高稳定性磁性荧光多功能化聚苯乙烯微球的制备及其初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性荧光聚合物微球由于其既具备了聚合物微球大的表面积、粒径可控、易于分离、表面可修饰多种官能团等优点,又具备了磁性材料独特的超顺磁性和量子点优异的光学特性而受到普遍关注,并广泛应用于生物医学领域,尤其在编码技术、细胞分离技术、共振显像、药物筛选和靶向、疾病的检测和诊断等方面有广阔的应用前景。
     本文研究了磁性荧光多功能化聚苯乙烯微球的制备,探讨了不同的因素和条件对微球结构及性能参数的影响,并实现了在免疫检测方面的初步应用。首先,以分散聚合和种子溶胀聚合的方法制备了粒径在1-15μm的羧基化聚苯乙烯微球,并对分散聚合与种子聚合的机理,反应条件对种子微球和目标微球粒径、形貌及性能的影响进行了探讨;通过蛋白吸附实验、酶联免疫反应和免疫荧光反应评价了微球的表面吸附能力、表面反应能力以及羧基的活性。其次,以传统溶剂溶胀法配合高温溶剂溶胀法制备了高稳定性的磁性荧光多功能微球,并对微球的磁性能及荧光性能进行了表征,对反应机理进行了探讨,并且评价了其在有机溶剂、不同pH缓冲液和水环境下的稳定性。最后,以制备的磁性荧光微球为载体进行免疫诊断,并通过荧光显微镜和流式细胞仪对免疫反应后微球的荧光光谱进行分析。
     由扫描电子显微镜分析可知,制得的微球形貌规则、粒径均匀;流式细胞术分析表明,不同粒径的微球分属不同的点群并能够完全分开,因此可通过微球粒径差异实现编码。红外谱图和核磁谱图证明,在种子聚合中通过共聚甲基丙烯酸的方法成功在微球表面引入羧基,由电导滴定测得微球表面羧基含量为0.4mmol/g;蛋白吸附试验和免疫实验进一步证实微球表面羧基具有良好的反应活性。激光共聚焦显微镜图片显示,纳米粒子通过多孔微球的孔道渗入了微球内部且均匀分布。震动磁强计和分离效果图显示通过常温-高温法制备的磁性荧光微球具有良好的磁响应性,而荧光图片及荧光光谱表明微球的荧光强度较高,可满足实际需求;通过稳定性研究发现,磁性荧光微球稳定性良好,免疫反应实验证明磁性荧光微球能够稳定地结合抗原(人IgG),并且能够特异识别相应的抗体。
     本课题的研究成果为液相生物芯片研发、微球编码技术和样品分离技术提供了重要的理论支持和实验依据,在生物识别和检测领域具有广阔的应用前景。
Magnetic fluorescent multifunctional polymer beads have been attracted great interest in application of biomedical field not only due to their advantages of big surface area, size-controlled, separated facility and ease to be functionalized on the surface, but also performance unique superparamagnetization and excellent optical properties. In particular, these functional beads have broad application prospect in encoding, cell separation, resonance imaging, drug screening and targeting, disease detection and diagnosis, etc.
     The preparation of monodisperse magnetic fluorescent multifunctional polystyrene beads and the effect of different factors and conditions on microsphere structure, performance and parameter were investigated in detail in this work. Bio-immunoassay and clinical diagnosis were operated on bead surface as a primary application. Firstly, two-step swelling seed polymerization was adopted to synthesize carboxylic beads in size of 1-15μm with polystyrene particles by dispersion polymerization in size of 1-3μm as seed latex. The schematics and reaction dynamics of dispersion polymerization and seed polymerization were described and the effects of conditions on size, morphology and properties of seed particles and target beads were discussed. Bead adsorption, reaction capacity and carboxylic activity were evaluated by BCA protein adsorption and ELISA assay. Secondly, an efficiently modified method combined conventional swelling method with high-temperature swelling method was applied to prepare high-stable multifunctional MNPs-QD-encoded polystyrene beads simultaneously with large encoding capacity and fast separation. Subsequently, fluorescent and magnetic performances were investaged in detail and the stability of multifunctional beads in organic solvent, buffers with different pH. The long-time stability in PBS buffer as an important characterization was used to perform that functional bead can store and apply for a long time, such as 6 months.
