水溶性CdTe量子点的合成及其生物应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型荧光材料,量子点(Quantum Dots,QDs)具有很多优异的性质,如激发谱宽、发射谱窄而对称、斯托克斯位移(Stoke's shift)大、抗光漂白和荧光寿命长等优点,在生命科学领域显示了极其广阔的应用前景。
     尽管量子点在生物医学尤其是生物荧光标记中得到广泛的研究和应用,但还有很多有待解决的问题:如何发展和完善量子点的合成方法,提高量子点的稳定性及生物相容性,以及怎样采取更好的方法解决量子点与生物分子偶联,如何将偶联物进行分离提纯形成特异性、稳定的探针等等。目前生物学上应用的量子点大多来自有机相合成,该方法合成的量子点粒径分布均匀,量子产率高,但制备条件苛刻、成本高、毒性大。相比之下,水相合成方法简单、毒性小、成本低、重复性好,并且水相合成的量子点可以直接与生物分子偶联,因而具有非常广阔的应用前景。本论文主要工作以不同的巯基小分子作为稳定剂合成高质量的水溶性CdTe量子点,同时也研究了其光学、表面化学和生物偶联等特性,并重点研究了合成的量子点作为荧光探针在生物和分析领域的具体应用。论文完成的工作如下:
     (1)采用多种巯基小分子做稳定剂,水相合成性能优异的CdTe量子点。通过控制加热回流时间,可得到发射波长在510~660 nm之间的量子点,并对合成的水溶性量子点进行荧光发射光谱、紫外可见吸收光谱、透射电子显微镜成像、X射线粉末衍射、X射线荧光光谱和红外光谱等系列表征。
     (2)采用水相合成法制备以巯基丙酸为稳定剂的水溶性CdTe量子点,并利用变性BSA(dBSA)修饰CdTe量子点,实验表明dBSA可以有效地连接到QDs上,并且这种连接非常稳定。通过葡聚糖凝胶层析确定QDs与dBSA连接的最佳比例,并分离提纯得到dBSA-QDs。进一步实验表明,通过这种方式得到的dBSA-QDs,不仅其量子产率可以大大提高,而且其抗光漂白性和稳定性也有大幅提高。利用提纯后的dBSA-QDs为探针,基于荧光淬灭的原理对Ag~+进行了检测。结果表明,其对Ag~+检测的线性范围为0.08-10.66μM,检测下限为0.01μM。该方法为金属离子的检测提供了一条新的思路。
     (3)研究了CdTe量子点的温度敏感性并建立了一种提高量子点荧光的温度稳定性的方法。发现巯基丙酸为稳定剂的水溶性CdTe量子点(直径约3.5 nrn)的荧光对温度非常敏感,随着温度从278 K升高到323 K,其荧光强度降为原来的50.2%,且其荧光发射峰位置也发生明显红移(~7 nn)。而其表面修饰变性卵清蛋白之后,其对温度的不敏感性大大提高,荧光强度可以保持70%以上,而且荧光发射峰位置只有约2 nm的红移,并且经过多次升温、降温之后,其荧光强度和波长都可以恢复。这一结果为寻找具有温度稳定性的量子点荧光探针提供了重要依据。
     (4)基于CdTe量子点荧光光谱的变化建立了一种可用于卵清蛋白检测的新方法。用变性卵清蛋白修饰CdTe量子点后,发现CdTe量子点的荧光强度和发射峰波长都发生明显变化,建立了一种用CdTe做荧光探针定量检测卵清蛋白的新方法。实验结果表明,在优化条件下,在0.125μM-4μM范围内,体系的荧光强度和最大发射峰波长的变化均与卵清蛋白的浓度呈良好的线性关系,检测限达到0.03μM。紫外吸收法证实,此方法具有很好的准确性。
     (5)以巯基丁二酸为稳定剂,制备了核壳型的CdTe/CdS量子点,紫外吸收光谱和荧光光谱证实所合成的量子点具有良好的光学性质。又发现通过升温、降温处理的方式,可以大大提高该量子点的量子产率(达到41%)。之后又将这种高性能的量子点用于制备荧光探针。实验结果表明,转铁蛋白可以有效地连接到CdTe/CdS量子点上,并基于转铁蛋白受体识别介导作用实现对人肝癌细胞HepG2的识别。这一工作对于制备高性能的量子点,促进其在生命科学中的应用具有重要意义,同时也对肿瘤细胞的识别诊断研究具有参考价值。
     (6)以谷胱甘肽为稳定剂,在水相中合成了高质量的CdTe量子点,紫外吸收光谱和荧光光谱证实所合成的量子点具有良好的光学性质。通过毛细管电泳技术比较戊二醛两步法和戊二醛一步法对伴刀豆球蛋白的标记效果,实验结果表明,戊二醛两步法具有更好的标记效果。
As a new type of fluorescent labels,quantum dots (QDs)offer a number of attractivefeatures,including broad excitation spectra,relatively broad and symmetric luminescencebands,large Stokes shift,high photobleaching threshold,good chemical stability and longfluorescence lifetime,which make them have broad protenal application in life science.
