,”Decoy state quantum key distribution,”Phys, Rev.Lett, 2005, vol.94, pp.230504.
    [30] Xiangbin Wang,”Decoy-state protocol for quantum cryptography with four differenct intensities of coherent light,”Phys.Rev.A, 2005, vol.72, pp.012322.
    [31] Xiaofeng Ma, B.Qi, Y.Zhao, and H.Y.Lo,”Practical decoy state for quantum key distribution,”Phys.Rev.A, 2005, vol. 72, pp.012326.
    [32] T.C.Ralph,”Continuous variable quantum cryptography,”Phys. Rev. A, 1999, vol. 61, pp.010303.
    [33] T.C.Raoph,”Security of continuous-variable quantum cryptography,”Phys. Rev. A, 2000, vol. 62, pp.062306.
    [34] M.Hillery,”Quantum cryptography with squeezed states,”Phys. Rev. A, 2000, vol. 61, pp.022309.
    [35] D.Gottesman and J.Preskill,”Secure quantum key distribution using squeezed states,”Phys. Rev. A, 2001,vol. 63, pp.022309.
    [36] N.J.Cerf, M.Levy, and G.VanAssche,”Quantum distribution of Gaussian keys using squeezed states,”Phys. Rev. A, 2001, vol.63, pp.052311.
    [37] Ch.Silberhom, N.Korolkova, and G.Leuchs,”Quantum key distribution with bright entangled beams,”Phys. Rev. Lett, 2002, VOL.88, PP.167902.
    [38] F.Grosshans and P.Grangier,”Reverse reconciliation protocols for quantum cryptography with continuous variables,”arXiv:quant-ph/0204127.
    [39] G.van Assche, J.Cardinal, and N.J.Cerf,”Reconciliation of Quantum-Distributed Gaussian Key,”IEEE Trans, Information Theory, 2004, Vol.50,NO.2 pp.394-400.
    [40] G.Van Assche, S.Iblisdir, and N.J.Cerf,”Secure coherent-state quantum key distribution protocols with efficient reconciliation,”Phys, Rev, A, 2005, vol.71, pp.052304.
    [41] Ch.Siberhorn, T.C.Raoph, N.Lutkenhaus, and G.Leuchs,”Continuous variable quantum cryptography: beating the 3db loss limit,”Phys.Rev.Lett, 2002, vol.89, pp.167901.
    [42] F.Grosshans et al.,”Quantum key distribution using Gaussian-modulated coherent states,”Nature, 2003, vol.421, pp.238-241.
    [43] http://Xilinx.com
    [44] XILINX.Virtex-4 ML405 Evaluation Platform User Guide.pdf
    [45] XILINX.Vietex-4 Configuration Guide UG071
    [46]黄智伟,FPGA系统设计与实践,北京,电子工业出版社,2005,50-100
    [47]褚振勇,齐亮,田红心等,FPGA设计与应用,西安,西安电子科技大学出版社2006,30-50
    [48]夏宇闻,从算法设计到硬件逻辑的实现复杂数字逻辑系统的VerilogHDL设计技术与方法,北京,高等教育出版社,2000,30-70
    [49]王诚,FPGA/CPLD设计工具XILINX ISE 5.X使用说明详解,北京,人民邮电出版社,2005,20-100
    [50]薛小刚,葛毅敏.XILINX ISE 9.X FPGA/CPLD设计指南,北京,人民邮电出版社,10-18
    [51]石英李新新姜宇柏,ISE应用于开发技巧,北京,机械工业出版社,50-100
    [52]田耘徐文波胡彬,Xilinx ISE Design Suite 10.x FPGA开发指南-逻辑设计篇,北京,人民邮电出版社,59-66
    [53]杨强浩,基于EDK的FPGA嵌入式系统开发,北京,机械工业出版社,110-138
    [54]赵峰,马迪铭,孙炜,梁天翼,FPGA上的嵌入式系统设计实例,西安,西安电子科技大学出版社,34-50
    [55] John H.Kelm, Running Linux on a Xilinx XUP Board, June 23,2006
    [56] http://forums.xilinx.com/xlnx/board?board.id=ELINUX
    [57] http://www.doulos.com/content/training/xilinx_embedded_open-source_linux_dev.php
    [58] http://www.klingauf.de/v2p/index.shtml
    [59] http://impact.crhc.illinois.edu/gsrc/hardwarelab/docs/kernel-HOWTO.html
    [60] http://www.aclevername.com/articles/linux-xilinx-tutorial/index.html
    [61] http://www.gdargaud.net/Hack/Embedded.html
    [62] http://xilinx.wikidot.com/
    [63] http://git.xilinx.com/cgi-bin/gitweb.cgi
    [64] http://www.polybus.com/xilinx_on_linux.html
    [65] http://www.mail-archive.com/linuxppc-embedded@ozlabs.org/msg03164.html
    [66] https://linuxlink.timesys.com/3/Linux/Xilinx
    [67] http://npg.dl.ac.uk/MIDAS/DataAcq/EmbeddedLinux.html
    [68] XILINX,Using the Genace Script.pdf。
    [69] Qian Xu-Dong, He Guang-Qiang, Zeng Gui-Hua,“The Realization of Error Correction and Reconciliation of Continous Quantum Key Distribution in Detail”. Chinese Science(In Press).
    [70] W.T.Buttler, S.K.Lamoreaux, J.R.Torgerson et al.Fast, efficient error reconciliation for quantum cryptography.Phys Rev A.2003,67:052303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700