     The regular morphology, uniform size can be observed from SEM images and beads with varied size can be completely separated from each other in flow cytomic data, so that encoding by bead size can be realized. The fact that carboxyl groups were successfully integrated onto bead surface can be obtained from NMR and FTIR spectra and the concentration is 0.4mmol/g by conductometric titration. QDs were packed into bead network and well-distributed seeing from laser scanning confocal microscope; meanwhile, magnetic performance was excellent getting from vibration magnetometer and separation photos. In this work, the results demonstrate that encapsulating QDs into pre-prepared MNPs-beads is the best sequence, which keeps high brightness and fast separation. The MNPs-QD-encoded microcarriers designed by our proposed method exhibit excellent performance for magnetic manipulation and optical encoding; what is more, they also have strong physical and chemical stabilities. Compared with beads prepared via conventional swelling method, the leakage of nanoparticles from the designed MNPs-QD-encoded PSEMBs induced by organic solvents (cyclohexane) is less than 6 % and fluorescence intensity of MNPs- QDs-encoded PSEMBs fluctuates more slightly in a wide range of pH 4-12 buffers; meanwhile, fluorescence intensity kept the low level less than 40% for 6 months in PBS buffer. In addition, immunoassay performance for human IgG detections indicates that carboxyl groups on fluorescence microsphere surface facilitate efficient attachment of biomacromolecule and therefore they can be further applied to fast separation and multiplexed biomolecular assays.
     The results of research can provide important theoretical and experimental basis for the bead-encoding development of liquid biochip, and has broad application prospects in the field of testing biometrics.
引文
[1]陈杨;陆锦霞;陈志刚;核壳结构PS/CeO_2复合微球的制备及其在化学机械抛光中的应用,无机化学学报, 2011, 1: 66-72.
    [2] Wesson P J, Soh S, Klajn R, et al. Remote fabrication via three-dimensional reaction-diffusion: making complex core-and-shell particles and assembling them into open-lattice crystals[J].Advanced Materials, 2009, 21 : 1911-1915.
    [3] Pham T.; Jackson J. B.; Halas N. J. et al. Preparation and characterization of gold nanoshells coated with self-assembled monolayers[J]. Langmuir, 2002, 18: 4915- 4920.
    [4]王伟财,张琦,张兵波等,氨基化单分散超顺磁荧光PGMA多功能微球制备,科学通报,2007,52:2477~2481
    [5] Wang D.; He J.; Rosenzweig N.; et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Letters, 2004, 4: 409-413
    [6]王鑫岩,量子点编码微球的制备及其在荧光免疫分析中的应用,硕士论文,2007年6月
    [7] Insin N.; Tracy J. B.; Lee H.; et al. Incorporation of Iron Oxide Nanoparticles and Quantum Dots into Silica Microspheres. ACSNANO, 2008, 2:197-202
    [8] Chan W.C.W.; Nie S. M. Quantum Dot Bioconjugates for Ultrasentive Nonisotopic Detection. 1998,281:2016-2018
    [9] Han M., Gao X. H.; Su J. Z.; Nie S. M. Quantum-dot-targged Microbeads for Multiplexed Optical Coding of Biomolecules. Nat.Biotech.,2001,19:631-635
    [10] Bruchez M.; Moronne Jr. M.; Gin P.; Weiss S.; Alivisatos A. P. Semiconductor nanocrystal as Fluorescent Biological Lables. Science, 1998,281,2011-2016
    [11] Reese C. E., Guerrero C. D., Weissman J. M., et al. Asher synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals, Journal of Colloid and Interface Science, 2000, 232: 76~80
    [12] Nolan J. P., Sklar L. A., The emergence of flow cytometry for the sensitive, real-time analysis of molecular assembly, Nature Biotechnology, 1998, 16: 833~838
    [13] Zhang Q., Han Y., Wang W. C., et al. Preparation of fluorescent polystyrene microspheres by gradual solvent evaporation method, European Polymer Journal, 2009, 45: 550~556
    [14] Zhang J., Chen Z., Wang Z., et al. Preparation of monodisperse polystyrene spheres in aqueous alcohol system, Materials Letters, 2003, 57: 4466~4470
    [15] Rahmani A., Fornel F. de., Near-field optical probing of fluorescent microspheresusing a photon scanning tunneling microscope, Optics Communications, 1996, 131: 253~259
    [16] Annmuriel S., Marylène F., Chantal A., et al. Detection of a decrease in green fluorescent protein fluorescence for the monitoring of cell death: An assay amenable to high-throughput screening technologiesm, Cytometry, 2001, 45: 237~243
    [17] Park J., Joo J., Kwon S. G., et al. Synthesis of monodisperse spherical nanocrystals, Angewandte Chemie, 2007, 46: 4630~4660
    [18] Kim J. W., Suh K. D., Monodisperse polymer particles synthesized by seeded polymerization techniques, Journal of Industrial and Engineering Chemistry, 2008, 14: 1~9
    [19] Weisberger J., Wu C. D., Liu Z., et al. Differential diagnosis of malignant lymphomas and related disorders by specific pattern of expression of immuneophenotypic markers revealed by multiparameter flow cytometry, International Journal of Oncology, 2000, 17:1165~1177
    [20]王为强;张秋禹;刘燕燕;马明亮;单分散大粒径交联聚苯乙烯微球的制备及功能化改性的研究进展,化工进展, 2009, 1:93-99
    [21] Ma G. H.; Nagai M.; Omi S. Synthesis of uniform microspheres with higher content of 2-hydroxyethyl methacrylate by employing SPG(Shirasu porous glass)emulsification technique followed by swelling process of droplets[J]. Journal of Applied Polymer Science 1997,66:1325-1341.