     Even though QDs have been widely used in biomedical,especially in the biologicalfluorescent labeling,but still have a lot of problems to be resolved:How to develop andimprove the QDs synthesis methods,the stability and biocompatibility,as well as how totake better ways to solve QDs coujugated with biological molecules,and how to separateand purify of the conjugates to get stable bioprobes,and so on.At present,most of thebiological applications of QDs come from the organic-phase synthesis,and QDssynthesized in this method have good size distribution and high quantum yield.But thismethod is hard to operate,high cost and toxic.In contrast,water-phase synthesis methodis simple,small toxicity,low cost and good reproducibility,etc.Water-phase synthesis ofQDs can be conjugated directly with biological molecules,which have very broadapplication prospects.The main job of this thesis is to synthesize high-qualitywater-soluble CdTe QDs with different small sulfhydryl molecule as the stabilizer,andalso conduct a study of its optical,surface chemical and bioconjugated properties,andfocused on the specific applications of the as-synthesized QDs as fluorescent labels in thefield of biology and analysis.The main contents and results are summarized as follows:
     (1)Water-soluble CdTe QDs were synthesized in aqueous solution by using differentsmall sulfhydryl molecules as the stabilizer.The fluorescence emission peaks at 510~660nm are tuned by the control of the refluxing time.The as-synthesized quantum dots werethen characterized by fluorescence spectroscopy,UV-visible spectroscopy,TEM,XRD,EDXS and infrared spectroscopy,respectively.
     (2)CdTe QDs were synthesized in aqueous solution with 3-Mercaptopropionic acid(MPA)as the stabilizer.Denatured bovine serum albumin (dBSA)has been used tomodify the surface of QDs.Experiment results showed that the dBSA could be effectivelyconjugated to the surface of CdTe QDs.Column chromatography was used to purify the conjugates and determine the optimum conjugate ratio of dBSA to QDs.Furtherexperiment results showed that the dBSA after conjugated to QDs efficiently improve thephotoluminescence quantum yield (PL QY),the chemical stability and the stability againstphotobleaching.A facile and sensitive method for silver (I)ions determination wasproposed based on the fluorescence quenching of the dBSA-QDs.Under the optimumconditions,the relative PL intensity decreased linearly with the silver (I)ions'concentration in the range of 0.08 to 10.66μM.The detection limit was 0.01μM.Thisstudy provides a new trail of thought for the detection of metal cations.
     (3)The temperature-dependent of CdTe was studied and a method of improving thetemperature-insensitive was established.The PL of CdTe QDs (3.5 nm)is found to betemperature-dependent:as the temperature arising from 278 K to 323 K,the PL intensitydeclines to 50.2% of its original and PL emission peak shows obvious red-shift (~7 nm).After modification of the QDs surface with denatured ovalbumin,the PL is moretemperature-insensitive than before.The PL intensity retains more than 70% of its originaland the emission peak shows less red-shift (~2 nm).Moreover,it is found that the PLintensity and wavelength of denatured ovalbumin coated CdTe QDs are reversible duringheating (323 K)-cooling (278 K)cycles.All the studies provide an important theoreticalbasis for searching temperature-insensitive bioprobes.
     (4)A new method to detect the ovalbumin was set based on the PL change.Chemically reduced ovalbumin had been used to modify the surface of CdTe QDs,resulting in the enhancement of PL intensity and the blue shift of the PL peak wavelength.A new method for the determination of ovalbumin was established based on the PLchanges.Under the optimal conditions,experiment results showed that the PL intensityand PL peak wavelength were both in good linear with the ovalbumin concentration in therange of 0.125μM~4μM and the detection limit was 0.03μM.The results werecompared with the traditional UV absorption method,and showed relatively goodreliability.
     (5)Water-soluble core/shell structure with CdTe cores capped by CdS shell(CdTe/CdS)were synthesized in aqueous solution with captosuccinic acid as stabilizer.The absorption and fluorescence spectra confirmed that the synthesized QDs had goodoptical properties.It was observed that the QY of QDs was greatly increased after a heating-cooling cycle (from 22% to 41%).Then the QDs were used to prepare fluorescentprobe.The experiment results showed that the transferrin could conjugate to CdTe/CdSQDs effectively and the HepG2 cells were recognized successfully.This work is of greatsignificance for the preparation of high-powered QDs and their applications in life science.And it has an important reference value for the recognition of cancer cells.