    [22] Jun B-H., Noh M. S., Kim G.S., et al. Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Analytical Biochemistry, 2009, 391:24~30
    [23] Jun B-H., Rho C., Byun J-W., et al. Multilayer fluorescence optically encoded beads for protein detection. Analytical Biochemistry, 2010, 396: 313~315
    [24] Senel S., Camli S.T., Tuncel M., Tuncel A. Nucleotide adsorption–desorption behaviour of boronic acid functionalized uniform- porous particles, Journal of Chromatography B, 2002, 769: 283~295
    [25] Zhao Y. J., Zhao X. W., Hu J., Xu M., et al. Encoded Porous Beads for Label-Free Multiplex Detection of Tumor Markers, Advanced Materials, 2009, 21:569~572
    [26] Nam J. M., Thaxton C. S., Mirkin C. A. Nanoparticle-Based Bio-Barcodes for the Proteins. Ultrasensitive Detection of Proteins,Science 2003, 301:1884~1886.
    [27]王娟,粱彤祥等,单分散聚合物微球的合成技术,材料工程,2004,11:61~64
    [28] Bradford E. B., Vanderhoff J. W. and Alfrey T. The use of monodisperse latexes in an electron microscope investigation of the mechanism of emulsion polymerization, Journal of Colloid Science, 1956, 11: 133~149
    [29]罗正平,张秋禹等,分散聚合研究,高分子通报,2002,5:35~40
    [30] Lu Y. Y., El-Aasser M. S., Vanderhoff J. W., Dispersion polymerization of styrene in ethanol: Monomer partitioning behavior and locus of polymerization, Journal of Polymer Science Part B: Polymer Physics, 1988, 26:1187~1203
    [31] Zhang F., Cao L., Yang W. T., Preparation of Monodisperse and Anion-Charged Polystyrene Microspheres Stabilized with Polymerizable Sodium Styrene Sulfonate by Dispersion Polymerization, Macromolecule Chemical Physics. 2010, 211:744~751
    [32] Takahashi K., Miyamori S., Uyama H., et al. Preparation of micron-size monodisperse poly(2-hydroxyethyl methacrylate) particles by dispersion polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34: 175~182
    [33] Paine A. J., Dispersion polymerization of styrene in polar solvents.Ⅳ. Solvency control of particle size from hydroxypropyl cellulose stabilized polymerizations, Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28: 2485~2500
    [34] Shen S., Sudol E. D., El-Aasser M. S., Dispersion polymerization of methyl methacrylate mechanism of particle formation, Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32: 1087~1099
    [35] Song J. S., Leonid C., Mitchell A., Monodisperse Micrometer-Size Carboxyl-Functionalized Polystyrene Particles Obtained by Two-Stage Dispersion Polymerization, Macromolecules, 2006, 39: 5729~5737
    [36]张晓宁,杨景辉,马新胜等,种子溶胀法制备单分散交联聚苯乙烯微球,塑料工业,2009, 37:37~42
    [37] Ugelstad J., Mork P. C., Kaggerud K. H., et al. Swelling of oligomer-polymer particles: new methods of preparation of emulsions and polymer dispersions, Advances in Colloid and Interface Science, 1980, 13: 101~140
    [38] Ugelstad J., Mork P. C., Schimid R., et al. Preparation and biochemical and biomedical applications of new monosized polymer particles, Polymer International, 1993, 30: 157~168
    [39] Okubo M., Shiozaki M., Tsujihiro M., et al. Preparation of micron-size monodisperse polymer particles by seed polymerization utilizing the dynamic monomer swelling method, Colloid and Polymer Science, 1991, 269(3): 222~226
    [40] Ma G. H., Nagai M., Omi S., Synthesis of uniform microspheres with higher content of 2-hydroxyethyl methacrylate by employing SPG(Shirasu Porous Glass) emulsification technique followed by swelling process of droplets, Journal of Applied Polymer Science, 1997, 66: 1325~1341
    [41] Bai F., Yang X. Li R., et al. Monodisperse hydrophilic polymer microsphereshaving carboxylic acid groups prepared by distillation precipitation polymerization, Polymer, 2006, 47: 5775~5784
    [42] Li J., Li H. M., Functionalization of syndiotactic polystyrene with succinic anhydride in the presence of aluminum chloride, European Polymer Journal, 2005(41): 823~829
    [43] Tuncel A., Tuncel M., Ergun B. et al. Carboxyl carrying-large uniform latex particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 197: 79–94
    [44] Kang K., Kan C., Du Y., et al. Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization, European Polymer Journal, 2005, 41: 439~445
    [45]王伟财,张琦,张兵波等,氨基化单分散超顺磁荧光PGMA多功能微球制备,科学通报,2007,52:2477~2481
    [46]黄炜东,秦学,周雷激等,氨基聚苯乙烯微球的制备与表征,厦门大学学报,2008, 47:204~207
    [47] Dusek K. I., Haward E. N., Developments in polymerization, Applied Science, 1982, 3(4): 143~158
    [48] Vanderhoff J. W., Cheng C. M., Micale F. J., et al. Pore structure studies of monodisperse porous polymer particles, Journal of Colloid and Interface Science, 1992, 150(2):199~203
    [49] Gao X. H., Nie S. M., Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity: Rapid Readout Using Flow Cytometry, Analytical Chemistry, 2004, 76: 2406~2410
    [50] Uyama H., Takahashi K., Kobayashi S., Kobunshi Kako, 1996, 45: 492~496
    [51] Ogino K., Hisaya S., Tsuchiya K., et al. Synthesis of monodisperse macroreticular styrene-divinylbenzene gel particles by a single-step swelling and polymerization method, Chromatograph A, 1995, 69: 59~66
    [52] CHING WANG Q.; SVEC FRANTISEK and FRECHET JEAN M. J. Fine Control of the Porous Structure and Chromatographic Properties of Monodisperse Macroporous Poly (styrene-co-divinylbenzene) Beads Prepared Using Polymer Porogens. Journal of Polymer Science: Part A Polymer Chemistry, Vol. 1994, 32: 2577-2588
    [53] Erogbogbo F., Yong K.-T., Hu R. et al., BiocompatibleMagnetofluorescent Probes: LuminescentSiliconQuantum DotsCoupledwithSuperparamagnetic Iron(III)Oxide, ACS Nano, 2010, 4:5131~5138
    [54] Mandal S. K., Lequeux N., Rotenberg B. et al., Encapsulation of Magnetic and Fluorescent Nanoparticles in Emulsion Droplets, Langmuir, 2005, 21:4175~4179
    [55]林全愧,计剑,谭庆刚等,层层自组装技术在生物医用材料领域中的应用研究进展,高分子通报,2006,8:58-63
    [56] Salgueirino-Maceira V.; Correa-Duarte M. A.; Spasova M. et al. Composite Silica Spheres with Magnetic and Luminescent Functionalities. Advanced Functional Materials, 2006,16:509–514
    [57] Liu Bing.; Xie W. X.; Wang D. P. et al. Preparation and characterization of magnetic luminescent nanocomposite particles, Mat.Lett. 2008, 62: 3014–3017
    [58] Wang G. N.; Wang C.; Dou W. C. et al. The Synthesis of Magnetic and Fluorescent Bi-functional Silica Composite Nanoparticles via Reverse Microemulsion Method. Journal of Fluorescence, 2009, 19: 939–946
    [59] Tu C. F., Yang Y. H. and Gao M. Y., Preparations of bifunctional polymeric beads simultaneously incorporated with fluorescentquantum dots and magnetic nanocrystals, Nanotechnology, 2008, 19:105601(8pp)
    [60] Gao X. H. and Nie S. M., Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity: Rapid Readout Using Flow Cytometry, Analytical Chemistry, 2004, 76: 2406-2410
    [61] Sathe T. R.; Agrawal A. and Nie S. M., Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals: Dual-Function Microcarriers for Optical Encoding and Magnetic Separation, Analytical Chemistry, 2006, 78:5627-5632