     (6)High quality of CdTe QDs were synthesized in aqueous solution with glutathioneas the stabilizer.UV-visible spectra and fluorescence spectra confirmed the as-synthesizedQDs had good optical properties.The two-step glutaraldehyde (G)method and one-step Gmethod were compared by the capillary electrophoresis to label con A.Experimentalresults showed that two-step G method has better labeling result.
引文
[1]倪星元,姚兰芳,沈军等.纳米材料制备技术.第1版.北京:化学工业出版社,2007
    [2]Marcel B.J.,Mario M.,Peter G.,et al.Semiconductor nanocrystals as fluorescent biological labels.Science,1998,281:2013-2016
    [3]Chan W.C.W.,Nie S.Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science,1998,281:2016-2018
    [4]Kairdolf B.A.,Smith A.M.,Nie S.One-pot synthesis,encapsulation,and solubilization of size-tuned quantum dots with amphiphilic multidentate ligands.J.Am.Chem.Soc.,2008,130(39):12866-12867
    [5]He Y.,Lu H.T.,Sai L.M.,et al.Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility.Adv.Mater.,2008,20:3416-3421
    [6]Rogach A.L.,Franzl T.,Klar T.A.,et al.Aqueous synthesis of thiol-capped CdTe nanocrystals:state-of-the-art.J.Phys.Chem.C,2007,111:14628-14637
    [7]Ball P,Garwin L.Science at the atomic scale.Nature,1992,355:761-766
    [8]Peng Z.A.,Peng X.G.Formation of high-quality CdTe,CdSe,and CdS nanocrystals using CdO as precursor.J.Am.Chem.Soc.,2001,123(1):183-184
    [9]Stuczynski S.M.,Brennan J.G.,Steigerwald M.L.Formation of metal-chalcogen bonds by the reaction of metal-alkyls with silyl chalcogenides.Inorg.Chem.,1989,28(25):4431-4432
    [10]Murray C.B.,Norris D.J.,Bawendi M.G.Synthesis and characterization of nearly monodisperse semiconductor nanocrystallites.J.Am.Chem.Soc.,1993,115(19):8706-8715
    [11]Bowen-Katari J.E.,Colvin V.L.,Alivisatos A.P.et al.X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface.J.Phys.Chem.,1994,98(15):4109-4117
    [12]Peng X.G.,Manna L.,Yang W.,et al.Shape control ofCdSe nanocrystals.Nature, 2000, 404(2): 59-61
    [13] Peng X. G, Wickham J., Alivisatos A. P. et al. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴcolloidal semiconductor nanocrystal growth: "focusing" of size distributions. J. Am. Chem.Soc, 1998,120(21): 5343-5344
    [14] Becerra L. R., Murray C. B., Grifin R. G., et al. Investigation of the surface morphology of capped CdSe nanocrystallites by ~(31)P nuclear magnetic resonance. J.Chem. Phys., 1994, 100(4): 3297-3300
    [15] Peng Z. A., Peng X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc, 2001,123(7): 1389-1395
    [16] Craig R. B., Paul M., Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett., 2004, 4: 2303-2307
    [17] Talapin D. V., Haubold S., Rogach A. L., et al. A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J. Phys. Chem. B, 2001, 105: 2260-2263
    [18] Yu W. W., Qu L. H., Guo W. Z., et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater., 2003, 15:2854-2860
    [19] Schreder B., Schmidt T., Ptatschek V., et al. CdTe/CdS clusters with "core-shell" structure in colloids and films: the path of formation and thermal breakup. J. Phys. Chem. B, 2000, 104: 1677-1685
    [20] Blackman B., Battaglia D., Peng X. G. Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe type-Ⅱ/type-Ⅰnanocrystals, tuning the efficiency and stability by growth. Chem. Mater., 2008, 20: 4847-4853
    [21] Bailey R. E., Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc, 2003, 125: 7100-7106
    [22] Medintz I. L., Uyeda H. T., Goldman E. R., et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4: 435-446
    [23] Gaponik N., Talapin D. V., Rogach A. L., et al. Thiol-capping of CdTe nanocrystals:an alternative to organometallic synthetic routes. J. Phys. Chem. B, 2002, 106:7177-7185
    [24] Rogach A. L., Katsikas L., Kornowski A., et al. Synthesis and characterization of thiol-stabilized CdTe nanocrystals, Ber. Bunsenges. Phys. Chem., 1996, 100: 1772-1778
    [25] Gaponik N., Radtchenko I. L., Sukhorukov G B., et al. Toward encoding combinatorial libraries: charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR. Adv. Mater., 2002, 14: 879-881
    [26] Gao M. Y., Kirstein S., Weller H., et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B, 1998, 102:8360-8363
    [27] Gao M. Y., Lesser C., Kirstein S., et al. Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films. J. Appl. Phys., 2000, 87:2297-2302
    [28] Yang Y. H., Gao M. Y. Preparation of Fluorescent SiO_2 Particles with Single CdTe Nanocrystal Cores by the Reverse Microemulsion Method. Adv. Mater., 2005, 17:2354-2357
    [29] Yang Y. H., Wen Z. K., Dong Y. P., et al. Incorporating CdTe nanocrystals into polystyrene microspheres: towards robust fluorescent beads cores by the reverse microemulsion method. Small, 2006, 2: 898-901
    [30] Hu F. Q., Ran Y L., Zhou Z., et al. Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection. Nanotechnology, 2006, 17: 2972-2977
    [31] Li L., Qian H. F., Ren J. C. Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun., 2005: 528-530
    [32] He Y., Lu H. T., Sai L. M., et al. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J.Phys. Chem. B, 2006, 110: 13370-13374
    [33] He Y., Lu H. T., Sai L. M., et al. Synthesis of CdTe nanoerystals through program proeess of mierowave irradiation. J. Phys. Chem. B, 2006, 110: 13352-13356
    [34] He Y., Sai L. M., Lu H. T., et al. Microwave-assisted synthesis of water-dispersed CdTe nanocrystals with high luminescent efficiency and narrow size distribution. Chem. Mater., 2007, 19: 359-365
    [35] Wang C. L., Zhang H., Zhang J. H., et al. Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS core-shell nanocrystals, J. Phys. Chem. C, 2007, 111: 2465-2469
    [36] Piven N., Susha A. S., D(?)blinger M., et al. Aqueous synthesis of alloyed CdSe_xTei_(1-x) nanocrystals. J. Phys. Chem. C, 2008, 112: 15253-15259
    [37] Bao H. B., Gong Y. J., Li Z., et al. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS core-shell structure. Chem. Mater., 2004,16: 3853-3859
    [38] Zeng Q. H., Kong X. G., Sun Y. J., et al. Synthesis and optical properties of type ⅡCdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction. J. Phys. Chem. C, 2008,112: 8587-8593
    [39] Zhang Y., Li Y., Yan X. P. Aqueous layer-by-layer epitaxy of type-ⅡdTe/CdSe quantum dots with near-infrared fluorescence for bioimaging applications. Small,2009,5: 185-189
    [40] Law W. C., Yong K. T., Roy I., et al. Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging, DOI: 10. 1002/smll. 200801555
    [41] Schroedter A., Weller H., Eritja R., et al. Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano. Lett., 2002, 2: 1363-1367
    [42] Rogach A. L., Nagesha D., Ostrander J. W., et al. "Raisin bun"-type composite spheres of silica and semiconductor nanocrystals. Chem. Mater., 2000, 12:2676-2685
    [43] Tang Z., Kotov N. A., Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237-340
    [44] Li J., Hong X., Li D., et al. Mixed ligand system of cysteine and thioglycolic acid assisting in the synthesis of highly luminescent water-soluble CdTe nanorods.Chem. Commun, 2004, 1740-1741
    [45] Tang B., Niu J. Y., Yu C. G., et al. Highly luminescent water-soluble CdTe nanowires as fluorescent probe to detect copper(鈪?. Chem. Commun., 2005,4184-4186
    [46] Wang Y., Tang Z. Y., Tan S. S., et al. Biological assembly of nanocircuit prototypes from protein-modified CdTe nanowires. Nano Lett., 2005, 5: 243-248
    [47] Wang Y., Tang Z. Y., Liang X. R., et al. SiO_2-coated CdTe nanowires: bristled nano centipedes. Nano Lett., 2004, 4: 225-231
    [48] Lee J., Govorov A. O., Dulka J., et al. Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett., 2004, 4: 2323-2330
    [49] Tang Z. Y., Zhang Z. L., Wang Y., et al. Self-assembly of CdTe nanocrystals into free-floating sheets. Science, 2006, 314: 274-278
    [50] Lovric J., Bazzi H. S., Cuie Y., et al. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol. Med., 2005, 83:377-385
    [51] Yang R. H., Chang L. W., Wu J. P., et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect., 2007, 115: 1339-1343
    [52] Zhang Y B., Chen W., Zhang J., et al. In vitro and in vivo toxicity of CdTe nanoparticles. J Nanosci. Nanotechnol., 2007, 7: 497-503