    [62] Hatakeyama M., Nakamura K., Iwato S., et al. DNA-carrying latex particles for DNA diagnosis 2. Distinction of normal and point mutant DNA using S1 nuclease, Colloids and Surfaces B: Biointerfaces, 1998, 10: 177~178
    [63] Eugenia C., Patrizia E., Giorgio L., et al. Flow cytometry applications in the evaluation of sperm quality: semen analysis, sperm function and DNA integrity, Contraception, 2005, 72: 273~279
    [64]张洋,苏玉虹,巴彩凤等,流式细胞微球芯片捕获技术在医学领域中的应用价值,中国临床康复,2006,37:129- 131
    [65] Christ D., Earle M. A., High-throughput fluorescent multiplex array for indoor allergen exposure assessment, Journal of Allergy and Clinical Immunology, 2006, 119: 428~435
    [66] Yan X. M., Schielke E. G., Grace K. M., et al. Microsphere-based duplexed immunoassay for influenza virus typing by flow cytometry, Journal of Immunologieal Methods, 2004, 2(84): 27~38
    [67] Jani I. V., Janossy G., Brown D. W., et al. Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings, Lancet Infectious Diseases, 2002, 2(4): 243~250
    [68] Nolan J. P., Sklar L. A., Suspension array technology: evolution of the flat-array paradigm, Trends in Biotecthnology, 2002, 20(1): 9~12
    [69] Vignali D. A., Multiplexed particle-based flow cytometric assays, Journal of Immunological Methods, 2000, 243(1-2): 243~255
    [70] McBride M., Stuart G., Maurice P., et al. Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents, Analytical Chemistry, 2003, 75(8):1924~1930
    [71] Yan X. M., Zhong W. W., Tang A. et al. Multiplexed Flow Cytometric Immunoassay for Influenza Virus Detection and Differentiation, Analytical Chemistry, 2005, 77(23): 7673~7678
    [72]韩艳,种子溶胀法制备微米级单分散功能化聚苯乙烯微球:[硕士学位论文],天津大学,2008
    [73] Okubo M., Wang Z. Q., et al. Morphology of micron-sized, monomer-adsorbed, crosslinked polymer particles having snowmanlike shapes prepared by the dynamic swelling method, Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39: 3106~3111
    [74] Hongtao Zhang, He Huang, Rui Lv, Min Chen. Micron-size crosslinked microspheres bearing carboxyl groups via dispersion copolymerization, Colloids and Surfaces A: Physicochemistry Engineering Aspects, 2005, 253: 217~221
    [75] Tsay J. M.; Doose S.; Li J. J.; Sundaresan G. et al., Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, 2005, 301:538–544
    [76] Selvan S. T. Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications. Biointerphases, 2010, 5:FA110-FA115
    [77] Sun S. H.; Zeng H.; Robinson D. B. et al., Monodisperse MFe2O4 (M= Fe, Co, Mn) Nanoparticles, J. AM. CHEM. SOC., 2004, 126: 273-279
    [78] Sathe T. R.; Agrawal A. and Nie S. M., Mesoporous Silica Beads Embedded with Semiconductor Quantum Dots and Iron Oxide Nanocrystals: Dual-Function Microcarriers for Optical Encoding and Magnetic Separation, Analytical Chemistry, 2006, 78:5627-5632
    [79] Fleming M. S.; Mandal T. K. and Walt D. R., Nanosphere-Microsphere Assembly: Methods for Core-Shell Materials Preparation, Chemistry Materials, 2001, 13: 2210-2216
    [80] Han M. Y., Gao X. H., Su J. Z., et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotechnology, 2001, 19: 631~635
    [81] Wang H. Q., Huang L. Z., Liu T. C., et al. A Feasible and Quantitative Encoding Method for Microbeads with Multicolor Quantum Dots, Journal of Fluorescence, 2007, 17: 133~138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700