    [53] Lovric J., Cho S. J., Winnik F. M., et al. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol, 2005, 12: 1227-1234
    [54] Su Y Y., He Y., Lu H. T., et al. The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating. Biomaterials, 2009, 30: 19-25
    [55] Perfetto S. P., Chattopadhyay P. K., Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol., 2004, 4: 648-655
    [56] Lim Y. T., Kim S., Nakayama A., et al. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging, 2003, 2(1): 50-64
    [57] Goldman E. R., Mattoussi H., Anderson G. P., et al. Fluoroimmunoassays using antibody-conjugated quantum dots. Methods Mol. Biol., 2005, 303: 19-34
    [58] Wang H. Q., Liu T. C, Cao Y. C, et al. A flow cytometric assay technology based on quantum dots-encoded beads. Anal. Chim. Acta, 2006, 580: 18-23
    [59] Agrawal A., Zhang C. Y., Byassee T., et al. Counting single native biomolecules and intact viruses with color-coded nanoparticles.Anal.Chem.,2006,78:1061-1070
    [60]Gerhards C.,Schulz-Drost C.,Sgobba V.,et al.Conjugating luminescent CdTe quantum dots with biomolecules.J.Phys.Chem.B,2008,112:14482-14491
    [61]Kuo Y.C.,Wang Q.,Ruengruglikit C.,et al.Antibody-conjugated CdTe quantum dots for escherichia coli detection.J.Phys.Chem.C,2008,112:4818-4824
    [62]Lu Z.S.,Li C.M.,Bao H.F.,et al.Mechanism of antimicrobial activity of CdTe quantum dots.Langrnuir,2008,24:5445-5452
    [63]Voura E.B.,Jaiswal J.K.,Mattoussi H.,et al.Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy.Nat.Med.,2004,10(9):993-998
    [64]Patolsky F.,Gill R.,Weizmann Y.,et al.Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots.J.Am.Chem.Soc.,2003,125:13918-13919
    [65]Chan P.M.,Yuen T.,Sealfon S.C.,et al.Method for multiplex cellular detection ofmRNAs using quantum dot fluorescent in situ hybridization.Nucleic.Acids Res.,2005,33(18):el61
    [66]张春阳,马辉,丁尧等.量子点标记天花粉蛋白的研究.高等学校化学学报,2001,1:34-37
    [67]李军,袁航,白玉白等.CdTe纳米晶与蛋白相互作用研究.高等学校化学学报,2003,24(7):1293-1295
    [68]Yu Y.,Lai Y.,Zheng X.,et al.Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection ofBSA.Spectrochim.ActaA,2007,68:1356-1361
    [69]Shao L.W.,Dong C.Q.,Sang F.M.,et al.Studies on interaction of CdTe quantum dots with bovine serum albumin using fluorescence correlation spectroscopy.J.Fluoresc.,2009,19:151-157
    [70]万异,林章碧,陈奇丹等.水相合成CdTe量子点标记亲和素前后光谱变化的研究.分析仪器,2004(3):41-44
    [71]Chen Q.F.,Wang W.X.,Ge Y.X.,et al.Direct aqueous synthesis of cysteamine-stabilized CdTe quantum dots and its deoxyribonucleic acid bioconjugates.Chinese J.Anal.Chem.,2007,35:135-138
    [72]林章碧,苏星光,张皓等.用水溶液中合成的量子点作为生物荧光标记物的研究.高等学校化学学报,2003,24(2):2 1 6-220
    [73]Lin Z.B.,Cui S.X.,Zhang H.,et al.Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction.Anal.Biochem.,2003,319:239-243
    [74]Yuan J.P.,Guo W.W.,Wang E.K.Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.Anal.Chem.,2008,80:1141-1145
    [75]Cui R.,Pan H.C.,Zhu J.J.,et al.Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels.Anal.Chem.,2007,79:8494-8501
    [76]Chen Y.F.,Rosenzweig Z.Luminescent CdS quantum dots as selective ion probes.Anal.Chem.2002,74:5132-5138
    [77]王柯敏,王益林,李朝辉等.CdTe量子点荧光猝灭法测定铜离子的研究.湖南大学学报(自然科学版),2005,32:1-5
    [78]Wang J.H.,Wang H.Q.,Zhang H.L.,et al.Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions.Anal.Bioanal.Chem.,2007,388:969-974
    [79]Gatt(?)s-Asfura K.M.,Leblanc R.M.Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I).Chem.Commun.,2003:2684-2685
    [80]Chen C.Y.,Cheng C.T.,Lai C.W.,et al.Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H20.Chem.Commun.,2006:263-265
    [81]Weng J.F.,Song X.T.,Li L.,et al.Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging.Talanta,2006,70:397-402
    [82]Zheng Y.G.,Gao S.J.,Ying J.Y.Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots.Adv.Mater.2007,19:376-380
    [83]Li Z.H.,Wang K.M.,Tan W.H.,et al.Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution.Anal.Biochem.,2006,354:169-174
    [84] Ying E. B., Li D., Guo S. J., et al. Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals. PLoS ONE, 2008, 3:1-7
    [85] Medintz I. L., Konnert J. H., Clapp A. R., et al. A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly.Proc. Natl. Acad. Sci. USA, 2004, 101: 9612-9617
    [86] Shi L. F., Rosenzweig N., Rosenzweig Z. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Anal. Chem., 2007, 79: 208-214
    [87] Algar W. R., Krull U. J. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal. Chim. Acta, 2007, 581: 193-201
    [88] Medintz I. L., Clapp A. R., Mattoussi H., et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2: 630-638
    [89] Clapp A. R., Medintz I. L., Fisher B. R., et al. Can luminescent quantum dots be efficient energy acceptors with organic dye donors? J. Am. Chem. Soc., 2005, 127:1242-1250
    [90] Wang S. P., Mamedova N., Kotov N. A., et al. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett., 2002,2: 817-822
    [91] Huang X. Y., Li L., Qian H. F., et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET).Angew. Chem. Int. Ed., 2006, 45: 5140-5143
    [92] Mamedova N. N., Kotov N. A., Rogach A. L., et al. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect, Nano Lett., 2001, 1: 281-286
    [93] Zhang Y., So M. K., Loening A. M., et al. HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. Angew. Chem. hit. Ed.,2006,45:4936-4940
    [94] Coale K. H., Johnson K. S., Stout P. M., et al. Determination of copper in sea water using a flow-injection method with chemiluminescence detection. Anal. Chim.Acta, 1992,266:345-351
    [95] Zamaow H., Coale K. H., Johnson K. S., et al. Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection. Anal. Chim. Acta, 1998, 377: 133-144
    [96] Collado-Sanchez C., P(?)rez-Pe(?)a J., Gelado-Caballero M. D., et al. Rapid determination of copper, lead and cadmium in unpurged seawater by adsorptive stripping voltammetry. Anal. Chim. Acta, 1996, 320: 19-30
    [97] Chan M. S., Huang S. D. Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with zeeman-effect background corrector. Talanta, 2000, 51: 373-380
    [98] Wu J., Boyle E. A. Low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS. Anal. Chem., 1997, 69: 2464-2470
    [99] Bryce M. R., Johnston B., Kataky R., et al. Ionophores based on 1, 3-dithiole-2- thione-4, 5-dithiolate (DMIT) as potentiometric silver sensors. Analyst, 2000, 125:861-866
    [100] Yang R. H., Chan W. H., Lee A. W. M., et al. A ratiometric fluorescent sensor for Ag~1 with high selectivity and sensitivity. J. Am. Chem. Soc., 2003, 125: 2884-2885
    [101] Cao Q. E., Wang K. T., Hu Z. D., et al. Syntheses of three new derivatives of 8-aminoquinoline and its applications for fluorimetric determination of copper(Ⅱ).Talanta, 1998,47:921-927
    [102] Mayr T., Wencel D., Werner T. Fluorimetric determination of copper(Ⅱ) in aqueous solution using lucifer yellow CH as selective metal reagent. Fresenius J Anal. Chem., 2001, 371: 44-48
    [103] Mattoussi H., Manro J. M., Goldman E. R., et al. Self-Assembly of CdSe-ZnS Quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem.Soc, 2000, 122: 12142-12150
    [104] Michalet X., Pinaud F. F, Bentolila L. A., et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307: 538-544
    [105] Liang J. G., Ai X. P., He Z. K., et al. Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst, 2004, 129: 619-622
    [106] Chen B., Zhong P. A new determining method of copper(Ⅱ) ions at ng ml~(-1) levels based on quenching of the water-soluble nanocrystals fluorescence.Anal.Bioanal.Chem.,2005,381:986-992
    [107]Fern(?)ndez-Argüelles M.T.,Jin W.J.,Costa-Fern(?)ndez J.M.,et al.Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements.Anal.Chim.Acta,2005,549:20-25
    [108]Zhang H.,Zhou Z.,Yang B.,et al.The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles.J.Phys.Chem.B,2003,107:8-13
    [109]Rajh T.,Mi(?)i(?) O.I.,Nozik A.J.Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots.J.Phys.Chem.,1993,97:11999-12003
    [110]Wang Q.,Kuo Y.,Wang Y.,et al.Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots.J.Phys.Chem.B,2006,110:16860-16866
    [111]Xie H.Y.,Liang J.G.,Zhang Z.L.,et al.Luminescent CdSe-ZnS quantum dots as selective Cu~(2+) probe.Spectrochim.Acta A,2004,60:2527-2530
    [112]Gao X.H.,Chan W.C.W.,Nie S.M.Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding.J.Biomed.Opt.,2002,7:532-537
    [113]Susha A.S.,Javier A.M.,Parak W.J.,et al.Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions.Colloid Surf.A.,2006,281:40-43
    [114]Isarov A.V.,Chrysochoos J.Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles:surface modification with copper(II) ions.Langrnuir,1997,13:3142-3149
    [115]申德君,张朝平,罗玉萍等.BSA-SDS-Ag聚合物纳米微粒的制备及水凝胶性质的研究(Ⅱ).2002,22:257-26l
    [116]杨曼曼,杨频,张立伟.荧光法研究咖啡酸类药物与白蛋白的作用.科学通报,1994,39:31-35
    [117]Chen F.Q.,Gerion D.Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term,nontoxic imaging and nuclear targeting in living cells.Nano Lett.,2004, 4: 1827-1832
    [118] Tanke H. J., Dirks R. W., Raap T., FISH and immunocytochemistry: towards visualising single target molecules in living cells. Curr. Opin. Biotech., 2005, 16:49-54
    [119] Howarth M., Takao K., Hayashi Y., et al. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. U. S. A., 2005, 102:7583-7588
    [120] Hasegawa U., Nomura S. M., Kaul S. C., et al. Nanogel-quanrum dot hybrid nanoparticles for live cell imaging. Biochem. Biophys. Res. Commun., 2005, 331:917-921
    [121] Tomlinson I. D., Mason J. N., Blakely R. D., et al. Peptide-conjugated quantum dots: imaging the angiotensin type 1 receptor in living cells. Method Mol. Biol.,2005,303:51-60
    [122] Bharali D. J., Lucey D. W., Jayakumar H., et al. Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J.Am. Chem. Soc., 2005, 127: 11364-11371
    [123] Li M. Y., Ge Y. X., Chen Q. F., et al. Hydrothermal synthesis of highly luminescent CdTe quantum dots by adjusting precursors' concentration and their conjunction with BSA as biological fluorescent probes. Talanta, 2007, 72: 89-94
    [124] Aldana J., Lavelle N., Wang Y., et al. Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. J. Am. Chem. Soc., 2005, 127:2496-2504
    [125] Kalyuzhny G, Murray R. W. Ligand effects on optical properties of CdSe nanocrystals. J. Phys. Chem. B, 2005, 109: 7012-7021
    [126] Ma Q., Su X. G., Wang X. Y., et al. Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system. Talanta, 2005, 67: 1029-1034
    [127] Mandal P. K., Sarkar M., Samanta A. Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids.J. Phys. Chem. A, 2004, 108: 9048-9053
    [128] Wuister S. F., Houselt A., Doneg(?) C. D. M., et al. Temperature antiquenching of the luminescence from capped CdSe quantum Dots, Angew. Chem. Int. Ed., 2004, 43: 3029-3033
    [129]Wuister S.F.,Doneg(?) C.D.M.,Meijerink A.J.Luminescence temperature antiquenching of water-soluble CdTe quantum dots:role of the solvent.J.Am.Chem.Soc.,2004,126:10397-10402
    [130]Biju V.,Makita Y.,Sonoda A.,et al.Temperature-sensitive photoluminescence of CdSe quantum dot clusters.J.Phys.Chem.B,2005,109:13899-13905
    [131]Gardner H.C.,Gallardo D.E.,Bertoni C.,et al.Temperature shifted photoluminescence in CdTe nanocrystals.Proc.SPIE,2006,6195:61950N 1-8
    [132]Rogach A.L.Nanocrystalline CdTe and CdTe(S) particles:wet chemical preparation,size-dependent optical properties and perspectives of optoelectronic applications.Mater.Sci.Eng.B,2000,69-70:435-440
    [133]Liu T.C.,Huang Z.L.,Wang H.Q.,et al.Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe.Anal.Chim.Acta,2006,559:120-123
    [134]Hua X.F.,Liu T.C.,Cao Y.C.,et al.Characterization of the coupling of quantum dots and immunoglobulin antibodies.Anal.Bioanal.Chem.,2006,386:1665-1671
    [135]Walker G.W.,Sundar V.C.,Rudzinski C.M.,et al.Quantum-dot optical temperature probes.Appl.Phys.Lett.,2003,83:3555-3557
    [136]De Mot R.,Vanderleyden J.Application of two-dimensional protein analysis for strains fingerprinting and mutant analysis of azospirillum species.Can.J.Microbiol.,1989,35:960-967
    [137]Pande S.V.,Tewari K.K.,Krishnan P.S.A critical study of the biuret method of protein estimation as applied to fungal mycelium.Arch.Microbio.,1961,39:343-350
    [138]Lucarini A.C.,Kilikian B.V.Comparative study of Lowry and Bradford methods:interfering substances.Biotechnol.Tech.,1999,13:149-154
    [139]Goldfarb A.R.,Saidel L.J.,Mosovich E.The ultraviolet absorption spectra of proteins.J.Biol.Chem.,1951,193:397-404
    [140]郑洪,李东辉,吴敏等.新型近红外试剂的合成及其现场二聚体与DNA作用的研究.高等学校化学学报,1999,20:1026-1030
    [141]Huh Y.M,Jun Y.W.,Song H.T.,et al.In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals.J.Am.Chem.Soc.,2005,127:12387-12391
    [142]Stroh M.,Zimmer J.P.,Duda D.G.,et al.Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo.Nat.Med.,2005,11:678-682
    [143]Parungo C.P.,Ohnishi S.,Kim S.W.,et al.Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging.J.Thorac.Cardiov.Surg.,2005,129:844-850
    [144]Morgan N.Y.,English S.,Chen W.,et al.Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots.Acad.Radiol.,2005,12:313-323
    [145]Clapp A.R.,Medintz I.L.,Mauro J.M.,et al.Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.J.Am.Chem.Soc.,2004,126:301-310
    [146]Zhang C.Y.,Ma H.,Ding Y.,et al.Quantum dot-labeled trichosanthin.Analyst,2000,125:1029-1031
    [147]Goldman E.R.,Balighian E.D.,Mattoussi H.,et al.Avidin:a natural bridge for quantum dot-antibody conjugates.J.Am.Chem.Soc.,2002,124:6378-6382
    [148]汪乐余,周运友,朱昌青等.功能性CdS纳米荧光探针荧光增敏法测定人血清白蛋白.高等学校化学学报,2003,24:612-614
    [149]Li J.,Zhao K.,Hong X.,et al.Prototype of immunochromatographic assay strips using colloidal CdTe nanocrystals as biological luminescent label.Colloids Surf.B,2005,40:179-182
    [150]Ma H.L.,Wang C.L.,Liu H.Z.,et al.NHS mediated CdTe quantum dots/albumin conjugates and labeling C.elegans.Chem.Res.Chinese U.,2006,22:181-184
    [151]Huang Z.L.,Lei H.,Li N.,et al.Novel heterocycle-based organic molecules with two-photon induced blue fluorescent emission.J.Mater.Chem.,2003,13:708-711
    [152]Koch A.M.,Reynolds F.,Kircher M.F.,et al.Uptake and metabolism of a dual fluorochrome tat-nanoparticle in HeLa cells.Bioconjugate Chem.2003,14:1115-1121
    [153]Hoshino A.,Hanaki K.,Suzuki K.,et al.Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body.Biochem.Bioph.Res.Co.2004,314:46-53
    [154]Yang W.H.,Li W.W,Dou H.J.,et al.Hydrothermal synthesis for high-quality CdTe quantum dots capped by cysteamine.Mater.Lett.,2008,62:2564-2566
    [155]Talapin D.V.,Rogach A.L.,Shevchenko E.V.,et al.Dynamic distribution of growth rates within the ensembles of colloidal Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor nanocrystals as a factor governing their photoluminescence efficiency.J.Am.Chem.Soc.,2002,124(20):5782-5790
    [156]Peng H.,Zhang L.,Soeller C.,et al.Preparation of water-soluble CdTe/CdS core/shell quantum dots with enhanced photostability.J.Lumin.,2007,127:721-726
    [157]Wang J.H.,Wang H.Q.,Li Y.Q.,et al.Modification of CdTe quantum dots as temperature-insensitive bioprobes.Talanta,2008,74:724-729
    [158]Goldman E.R.,Balighian E.D.,Kuno M.K.,et al.Luminescent quantum dot-adaptor protein-antibody conjugates for use in fluoroimmunoassays.Phys.Stat.Sol.(b),2002,229(1):407-414
    [159]Mattoussi H.,Mauro J.M.,Goldman E.R.,et al.Bioconjugation of highly luminescent colloidal CdSe-ZnS quantum dots with an engineered two-domain recombinant protein.Phys.Stat.Sol.(b).,2001,224(1):277-283
    [160]周建芹,陈韶华,王剑文.以刀豆蛋白为介质定向固定化脲酶的研究.生物工程学报,2008,24:617-621
    [161]Wang J.H.,Wang H.Q.,Zhang H.L.,et al.Photoluminescence enhancement by coupling of ovalbumin and CdTe quantum dots and its application as protein probe.Colloid Surf.A.,2007,305:48-53
    [162]Shan Y.M.,Wang L.P.,Shi Y.H.,et al.NHS-mediated QDs-peptide/protein conjugation and its application for cell labeling.Talanta,2008,75:1008-1014
    [163]Song X.,Li L.,Chan H.,et al.Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium.Electrophoresis,2006,27:1341-1346
    [164] Vicente G., Colon L. A. Separation of bioconjugated quantum dots using capillary electrophoresis. Anal. Chem., 2008, 80: 1988-1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700